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Abstract—This paper focuses on decoding the process of face
verification in the human brain using fMRI responses. 2400
fMRI responses are collected from different participants while
they perform face verification on genuine and imposter stimuli
face pairs. The first part of the paper analyzes the responses
covering both cognitive and fMRI neuro-imaging results. With an
average verification accuracy of 64.79% by human participants,
the results of the cognitive analysis depict that the performance
of female participants is significantly higher than the male par-
ticipants with respect to imposter pairs. The results of the neuro-
imaging analysis identifies regions of the brain such as the left
fusiform gyrus, caudate nucleus, and superior frontal gyrus that
are activated when participants perform face verification tasks.
The second part of the paper proposes a novel two-level fMRI
dictionary learning approach to predict if the stimuli observed is
genuine or imposter using the brain activation data for selected
regions. A comparative analysis with existing machine learning
techniques illustrates that the proposed approach yields at least
4.5% higher classification accuracy than other algorithms. It is
envisioned that the result of this study is the first step in designing
brain-inspired automatic face verification algorithms.

I. INTRODUCTION

The processing capabilities of the human brain have fas-
cinated the researchers for the past few decades, leading to
attempts of better understanding and emulating the brain’s
functionality. Specifically, the face recognition capabilities of
humans has motivated researchers for developing intelligent
algorithms for automated matching. Several algorithms, rang-
ing from Gabor transform to deep learning based architectures,
have been proposed, that seek to emulate the complex working
of the human brain [1]–[6].

Parallely, in cognitive neuroscience, researchers have fol-
lowed independent research directions to understand brain
functioning by means of behavioral (cognitive) and sense
based approaches such as electroencephalogram (EEG) and
functional magnetic resonance imaging (fMRI) [7]. In experi-
ments pertaining to face recognition, researchers have focused
on understanding face perception and brain areas which are
responsible for such tasks. For instance, researchers have
tried to unravel the face discrimination abilities present in
newborns and monkeys [8]. It has also been established that
fusiform gyrus and lingual gyrus are responsible for face
perception [7], [9], [10]. Similarly, cognitive neuroscientists
have demonstrated that humans have innate capabilities for
recognizing familiar faces even in the presence of moderate

disguise, makeup, and occlusion [11]–[13]. These results have
aided the biometrics (face) research community to develop
novel algorithms for challenging tasks such as plastic surgery
[14], [15] and unconstrained face recognition [5].

In order to move closer to building brain-inspired algorithms
for face recognition, it is required to understand various facets
of brain processing. There are several questions that require
exploration; questions related to the processing capabilities
of the human brain and the task of face recognition. For
instance, (i) what regions are involved for face perception,
(ii) what ancillary information is required for the task of face
recognition, (iii) what is the effect of familiarity, memory,
gender, and race for the task of face recognition, and (iv) how
the brain processes genuine and imposter face pairs1. Tradi-
tionally, experimental design in cognitive neuroscience studies
focus on self face recognition, familiar face recognition, or kin
face recognition [16]–[19]. Such studies show that significant
progress has been made to comprehend face perception in
general and establishing brain regions responsible for face
perception. Further, researchers have studied the effect of
ancillary information on face recognition [20]. However, to
the best of our knowledge, this research is the first work
which attempts to understand the functioning of the brain for
processing genuine and imposter pairs, i.e. face verification
task, given familiar and unfamiliar faces. Decoding regions
of activations and corresponding models for such a task
can help face recognition researchers in developing improved
algorithms. This paper focuses on this particular aspect of face
verification and presents the following contributions:

• Design cognitive neuroscience experiments to observe
brain activations while the participant is performing a face
verification task. This is the first cognitive neuroscience
experimental design for the same. While designing the
experiment, special attention has been paid to suppress
activations by memory recall.

• Propose a novel machine learning based approach to
predict if the stimuli observed are genuine or imposter
using fMRI data only. This approach is the first step in
designing a brain-like face verification algorithm.

1Given a pair of face stimulus images, if both images correspond to the
same subject, the pair is considered genuine; otherwise it is considered as
imposter.
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Fig. 1: (a) Sample stimuli for genuine and imposter pairs; (b) protocol for face verification task. The response time is marked
in red and the maximum limit on response time is 2.5 seconds (red arrow). The screen turns blank after the participant provides
response till 4.5 seconds before the next stimulus is shown.

II. NEUROCOGNITIVE STUDY

Individuals perform face recognition innumerable times dur-
ing their daily life. In most cases, it is an effortless task which
is performed with utmost ease. However, researchers are yet
to completely understand the intricacies of neural processing
when a face is seen. This research aims to investigate the
neural correlates of face verification (by one-to-one matching)
using functional magnetic resonance imaging (fMRI). fMRI
is a non-invasive neuroimaging technique which uses the
relationship between brain activity and the local cerebral blood
flow. Oxygen concentration in the blood is used as an indirect
marker of the underlying neuronal activity in the brain; termed
as the Blood Oxygenation Level Dependent (BOLD) signal.
Researchers have been using fMRI scans and studying these
BOLD signals to understand brain functioning [16], [18], [21],
[22]. In this study, we try to decode the neuronal activity in
the brain while performing face verification task (i.e. given
a pair of face images, identify whether the pair is genuine
or imposter). Participants are presented with a pair of face
image stimulus and are required to decide whether the given
pair of images belong to the same individual or not. Once
the data is collected, responses are analyzed in terms of both
cognitive or behavioral analysis and neuroimaging results. We
further present the details about the data collection procedure,
experimental protocol, and the results obtained.

A. Data Collection

Due to the unavailability of fMRI datasets in the literature
which involve matching faces side-by-side, we collected data
for the task of face verification. The data collection process
involved the creation of task-specific stimuli, formulation of
an experimental design, selection of participants and collection
of fMRI scans, details of which are given below.

1) Experimental Design: The paradigm used in the fMRI
experiment is an event-related face-matching task. Each stim-
uli consisted of gray scale images of face pairs displayed side
by side where background noise (non-face area) is suppressed
by applying an oval mask as shown in Fig. 1 (a). When view-
ing the stimulus, the participants were instructed to respond
“Yes” if they thought the face-pair belongs to the same person
and “No” otherwise, using a controller provided to them.

Each face-matching task is performed in a segment of 4.5
seconds where one stimulus pair is shown per segment. As
shown in Fig. 1(b), in each segment, the first image of the pair
is shown for the initial 1 second, followed by both the images
being displayed, for a maximum of 2.5 seconds. Participants
responded within these 2.5 seconds. As soon as a response is
recorded, a blank black screen is displayed for the remaining
4.5 seconds segment and is treated as the Inter-Stimuli Interval
(ISI). This functions as the resting phase (baseline) between
each stimuli.

The entire experiment consisted of 4 fMRI runs with 60
segments in each run, making a total of 240 face-pair stimuli.
No face-pair stimuli were overlapping across the different runs.
Out of the 240 stimuli, 135 pairs are genuine (match pairs)
and 105 pairs are imposter (non-match pairs). Face-pair stimuli
were created using the images from popular face databases.

2) Participants: The study is performed on a total of 10
healthy subjects (5 males and 5 females) in the age group of
20-27 years. The subjects were briefed on the experimental
design, type of stimuli, and the task before the data collection
process. All subjects provided written consent to be a part of
the study. The study has been approved by IIIT-Delhi Ethics
board.

3) fMRI Data Acquisition: The imaging sequence is an in-
terleaved T2*-weighted gradient echo sequence (from negative
to positive direction) with 35 axial slices (slice thickness =



3.5 mm, slice spacing = 0.0 mm, repetition time (TR) = 2.0
seconds, echo time (TE) = 30 ms, flip angle = 650, field of
view (FOV) = 224 mm, matrix = 64×64) and 128 volumes
are captured per run (each volume is captured in 2 seconds
with no gap of time between volumes) on a 3T GE Machine.

Anatomical structural scan for each subject is acquired using
structural MRI scans. These scans are T1-weighted sequence
with 172 sagittal slices in interleaved sequence (slice thickness
= 1 mm, TR = 600 ms, flip angle = 100, field of view = 224
mm, matrix = 256×256).

B. Data Analysis and Results

In this section, the genuine-imposter responses provided
by the participants during the fMRI task are analyzed. As
explained above, the experimental protocol required the par-
ticipants to perform face verification, i.e. verify whether a
given stimulus, belonged to the same individual or not. With
240 stimuli and 10 participants, a total of 2400 responses
are collected. We observe the correct verification accuracy2

of 64.79% across all participants. Upon further analysis,
female participants correctly verified face stimuli with 67.17%
accuracy as compared to 62.41% by male participants.

TABLE I: Confusion matrix for the behavioral responses for
the face verification task. Performance for all participants,
male participants, and female participants are reported sep-
arately.

Response Label

All Actual
Label

Genuine Imposter
Genuine 66.22% 33.56%
Imposter 36.88% 62.95%

Males Actual
Label

Genuine Imposter
Genuine 63.26% 36.31%
Imposter 38.79% 61.21 %

Females Actual
Label

Genuine Imposter
Genuine 63.55% 36.45%
Imposter 27.27 72.32 %

Table I shows the confusion matrix in terms of actual label
and response label for all 10 participants, as well as gender-
wise results. It is important to note that due to some stimuli
on which no response was given by the participant, the values
across each row might not add up to a 100%. Intrigued by the
variations in the true positive and true negative values from
the confusion matrix, we further analyzed the performance of
male and female participants on genuine and imposter pairs
separately. For genuine pairs, male participants provided true
positive accuracy of 63.26% and females provided 63.55%
accuracy. However, it is interesting to observe that in case of
imposter verification, females yield 72.32% and males yield
61.21% true negative rates, respectively.

2The accuracy is calculated as:

Accuracy = 100×
(TP + TN)

(TP + TN + FP + FN)
(1)

where TP , TN , FP , and FN represent the number of true positives, true
negatives, false positives, and false negatives respectively.

To verify the statistical significance of the results, one-tailed
z-test of proportions is applied with a significance level of 0.01
on the classification accuracy, TPR and TNR between males
and females. A p-value of 0.0073 is obtained for accuracy
comparison in favor of females performing better face verifica-
tion as compared to males (67.17% over 62.41%). A one-tailed
z-test of proportions on the true positive rates of both genders
does not yield any statistical difference. However, a p-value
of 0.0001 is observed for comparison of true negative rates
of males (61.21%) and females (72.32%). This demonstrates
the statistical significance of females performing better in
determining imposters as compared to males.

The fMRI scans are also analyzed in terms of neural
activations. fMRI scans require detailed pre-processing before
they can be used to model the haemodynamic response.
Preprocessing and analysis of the fMRI data was performed
using the software Statistical Parametric Mapping (SPM 12;
Wellcome Department of Cognitive Neurology) [23] with
MATLAB R2016b. The pre-processing pipeline is as follows:

• Slice-time correction: All the functional volumes were
slice time corrected to assign all the slices within a single
volume to the same time point.

• Re-alignment: It was done to eliminate within-subject
motion artifacts. The first image volume was used as the
reference volume and all the other time series images
within the subject were aligned with respect to the
reference image using a least square minimization and
a 6-parameter (rigid body) spatial transformation.

• Co-registration: Generally, structural scans are high res-
olution scans of the brain which provide a detailed
structure of the organ. As compared to structural scans,
functional scans do not have as much information. In
this step, to maximize the information about the structure
of the brain, the functional scans are projected onto the
structural scans.

• Segmentation: All images are segmented into gray matter
and white matter. This is done so as to extract the relevant
voxels for analysis.

• Normalization: Since the brain shape and size of each
individual is different, the pre-processed images are then
aligned to a standard template space so as to perform
inter-subject registration of scans using the MNI (Mon-
treal Neurological Template) [24] space.

• Smoothing: A Gaussian kernel with the width of 4mm is
used to remove any noise present in the images.

After pre-processing the data, the BOLD signal is modeled
and activations in the brain are observed. We performed
linear contrast using General Linear Model (GLM) framework
over the pre-processed data to produce Statistical Parametric
Map (SPM) of the effect of matching two face images. For
each subject, a first level model was created and patterns of
significant activation associated with face verification were
identified by appropriately weighting the estimated model
using simple T-contrasts (face verification > baseline) and
statistical parametric maps (t-maps) and contrast images were



Fig. 2: Activations observed for the task of face verification at p ≤ 0.001. The cross-hair points at the global maxima
(x = 12, y = −74, z = 4).

TABLE II: MNI co-ordinates (x, y, z) of the peak activations,
observed during the task of face verification, over all the
participants. z-scores corresponding to the activations for
p ≤ 0.001 (uncorrected) are also reported.

MNI coordinate of
peak activation Brain Region z-score
x y z
12 -74 4 Calcarine Sulcus (right) 5.26
10 -80 -10 Lingual Gyrus (right) 4.76
18 -16 14 Caudate (right) 4.69

-4 -2 64 Supplementary Motor
Area (left) 4.69

-28 -48 20 Fusiform Gyrus (left) 4.57
-44 -14 54 Postcentral Gyrus (left) 4.41
-32 -16 -6 Putamen (left) 4.21

8 32 40 Superior Frontal Gyrus,
Medial (left) 4.17

28 -52 46 Angular Gyrus (right) 4.16
-20 -32 0 Hippocampus (left) 4.11
-6 -16 -10 Thalamus (left) 3.99

generated for the whole brain. Group level analysis was
performed by computing one-sample second level t-statistic
(GLM random effects analysis) using the contrast images
across all subjects and a statistical parametric map of the effect
of matching two face images was generated, thresholded at
p ≤ 0.001.

Table II presents detailed coordinates, corresponding brain
regions and z-scores and Fig. 2 depicts the activations observed
at the given p-value at the global peak. The analysis revealed
significant activations in the areas of calcarine sulcus, where
the primary visual cortex is concentrated, lingual gyrus (part
of occipital lobe), which is responsible for visual processing,
and fusiform gyrus. These results agree with previous studies
which have shown the existence of face-selective regions in
the fusiform gyrus and anterior inferotemporal cortex [7], [25].
Significant activations are also observed in the left fusiform
gyrus, which is responsible for detecting face-like features.
Similar activations in the areas of hippocampus, caudate,
postcentral gyrus, and superior frontal gyrus are observed
during recognition of famous faces [26]. Activations in the
areas of thalamus and angular gyrus assert that the participants
were alert and attentive to the stimuli [27].

The observations obtained from the neuroimaging experi-

ment are in accordance with existing literature. The activation
of meaningful regions responsible for visual processing and
face perception motivate us to further explore the information
from the fMRI brain scans. The following section presents a
novel learning based approach to predict the stimulus viewed
by a participant for a given fMRI scan.

III. NEURAL PATTERN BASED FACE STIMULI
CLASSIFICATION BY TWO-LEVEL FMRI DICTIONARY

PAIRS

Recently, machine learning algorithms have been developed
to decode the cognitive state of the subject which are useful for
various applications such as depression detection [28], emotion
identification [29], word pronunciation [30], and lie detection
[31]. By considering the neural activity measured at different
locations, machine learning techniques help in discovering
patterns for automated analysis and model design [32]. Several
studies in the literature have also focused on exploring the
areas of activation in the brain during the face perception task
[33], [34]. On the other hand, the quantifiable localizations
of patterns of neural activity have gained fairly less attention,
particularly as a way of decoding the cognitive state.

In this section, the emphasis is on the inverse problem of
classifying the stimulus for a given fMRI scan, i.e. predicting
the stimulus as genuine or imposter face pair. It is our belief
that there is an inherent difference in the brain’s functional
network while processing genuine face pairs as compared
to imposter face pairs. Hence, the aim is to utilize machine
learning techniques to design a framework which can decode
whether the face pairs seen by a human subject are genuine or
imposter. As shown in Fig. 3, the proposed framework involves
selection of scans for stimuli pairs and regions of interest
(ROIs) based mask generation. This is followed by face-
specific and decision-specific ROI-based feature extraction.
Dictionary pairs are trained for each ROI and combined to
learn two-level dictionary pairs. This two-level dictionary
framework is designed to learn features of each specific
brain area as well as a cumulative representation of regions
involved in face processing and decision making. The last
step is decision-level fusion of outputs from face-specific and
decision-specific fMRI dictionary pairs to obtain the final
prediction. These steps are explained in detail below.
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Fig. 3: Proposed two-level fMRI dictionary based framework which involves fusion of information from face-selective and
decision-selective regions of the brain in hierarchical manner. In the first-level, ROI based synthesis and analysis dictionary pairs
(Si, Ai) are trained to model representations through sparse signals pertaining to the region. In the second-level, dictionaries
are trained on the concatenated output from first-level to process the information from face-specific and decision-specific brain
areas holistically.

A. Selection of fMRI Scans for Stimuli Pairs

As described in the previous section, fMRI responses are
collected while the subject is viewing genuine or imposter
face pair. The fMRI scans corresponding to the two types
of stimuli are labeled and separated into the two classes for
each participant. Due to the nature of images being presented
sequentially, confounding scans that may have huge overlaps
in the BOLD response with respect to different stimuli are
removed.

B. Mask Generation of Face-selective and Decision-selective
ROIs

The dimensionality of fMRI data is very high; for example,
a scan with 35 slices of the human brain with a resolution of
64 × 64 during one time-stamp leads to a feature vector of size
143,360. Therefore, creating masks to reduce the dimensional-
ity and redundancy is a crucial task before analyzing the fMRI
data. Based on the type of stimulus presented to the participant,
there are two different approaches for mask creation to classify
a given fMRI scan. Both approaches have their respective
advantages and disadvantages. In the first approach, the fMRI
data from the entire brain (removing the non-brain regions)
is taken into account for computational purposes [29], [31].
This approach accounts for less apriori knowledge regarding
functionality of brain regions. However, the data collected
from the brain is complex and takes into account multiple
interactions of different regions. Also, it often leads to over-
fitting due to the high dimensionality of the data. In the second

Fig. 4: Fusiform Gyrus (row 1) and Lingual Gyrus (row 2)
masks generated for the Regions of Interest (ROIs). The un-
derlying anatomical brain image is for representation purposes
only.

approach, analysis is restricted to specific Regions of Interest
(ROIs) chosen from the literature that reduces the dimensions
of the data and may lead to better discrimination [35], [36].
Information from each region of interest is computed to form
local features, which are robust to inter-subject functional
distinctions within the brain.

In this paper, a fusion of ROI-based features is proposed
for combining different information sources to yield better
discriminability for classifying stimulus pair as genuine or



imposter, given an fMRI scan. Based on previous studies,
two groups of ROIs are chosen. Face-specific brain regions
are related to face perception and processing. In this group,
the included brain areas are calcarine sulcus [37], fusiform
gyrus [33], [38], lingual gyrus [39], [40], and occipital lobe
[41]. The fusiform gyrus contains the fusiform face area that
is associated with face perception and face recognition while
the lingual gyrus is associated with complex visual processing
[42]. Likewise, regions involved in decision making process
(decision-specific) are selected to form the second group. ROIs
included in this group are angular gyrus [43], hippocampus
[44], medial frontal [45], and superior frontal gyrus [46].
These regions are also observed in the neural activations
seen in Table II which further strengthens the motivation for
selection of these areas. In order to extract these ROIs from
each scan, anatomical masks are created using the Automated
Anatomical Labeling (AAL) atlas [47]. They are resized and
updated according to the data obtained from the ten subjects
of the study. Fig. 4 illustrates the sample anatomical masks
generated for two ROIs: fusiform gyrus and lingual gyrus.

C. Encoding fMRI signals using Two-level Dictionary Pairs

Neural representations are extracted for face-selective and
decision-selective ROIs by applying the anatomical masks
computed in the previous step. It has been found that sparse
neurons do not respond to the input independently and encode
specific concepts together [48]. Thus, learning dictionaries that
encode a sparse basis representation of the input data, are
a natural way to represent fMRI signals. Vast literature is
available that utilizes sparse coding and dictionary learning
to analyze the fMRI activations [49], [50]. In this paper,
an fMRI dictionary pair framework is utilized to learn the
intrinsic properties of the fMRI signals and encode them
according to the external stimuli shown and decision made
by the participant.

Gu et al. [51] introduced the Dictionary Pair Learning
(DPL) framework, where two dictionaries are jointly trained
to learn representations through linear projection. These two
dictionaries are termed as analysis and synthesis dictionary and
together encode the discriminative information present in the
input vector and its reconstruction. The model can be described
as:

{A∗,S∗} = argmin
A,S

K∑
k=1

|| X k − SkAkX k ||2F

+ γ || AkX̄ k ||2F , s.t || di ||22≤ 1 (2)

where, S represents the synthesis dictionary used to recon-
struct the input matrix X ; A represents the analysis dictionary
used to encode input X ; Ak and Sk represent the sub-
dictionary pair corresponding to class k; X̄k represents the
complementary data matrix of X k in the training set; γ>0 is
a scalar constant that denotes the regularization parameter to
control the discriminative property of A, and di denotes the
ith item of synthesis dictionary S. The role of the analysis
dictionary A is to help in discrimination, where the sub-
dictionary Ak can project the samples from class i, i 6= k

to 0. The role of the synthesis dictionary S is to minimize
the reconstruction error. The above framework enforces group
sparsity on the input matrix using the analysis dictionary A but
does not utilize the time consuming l0 or l1 norm computation.

To learn a discriminatory model for distinguishing between
genuine and imposter stimuli using fMRI scans, fMRI dic-
tionary pairs Si, Ai (where i = 1 . . . 8) are learned for each
ROI. These first-level dictionaries encode the individual ROI-
specific features. The reconstructed outputs (Ri) from the
learned dictionaries are concatenated to form inputs to face-
specific and decision-specific fMRI dictionary pairs. There-
fore, the input to second-level face-specific dictionary (Dface)
is [R1, R2, R3, R4] corresponding to calcarine sulcus, fusiform
gyrus, lingual gyrus, and occipital lobe. Likewise, the in-
put to second-level decision-specific dictionary (Ddecision)
is [R5, R6, R7, R8] corresponding to angular gyrus, medial
frontal gyrus, superior frontal gyrus, and hippocampus. These
second-level dictionaries learn cumulative features of face-
specific and decision-specific brain areas in a hierarchical
fashion. The classification outputs from the second-level face-
specific dictionary pair (Dface) is labeled as Yface while
second-level decision-specific dictionary pair (Ddecision) is
labeled as Ydecision.

D. Decision-level Fusion of Second-level fMRI Dictionary
Pairs

In the proposed framework, decision-level fusion is utilized
to combine the dictionary pair classification outputs Yface and
Ydecision. For integrating the information represented by the
learned dictionary pairs, the final classification, Youtput of an
fMRI scan into genuine or imposter stimuli is performed by
applying a logical AND on the individual decisions.

Youtput = Yface ∧ Ydecision (3)

IV. EXPERIMENTS AND ANALYSIS

In this experiment, unseen training and testing partitioning
is performed with five-fold subject-based cross validation.
Hence, in each fold, scans of eight subjects are used for train-
ing and testing is performed on the remaining two subjects.
Eight anatomical masks corresponding to the face-selective
ROIs (R1: calcarine sulcus, R2: fusiform gyrus, R3: lingual
gyrus, and R4: occipital lobe) and decision-selective ROIs (R5:
angular gyrus, R6: hippocampus, R7: medial frontal gyrus, and
R8: superior frontal gyrus) are computed followed by feature
extraction from these ROIs. fMRI dictionary pairs are learned
for each of these regions. The reconstructed samples using
the dictionary pairs from face-selective ROIs are concatenated
to form dictionary pair Dface to yield genuine vs imposter
pair classification. The same step is followed with decision-
selective ROIs to generate the dictionary pair Ddecision. The
predictions from the two fMRI dictionary pairs are combined
at the decision-level to obtain the final classification output.
The experiments are run on a Linux machine with Intel Core
i7-4770 CPU @ 3.40GHz and 32 GB memory. The key
findings from the experimental results are explained below.



TABLE III: Stimuli classification accuracy using decision-
level fusion of ROI-based machine learning algorithms.

Machine Learning Technique Accuracy (%)
Linear Discriminant Analysis 48.48
Decision Trees 49.27
Neural Network 51.30
Naive Bayes 54.82
Proposed Two-level Dictionary 59.35

• The average five-fold classification accuracy obtained
using the proposed two-level fMRI dictionary pair frame-
work is 59.35% which is ≈ 4% less than classification
performance by human subjects. This indicates the ex-
istence of separable and discriminatory cognitive states
corresponding to the type of face stimuli presented to the
participants.

• To demonstrate the effectiveness of the proposed frame-
work for this problem, comparison has been drawn with
other commonly used machine techniques such as Naive
Bayes, Linear Discriminant Analysis (LDA), Decision
Tree, and Neural Network as tabulated in Table III. It
is observed that the proposed two-level fMRI dictionary
learned framework outperforms other techniques by at
least 4%. The lower classification accuracies obtained by
other machine learning techniques illustrate the challeng-
ing nature of the classification problem.

• The training time for the proposed two-level fMRI dictio-
nary pair framework (consisting of ten dictionary pairs)
is also analyzed. In total, the first-level dictionary pairs
training took 1.04 seconds as compared to 1.45 seconds
by the second-level dictionary pairs training.

• Comparative analysis is performed with one-level fMRI
dictionary pairs computed from the features of the whole
brain. The classification accuracy with this approach is
52.80%. This demonstrates the efficacy of a region-wise
approach over less discriminatory features from the full
brain region.

• Region-specific analysis is also performed to gain better
insight of the obtained results. When classification is per-
formed by dictionary pairs of face-selective and decision-
selective ROIs separately, classification accuracies of
57.60% and 53.98% are observed, respectively. These
results suggest that (i) the effect of individual ROIs might
not be sufficient to understand the complex functionality
of the brain and (ii) activations corresponding to the
different brain areas need to be modeled to understand
the functionality of the brain as a whole.

V. CONCLUSION

The visual processing performed by the human brain is in-
herently complex which has intrigued the research community.
The fusiform face area (FFA) is known to be involved in face
perception and recognition. At the same time, researchers have
successfully developed automatic face verification algorithms
that can match face images. In this paper, we bridge the gap
between both of these areas by exploring the process of face

verification through fMRI data analysis. A total of 2400 fMRI
responses with genuine and imposter stimuli pairs for a novel
face verification task are collected from 10 participants. The
neural activations due to the face verification task are analyzed.
Brain areas belonging to visual and face processing such as
fusiform gyrus, lingual gyrus and calcarine are significantly
activated at p ≤ 0.001. It is also observed that female partici-
pants are able to identify imposter pairs significantly better
than male participants. Based on the neuroimaging results,
a novel two-level fMRI dictionary learning based framework
with face-specific and decision-specific regions of interest is
proposed to predict the type of stimuli (genuine or imposter)
shown to the participants during the fMRI scans. Classification
accuracy of 59.35% is observed using the proposed framework
and comparative analysis is also performed with other machine
learning techniques. We observe that the difference in the
classification accuracy of humans and the proposed framework
is only 4%. It is our belief that understanding the human
visual system will play a crucial role in creating stable and
accurate automatic face verification models, and this study is
the first step towards that direction. In future, we aim to extend
the neuroimaging analysis using fMRI activations obtained
with corrected thresholds and further incorporate sophisticated
techniques for noise removal from the signals.
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