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ABSTRACT
Presentation attacks can provide unauthorized access to the

users and fool face recognition systems for both small scale
and large scale applications. Among all the presentation at-
tacks, 2D print and replay attacks are very popular due to their
ease and cost-effectiveness in attacking face recognition sys-
tems. However, over the years, there are several successful
presentation attack detection algorithms developed to detect
2D print and replay attacks. Generally, 2D presentation at-
tacks are detected using the presence or absence of micro pat-
terns which distinguish a real input from an attacked input.
However, if a smart attacker digitally “pre-processes” the im-
age using intensity transforms and then performs 2D presenta-
tion attack, differences between real and attacked samples due
to the micro-patterns would be minimized. In this paper, for
the first time, we show that simple intensity transforms such
as Gamma correction, log transform, and brightness control
can help an attacker to deceive face presentation attack de-
tection algorithms. Experimental results demonstrate that the
smart attacker can increase the error rate of the hand-crafted
as well as deep learning based presentation attack detectors.

Index Terms— Face recognition, Presentation attack de-
tection, Image transforms

1. INTRODUCTION

Biometrics is now considered as one of the widely used tech-
nologies for identity management, including at large scale na-
tional level projects. There are numerous benefits of using
biometrics [1] over traditional identity management systems
such as PINs and passwords. However, this technology also
has some vulnerabilities such as presentation attacks by an
attacker. As defined by recent ISO/IEC standard1, ‘presenta-
tion attack’ aims to either (i) impersonate an identity (where
the attacker wants to access the system through the identity
of another person) or (ii) obfuscate the identity (where an at-
tacker wants to hide his/her own identity being caught by the
surveillance systems).

There are different kinds of presentation attacks: (i) printed
photo display, (ii) display the photo on an electronic device,
(iii) replaying the face video on electronic mediums, and (iv)

1https://www.iso.org/standard/53227.html

Fig. 1: The real and attack samples: images are taken from
three popular face spoofing databases: CASIA-FASD [2],
Replay-Attack [3], and MSU-MFSD [4].
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Fig. 2: A smart attacker can attack face recognition pipeline
such that the video is pre-processed and then replayed on a
screen: the image transform techniques can reduce the differ-
ence between real and attacked samples.

3D mask attacks such as hard resin masks, latex masks, or
silicone masks. [2, 3, 4, 5, 6, 7, 8]. Among different attacks,
print and replay attacks are the most cost-effective and easy
way to attack a biometric system, particularly for a face recog-
nition system. Fig. 1 shows the difference between samples of
real and replay attacked images acquired in existing research.
The difference between real and attack images are high due
to factors such as screen brightness, the skin tone of the sub-
ject, and luminance property of the attacking and capturing
medium. This difference leads to the successful detection of
2D based presentation attack (i.e., replay). In the face presen-
tation attack detection literature [9, 10], several algorithms
are presented for both 2D and 3D attacks. Generally, these
algorithms attempt to highlight the micro pattern variations to



discriminate the differences between real and attacked input.
While research in 3D presentation attacks, particularly with
silicon masks, is still in early stages, Presentation Attack De-
tection (PAD) for 2D attacks is mature and almost all existing
databases have shown very high PAD accuracy.

As mentioned previously, 2D presentation attacks are easy
to perform as well as easy to detect. While detecting, micro
patterns are “enhanced” to distinguish between real and at-
tacked samples. In a similar fashion, a smart attacker can use
image pre-processing techniques to “transform” the attacked
samples such that the difference between real and attacked
samples are less. As shown in Fig. 2, we propose that the ef-
fectiveness of 2D replay attack can be enhanced using image
intensity transformations to fool PAD algorithms.

The key contribution of this research is: transform real
high-quality videos to perform effective replay based face
presentation attack. Image transforms such as log transform,
Gamma correction, and intensity/brightness correction are
used to neutralize the effect of factors such as environment,
attacking medium, and capturing device. The extensive ex-
periments on CASIA-FASD database [2] showcase that ‘im-
age transformation’ on 2D replay based presentation attack
is able to fool face PAD algorithms using both handcrafted
and deep CNN features.

2. RELATED WORK

In this section, we present existing work done towards creat-
ing the presentation attacks followed by algorithms developed
to counter these attacks.

Presentation Attacks: In the literature, face presentation at-
tacks are performed using either digital means such as morph-
ing/swapping [11] and retouching [12] or by physical medi-
ums such as 2D photo/replay and 3D silicone mask [10]. One
of the first physical face presentation attack database namely
NUAA [13] is prepared using the printed color photo of real
users. Following that, several 2D photo and video attack
databases are prepared such as CASIA-FASD [2], Replay-
Attack [3], MSU-USSA [14] and UVAD [15]. Another
medium of physical presentation attack is 3D masks. The ad-
vantage of mask attacks over photo attacks is the face like
structure and texture of these masks. The first popular 3D
mask attack database, namely 3DMAD [6] is prepared from
17 subjects using the Kinect sensor. Other popular 3D mask
attack databases are prepared using latex and silicone masks
[5, 7, 8]. These 3D mask attack database are more effective
in comparison to the 2D photo and video-based attacks but
require sophisticated devices and are costly to build the mask.

Agarwal et al. [16] have presented the first work to fool the
face PAD algorithms using tampering of PAD features. The
focus of this research is on 2D video based attacks because of
its advantages in terms of cost effectiveness and easy avail-
ability. While capturing the video attack database, various

factors are considered in existing databases such as resolu-
tion of the capturing and attacking device, background, and
illumination. Other than these factors, as shown in Fig. 1,
the skin tone of the person whose face image is being dis-
played and the brightness of the electronic medium on which
the images/videos are displayed play important roles. This
research aims to minimize the difference between real and at-
tacked samples so that when the videos are recaptured back
from the screen of electronic device, it must be close to the
images/videos acquired from a real face.

PAD Algorithms: The images either captured from 2D at-
tack or 3D mask attack generally suffers artifacts in terms
of texture, quality, and natural face motions. To counter
the presentation attacks, these artifacts are explored using
various image texture, quality, and motion features. The
most popular algorithms developed to detect the spoofing
samples are either based on texture measure, motion fea-
tures, and hybrid [17, 18, 19]. The popular texture mea-
sure explored in literature are local binary patterns (LBP)
[20, 21, 22] and its variants such as binarized statistical im-
age features (BSIF) [23], Gabor features [24], Haralick fea-
tures [25], Moiŕe patterns [26], and image quality [27]. Simi-
larly, motion countermeasures are based on the measurement
on optical flow [19], Gaussian mixture model (GMM) [28],
and dynamic frequency [15]. The boom in the hardware and
software technology rise the completely different era of ma-
chine learning algorithms referred to as deep learning. The
deep features computed using the multiple layers of CNN
networks show a huge success in person authentication and
autonomous driving and therefore leads its use for face PAD
algorithm. The PAD algorithms using deep features proposed
in [29, 30, 31, 8, 32, 33, 34] are based on 2D CNN, 3D CNN,
deep dictionary, and deep textures. Based on the popularity of
hand crafted texture and deep CNN features in detecting face
presentation attacks, in this research, we have utilized LBP
[35], BSIF [23], SURF [36], and VGG-16 [37] CNN features
based PAD algorithms.

3. IMAGE TRANSFORMS FOR IMPROVING
PRESENTATION ATTACKS

This section presents the proposed database prepared for per-
forming smart 2D video based face presentation attack (i.e.,
replay attack) using image intensity transforms. The database
contains the real and attack videos of 50 subjects. The real
part of the database is taken from a high-quality subset of
CASIA-FASD database2 [2]. The real videos are captured us-
ing a high-quality camera with 1, 280× 720 resolution. First
column of Fig. 3 shows the sample images of the real dataset.
The attack dataset consists of five different subsets: one being
the normal attack set and four are grouped under Image Trans-

2CASIA-FASD contains both real and attacked samples, however, we
have not used attacked samples.



formation attack. In order to perform the attack, we have used
the android phone with full HD display and high quality USB
camera with resolution 1, 920 × 1, 080. In place of using the
attack videos of CASIA-FASD database, we have collected
the attack videos to keep the device and other environmen-
tal factors consistent while capturing different sets of attack
videos. The attack videos in this research, can be broadly di-
vided into two categories: (i) input transformation based and
(ii) screen brightness based. Each type of image transforma-
tion attack videos are described next.

3.1. Normal Attack (Set A)

We refer the normal attack where the real videos are replayed
on an electronic device without ‘any’ pre-processing and cap-
tured using high quality camera. Second column of Fig. 3
shows the normal attack samples. As explained earlier the
attack images are of high brightness and contrast. This clear
difference between the real and attack samples makes it easier
to detect the 2D replay based attack.

3.2. Attack with Image Transformation - 1 (Set B)

Based on the contrast difference between real and spoof face
images, one simple solution is to adjust the contrast of the im-
ages before displaying them on the screen. As the first inten-
sity transform, we have performed Gamma correction before
displaying the image on the screen. Gamma correction can be
expressed as,

Iout = α · Iγin (1)

where, α is the constant value, set to 1 and γ = 0.5 (default)
is used for the experimentation. Gamma correction applies
the non-linear operation to map each input pixel Iin to the
corresponding Iout to increase the recordable dynamic range.
The dark input values of narrow range are mapped to wider
output range when γ is set to value less than 1. Third column
of Fig. 3 shows the attack images recaptured after performing
the Gamma correction on input images. Post Gamma correc-
tion, the intensity values are all mapped in same range and
therefore, as shown in these examples, the contrast is very
similar.

3.3. Attack with Image Transformation - 2 (Set C)

Log transformation is applied to decrease/remove the skew-
ness from image data. Similar to Gamma correction, when
this is applied on the input image before displaying on the
screen, it expands the dark pixels present in the image. Math-
ematically, the transformation can be defined as:

Iout = c · log(1 + Iin) (2)

where, c represents the amount of enhancement, and 1 is
added in the pixel values to counter log(0). Fourth column

of Fig. 3 shows the attack samples after log transformation
with c = 2. The spoof images are darker as compared to
Gamma correction but visually are close to real images.

3.4. Attack with Image Transformation - 3 (Set D)

In this set, we have increased the enhancement magnitude
(c) of log transformation by two times. The log transforma-
tion might be helpful in improving the contrast of dark skin
face images by increasing the details of lower intensities. The
higher magnitude enhanced images as shown in the fifth col-
umn of Fig. 3. These images are much clearer as compared to
Gamma correction (Set B) and brighter as compared to lower
magnitude enhanced images (Set C) .

3.5. Attack with Image Transformation - 4 (Set E)

As discussed earlier, the screen brightness of the attacking
medium such as mobile phone or iPad plays an important
role in the spoof images. In this research, we have studied
the effect by capturing the images at high brightness and low
brightness of the attacking medium. All other factors such as
capturing device and environmental conditions are kept fixed.
Last two columns of Fig. 3 shows the effect of brightness of
attacking medium. We hypothesize that similar to paper qual-
ity of print attack, various factors of screen medium must be
considered while evaluating or performing the attack.

To the best of our knowledge, this is the first work where
face presentation attacks are improved (made more effective)
using image intensity transforms. The proposed attack ap-
proach can also help in evaluating the robustness of face PAD
algorithms. Overall, the proposed database contains 50 real
videos and 250 presentation attack videos. To perform the
experiments, the database is divided into subject indepen-
dent training-testing sets. Similar to the original protocol of
CASIA-FASD, the videos corresponding to 20 subjects are
used for training and 30 subjects’ videos are used for evalu-
ation. The database will be released for others at http://iab-
rubric.org/resources.html.

4. FACE PRESENTATION ATTACK DETECTION:
ALGORITHMS AND PERFORMANCE METRICS

In this section, different feature extraction algorithms used to
develop the face PAD algorithm are described. Each feature
descriptor computed over both real and spoof sets are given
to the linear support vector machine (SVM) [38] classifier for
binary classification. The features used for PAD algorithm
development are: (i) Uniform LBP (ULBP) [35], (ii), BSIF
[39], (iii) SURF proposed by Boulkenafet et al. [36], and (iv)
pretrained VGG-16 [37]. The intuition of using these fea-
tures is the robustness in capturing the discriminatory edge
artifacts, moiŕe patterns, and image texture present in real and
spoof images.



Fig. 3: Real and the proposed set of attacked images.

• ULBP: ULBP is one of the robust measures of local im-
age texture. Each neighborhood pixel of a 3× 3 patch is
compared with the center pixel and thresholded based on
the sign of the difference. In ULBP, “uniform” patterns
are placed into separate bins, and other non-uniform pat-
terns are put into single bin.

• BSIF: BSIF feature extraction works on the principle
of LBP but in-place of using identity filter or no filter,
the image is convolved with a set of learned filters. The
convolved output is then thresholded based on its sign
and formed binary pattern is then converted into deci-
mal value. Finally, the histogram vector is calculated for
evaluation.

• SURF: SURF feature is one of the scale and rotation in-
variant feature descriptors, which is efficient in handling
variations that might be present in spoof data. The fea-
ture vector is computed by dividing the region into 4× 4
cells followed by the ‘Haar’ wavelet decomposition. The
code provided with the original paper [36] is used in de-
fault setting for feature calculation.

• VGG-16: Feature descriptors defined above represent
the hand-crafted category, whereas VGG-16 defines the
class of automatic feature learning from the images
themselves. The VGG-16 model used in this research
contains 16 layers deep CNN architecture. The pre-

trained VGG-16 model is used for feature extraction
from the last dense layer.

Performance Metrics: The performance of the face PAD al-
gorithms using each feature descriptor is reported in terms of
equal error rate (EER) and average classification error rate
(ACER). EER is defined as the point where false accept rate
(FAR) is equal to false reject rate (FRR) of receiver operating
characteristic (ROC) curve. ACER is the average of bonafide
presentation attack classifier error rate (BPCER) and attack
presentation attack classifier error rate (APCER).

5. FACE PRESENTATION ATTACK DETECTION:
RESULTS AND ANALYSIS

In this research, we have performed image intensity trans-
forms to enhance presentation attacks and highlight the vul-
nerabilities of face PAD algorithms. The results correspond-
ing to the traditional presentation attack and proposed presen-
tation attacks in terms of EER and ACER are reported in Ta-
bles 1 and 2, respectively. The ROC curves using four feature
descriptors across each type of presentation attack images are
shown in Fig. 4. The results are evaluated under frame based
detection where each frame is classified as real or fake.

Further in this section, the results corresponding to nor-
mal (i.e., traditional) attack set is discussed followed by the
findings related to the proposed transformation and brightness
based attacks are described.
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Fig. 4: ROC curves for face PAD algorithm used for both normal and smart attack videos.

Table 1: Frame based face presentation detection results in
terms of EER% on the normal and image transformation
based attacks on the proposed database.

Features
Normal
Attack Image Transformation Attack

Set A Set B Set C Set D
ULBP 1.41 6.49 13.01 1.26
BSIF 7.62 19.25 5.44 10.22
SURF 9.83 12.78 13.02 8.31
VGG-16 7.65 9.96 10.17 5.96

Normal attack set: Among the face PAD algorithms, the al-
gorithm developed with ULBP texture features yields lowest
EER value of 1.41%. In terms of ACER, the texture based
BSIF descriptor yields the lowest error value of 7.29%. VGG-
16 deep learning based PAD shows ACER of 9.03% and EER

Table 2: Frame based face presentation detection results in
terms of ACER% on the normal and image transformation
based attacks on the proposed database.

Features
Normal
Attack Image Transformation Attack

Set A Set B Set C Set D
ULBP 9.08 9.31 12.44 9.46
BSIF 7.29 25.11 7.05 10.04
SURF 12.14 13.29 14.29 11.83
VGG-16 9.03 11.30 18.45 7.09

of 7.65%.

Image transformation sets: The ULBP feature, which yields
the lowest EER value of 1.41% on normal (traditional) attack
set, shows an increment of more than 11% when log enhanced
images are used to perform the attack. Similarly, BSIF texture



Fig. 5: Face presentation attack detection results in terms of
EER % corresponding to different brightness of the attacking
medium. First and second bar in each features represents the
error corresponding to high and low brightness (i.e., set E),
respectively.

descriptor shows the highest vulnerability towards Gamma
corrected presentation attack images, and EER is increased
for more than 2.5 times compared to normal attack set. In
terms of EER, the VGG-16 descriptor shows the lowest sen-
sitivity. The EER increases by 2.52% when log transform
with 2 times enhancement factor (i.e., set C) is used for face
presentation attack. Similarly, for other combination of im-
age transformations, face PAD algorithms based on texture
and CNN descriptor show the sensitivity towards these trans-
formations.

In terms of ACER evaluation metric, BSIF texture feature
shows the lowest value but at the same time indicates the high-
est sensitivity towards proposed attacks. In the case of gamma
corrected attack images, the ACER value of BSIF descriptor
increases by more than 3 times. The error value of ULBP
texture features increases by 3.36% for log enhanced images.
Similarly, the error value of deep CNN features increases by
more than 2 times for log transformed images. In brief, the
analysis can be summarized as follows:

• In terms of EER, ULBP descriptor yields the lowest error
value whereas, in terms of ACER, BSIF shows the low-
est ACER value. However, the proposed attack success-
fully highlights the vulnerabilities of both texture and
CNN based face PAD algorithms;

• Both ULBP and VGG-16 feature descriptors are highly
sensitive towards log enhanced (i.e., set C) presentation
attack images. Similarly, BSIF texture descriptor shows
highest vulnerabilities towards Gamma corrected (i.e.,
set B) attack images;

• It is interesting to note that the EER of ULBP and VGG-
16 improves with higher contrast images by applying
larger factor in log correction. On the other hand, the
performance of BSIF improves with lower factor log en-
hanced images;

Analysis regarding brightness of attacking medium: The
screen brightness of the attacking medium is also a very im-
portant factor while displaying the images for an attack. The
brightness factor can largely affect the luminance component
of the images. In this research, we have also performed the
analysis regarding screen brightness. The sample attack im-
ages (set E) collected with high and low brightness are shown
in Fig. 3. Fig. 5 shows the EER performance on the set
E. When high brightness is used to perform the attack, the
ULBP, BSIF, and VGG-16 feature descriptors yield EER of
1.41%, 7.62%, and 7.65%, respectively. The ULBP feature
which yields the lowest EER value shows the highest sensitiv-
ity towards screen brightness and EER increases by 43.53%
when low brightness attack is performed. Similarly, the per-
formance of BSIF and VGG-16 is reduced by more than 2−3
times on low brightness attack as compared to high brightness
attack.

6. CROSS-DATABASE/ATTACK EXPERIMENTS

We have performed the experiments to model the real world
scenario where the face presentation attack detector is trained
on one database but tested on another [20]. For that pur-
pose, we have used the original training set of CASIA-FASD
database to develop the face presentation attack detector.
The detector is trained on real and high-quality replay at-
tack videos of 20 subjects as specified by the protocol of the
CASIA-FASD database. Since, our database is built using
CASIA-FASD real videos and have also followed the same
subject-wise split of training and testing; training on train-set
of CASIA-FASD and test on test-set of the proposed database
can be considered as cross-database/attack evaluations3. We
have evaluated ULPB, BSIF, SURF, and VGG-16 based face
PAD algorithms. The performance, both in terms of EER and
ACER, are reported in Table 3 and 4, respectively. Fig. 6
shows the ROC curves corresponding to these experiments.
Overall, the results show the sensitivities of the PAD algo-
rithm regarding brightness of the attacking medium, lumi-
nance correction through Gamma and log-transformed pro-
cessed videos. Two key observations are summarized below:

• Analysis regarding transformations: Similar to
brightness factor, the detector is vulnerable to Gamma
and log transformed videos/images. The EER of ULBP
on Gamma and log transformed images ranges from
31.89% to 44.51%. Similarly, the BSIF detector yields
high ACER values, in the range of 55.07% to 68.08%.

• Analysis regarding screen brightness: ULBP and
VGG-16 feature based PAD algorithms have shown high
sensitivity towards low brightness screen attack videos.
On the other hand, BSIF based face PAD algorithm has

3Same number of subjects’ videos are used for the results reported in
Sections 5 and 6.
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Fig. 6: ROC curves for face PAD algorithm under real-world evaluation. In all the experiments, we have observed that generally,
the PAD algorithms are fooled by image transform based approaches.

Table 3: Frame based PAD results in terms of EER% on
image transformation and screen brightness based attacks on
the proposed database. The detector is trained using original
CASIA-FASD training set for cross database/attack evalua-
tion.

Features
High

Brightness
Low

Brightness Image Transformation Attack

Set A Set E Set B Set C Set D
ULBP 31.49 59.37 34.47 44.51 31.89
BSIF 54.85 41.80 77.31 50.55 53.66
SURF 55.10 44.79 64.26 48.39 51.81
VGG-16 17.86 67.22 16.83 52.51 14.71

Table 4: Frame based PAD results in terms of ACER% on
image transformation and screen brightness based attacks on
the proposed database. The detector is trained using original
CASIA-FASD training set for cross database/attack evalua-
tion.

Features
High

Brightness
Low

Brightness Image Transformation Attack

Set A Set E Set B Set C Set D
ULBP 35.50 57.40 41.88 50.45 36.74
BSIF 57.53 41.73 68.08 55.07 59.32
SURF 60.82 47.20 64.00 53.45 59.27
VGG-16 16.48 51.92 19.32 45.32 13.82



shown high EER and ACER when the attack videos are
captured using high brightness of the attacking medium.
EER and ACER values of VGG-16 PAD algorithm on
high brightness attack are 17.86% and 16.48% which is
increased to 67.22% and 51.92%, respectively under low
brightness attack.

7. CONCLUSION

In this paper, for the first time, we have shown that, for
2D video replay attacks, image intensity transformations and
brightness of the display screen can increase PAD error rates.
We have highlighted the vulnerabilities of the face PAD al-
gorithms based on handcrafted and deep CNN features. In
future, the efforts can be made to further analyze the image
processing operations or learning based algorithms to counter
the face PAD algorithms. Moreover, digital and adversarial
attacks [40, 41, 42, 43] can also be coupled with replay attacks
to fool PAD algorithms. Such attacks can impede the applica-
bility of biometrics/face recognition systems. Therefore, the
research should be extended to increase the robustness of PAD
algorithms against such smartly crafted presentation attacks.
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A. APPENDIX: FACE PAD WITH
STATE-OF-THE-ART CNN MODEL

In the literature, several algorithms have utilized the discrim-
inating power of CNNs to propose efficient face PAD algo-
rithms [8, 29, 30, 31, 32, 33, 34, 44]. While in the paper (Sec-
tion 5), we have already included the results of VGG-16 based
approach, we have performed additional experiments using
ResNet [45]. We have used four variants of ResNet rang-
ing from 18 layers deep model to 101 layers deep model. In

Table 5: PAD ACER% using various finetuned ResNet mod-
els and SURF+Softmax classifier on normal and input trans-
formation attack videos.

PAD Classifier
Normal
Attack Transformation Attack

Set A Set B Set C Set D
ResNet18 8.33 26.98 30.41 5.69
ResNet34 5.76 27.61 33.72 4.26
ResNet50 2.92 17.06 15.86 5.24
ResNet101 2.93 8.30 16.41 2.55

Fig. 7: PAD ACER% using various finetuned ResNet mod-
els and SURF+Softmax classifier. First and second bars in
each features represent the error corresponding to high and
low brightness (i.e., set E), respectively.

these experiments, pre-trained (trained on ImageNet) ResNet
models are fine-tuned for face PAD. As shown in Table 5 and
Fig. 7 below, the error rate of the ResNet-18 model increases
from 8.33% to 26.98% (for Gamma transformation i.e., set
B). Similar observations against each transformed attack have
been observed across different ResNet architectures.
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