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Presentation attack detection (PAD) algorithms have become an integral requirement

for the secure usage of face recognition systems. As face recognition algorithms

and applications increase from constrained to unconstrained environments and in

multispectral scenarios, presentation attack detection algorithmsmust also increase their

scope and effectiveness. It is important to realize that the PAD algorithms are not only

effective for one environment or condition but rather be generalizable to a multitude

of variabilities that are presented to a face recognition algorithm. With this motivation,

as the first contribution, the article presents a unified PAD algorithm for different kinds

of attacks such as printed photos, a replay of video, 3D masks, silicone masks, and

wax faces. The proposed algorithm utilizes a combination of wavelet decomposed raw

input images from sensor and face region data to detect whether the input image is

bonafide or attacked. The second contribution of the article is the collection of a large

presentation attack database in the NIR spectrum, containing images from individuals

of two ethnicities. The database contains 500 print attack videos which comprise

approximately 1,00,000 frames collectively in the NIR spectrum. Extensive evaluation

of the algorithm on NIR images as well as visible spectrum images obtained from

existing benchmark databases shows that the proposed algorithm yields state-of-the-

art results and surpassed several complex and state-of-the-art algorithms. For instance,

on benchmark datasets, namely CASIA-FASD, Replay-Attack, and MSU-MFSD, the

proposed algorithm achieves a maximum error of 0.92% which is significantly lower than

state-of-the-art attack detection algorithms.

Keywords: face recognition (FR), presentation attack detection (PAD), multi-spectral, security, generalized PAD

1. INTRODUCTION

Face recognition algorithms have been gaining more interest than ever, both for their increasing
usage (Guo and Zhang, 2019; Sepas-Moghaddam et al., 2019) and their limitations (Agarwal et al.,
2016, 2019c; Siddiqui et al., 2016; Cavazos et al., 2019; Marcel et al., 2019; Mukudi and Hills,
2019; Wu et al., 2019; Ghosh et al., 2020; Singh et al., 2020). While researchers are attempting
to make the face recognition algorithms generalizable to unseen scenarios, it is important that the
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face presentation attack detection (PAD) algorithms are also
generalizable and inclusive (Agarwal et al., 2019a,b; Sanghvi et al.,
2021). Existing research in face presentation attack detection has
primarily focused on detecting different kinds of attacks captured
in the visible spectrum. While the algorithms have received
nearly perfect classification performance on individual attacks,
the focus is on designing unified algorithms for different kinds
of presentation attacks in visible images (Liu et al., 2019b; Mehta
et al., 2019).

The usage of face recognition algorithms in the near infrared
spectrum is also increasing. With surveillance cameras operating
in both visible (VIS) and near infrared (NIR) images, the PAD
algorithms must be developed for NIR spectrum face images as
well. It is well observed that the illustration of attacks in both
spectra is quite different, and hence, attack detection in images of
different spectrums require specialized algorithms. Realizing this,
recently researchers have started working toward PAD in NIR
spectrum images as well (Agarwal et al., 2017; Zhang et al., 2020).
This research focuses on extending the usability and efficiency of
presentation attack detection algorithms in multiple spectrums
and ethnicity variations.

1.1. Related Study
In this section, we present a brief overview of the existing
algorithms in multi-spectrum (visible + near infrared)
presentation attack detection. Face presentation attack detection
in other than the visible spectrum is still in nascent stages.
Pavlidis and Symosek (Pavlidis and Symosek, 2000) presented an
algorithm to detect disguised faces system using images captured
in the NIR spectrum. Yi et al. (2014) performed experiments
with a print attack by printing the photo of 100 clients on coarse
paper in both VIS and NIR spectrum. However, the database was
not made publicly available. Later, Chingovska et al. (2016) and
Raghavendra et al. (2017) also analyzed the vulnerability of face
recognition systems in the NIR spectrum. They demonstrated
that face recognition systems working in the NIR spectrum are
also susceptible to presentation attacks such as replay and print.
Therefore, effective presentation attack detection algorithms are
required to protect the surveillance system operating in the NIR
spectrum. Chingovska et al. (2016) also released the first publicly
available VIS and NIR presentation attack database (MSSPOOF).
The database comprises images from 21 subjects. Three photos
of each client in the VIS and NIR spectrum are selected and
printed using the black and white printer. The database contains
70 real access images and 144 attack images for each client.
They demonstrated more than 88% Spoof False Accept Rate
(SFAR) using the NIR attack on the NIR face recognition system.
However, no counter-presentation attack algorithm is presented
in this article.

Later, Raghavendra et al. (2016) proposed a presentation
attack detection algorithm on the MSSPOOF (multispectral
spoof) database using the combination of Laplacian pyramid and
Fourier transform. They reported an Average Classification Error
Rate (ACER) of 2.1% and 0.74% on the VIS and NIR spectrum,
respectively. Raghavendra et al. (2017) prepared the extended
multispectral presentation attack database (EMSPAD) from 50
subjects and attack samples were prepared by printing the images

from two different printers. The database is captured in seven
different spectral bands ranging from 425 to 930 nm. In total, the
database contains 7, 000 print attack images and 3, 500 real access
images from 50 subjects. A vulnerability of the face recognition
system using printed attack samples is shown with perfect SFAR
in 680 nm spectra and more than 98% SFAR in 930 nm spectra.
Agarwal et al. (2017) have proposed the first large-scale multi-
spectrum face presentation attack database consisting of both
2D and 3D attack instruments. The real and attack videos are
captured in several constrained and unconstrained environments
and in three imaging spectrums namely visible (VIS), near
infrared (NIR), and thermal. Liu and Kumar (2018) proposed
different CNN architectures to detect the presentation attack
using multi-spectral face images. They prepared the presentation
attack database from 13 masked subjects and 9 real subjects.
The limitation of the study is the unavailability of the database.
Sun et al. (2018) proposed consistent measure based presentation
attack detection in multi-spectral imaging. Bhattacharjee et al.
(2018) have shown the vulnerability of VIS, NIR, and Thermal
face recognition using deep CNN models under custom silicone
mask attacks. George et al. (2019) presented a new database along
with multi-channel CNN for face PAD.

Heusch et al. (2020) have presented a database in multiple
spectrums to effectively present a study on the effect of SWIR
imaging on presentation attack detection. Zhang et al. (2020)
have a multi-spectral database comprising 2D print attacks.
Along with that the squeeze and excitation network using
ResNet-18 as a backbone network is also proposed to counter
presentation attacks. Li et al. (2020) extended the database by
incorporating multiple attacks including a 3D print and silica gel
mask. The other popular face presentation attack databases are
SiW (Liu et al., 2018), SiW-M (Liu et al., 2019b), andOULU-NPU
(Boulkenafet et al., 2017b); however, all are captured in the visible
spectrum. The details of the existing face presentation studies can
also be found in the comprehensive evaluation (Jia et al., 2020b)
and handbook (Bhattacharjee et al., 2019; Marcel et al., 2019).

1.2. Research Contributions
The literature review shows that there are a few publicly
available databases in the NIR spectrum and a significant lack
of research on automated algorithms for presentation attack
detection in the NIR spectrum images and algorithms that
can detect PAD in multiple spectrums. Inspired by these,
there are two primary contributions of this research. The first
contribution is that we have prepared a large video-based attack
database in the NIR spectrum from more than 340 subjects
of two different ethnicities: Indian and Chinese. The second
contribution of this article is a state-of-the-art face presentation
attack detection algorithm for different kinds of attacks in the
NIR + VIS spectrum. The efficacy of the proposed algorithm
is demonstrated through extensive experiments. The proposed
algorithm not only yields effective performance with spectrum
variations but is also generalized against attack instruments,
ethnicities, and databases. Experimental evaluation of multiple
databases shows that the proposed algorithm surpasses several
deep learning, non-deep learning, and state-of-the-art algorithms
by a significant margin.
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The article is organized as follows. In the next section, the
proposed large-scale face presentation attack dataset is described
along with the experimental protocol used to perform the face
PAD task. The section also describes the impact of the proposed
dataset in evaluating the sensitivity of the face recognition
algorithms. Section 3 describes the proposed unified face PAD
algorithm effective in handling not only individual spectrums
such as VIS and NIR but also a combination of them. In
Section 4, the effectiveness of the proposed algorithm to handle
multiple spectrums is evaluated using several existing multi-
spectrum datasets including the proposed dataset. Furthermore,
to benchmark, our study is similar to existing studies, in Section
5 extensive experimental evaluation has been performed on
the standard visible (VIS) spectrum datasets. The extensive
comparison on each dataset with state-of-the-art algorithms
are presented and showcase that the proposed algorithm
outperforms them with a significant margin. Finally, the
conclusion and future research directions are briefly described.

2. PROPOSED SPOOF-IN-NIR DATABASE

As discussed in the previous section, there are few databases in
the NIR spectrum. Therefore, to promote the research in this
emerging field, we first prepared a large video PAD database in
the NIR spectrum, termed the Spoof-in-NIR database. In this
section, we present the details of the proposed NIR presentation
attack database. The NIR database contains face images from
two completely different ethnicities: Indian and Chinese. The
database contains the attack videos captured using the printed
photograph of 400 genuine users. The database will be made
publicly available to the research community1.

2.1. Camera Setup
To collect the database in the NIR spectrum, a camera is mounted
on the tripod, and subjects are asked to stand at a distance of
approximately 1 m and look into the camera. To ensure that
the videos are captured in a relatively uncontrolled scenario, no
other special instructions are given to the subjects. The database
is captured in two different environments and background
conditions: one inside and the other outside the building at night
time. To ensure that the videos are only captured in the NIR
spectrum, a visible cut filter is placed in front of the camera. GO-
5000-USB camera2 is used to capture the videos at the frame
resolution of 2, 048 × 2, 560. Frames are captured at the rate of
20 fps and stored as raw pixels so that the quality of images is not
degraded because of compression.

2.2. Indian Face Presentation Attack
Database
Each ethnicity subset comprises two sets: bonafide and attacked.
The bonafide/real videos of the Indian database are captured
from 152 subjects at night time using a NIR camera. To
provide variability in the data, videos are captured at two
different locations and comprise variations in background and

1http://iab-rubric.org/resources.html
2http://www.jai.com/en/products/go-5000-usb

illumination conditions. The subjects also perform natural
motions such as eye blinking and head movement.

To capture the attacked videos, frontal images of all the
subjects are first captured using a DSLR camera in day time
constrained environment. A black and white printout of frontal
images of 150 subjects is taken using an HP color printer and
videos of these images are captured to prepare the attacked video
subset. Attack videos of the Indian subset are captured in two
different sessions with illumination variations. Attack and real
videos are captured for a duration of 12 s to exhibit a real world
surveillance scenario.

In total, 300 attacks and 152 real videos are collected as part
of this Indian database. The resolution of the real and attack
frame is 2, 048 × 2, 560. Face detection is performed using the
Viola-Jones face detector (Viola and Jones, 2004). Characteristics
of the database are given in Table 1 and samples are shown in
Figure 1A.

2.3. Chinese Face Presentation Attack
Database
To prepare the attack database with Chinese ethnicities, real
visible spectrum frontal images of 98 subjects are randomly
selected from the NIR-VIS 2.0 database (Li et al., 2013). Similar
to the Indian database, these images are also printed on A4
paper using HP color printer. These prints are then placed on a
fixed medium to capture the attack videos. A total of 98 videos
comprising 7, 840 images form the NIR attacked subset while
real NIR samples from 725 individuals acquired from the CASIA
NIR-VIS2.0 database (Li et al., 2007) comprise the bonafide
Chinese subset. In total, Chinese database contains 12, 469 real
face images and 7, 799 attack face images. Characteristics of the
database are given in Table 1 and sample images are shown in
Figure 1B.

2.4. Experimental Protocol
To facilitate benchmarking the performance of different
algorithms on this database, we propose a protocol as
summarized in Table 2.

Indian NIR dataset is divided into subject independent 15
folds, where at a time one fold is used for training the linear SVM
classifier for attack detection, and the remaining folds are used
for evaluating the classifier. In the Indian subset, attack videos
are captured in two different sessions; therefore, the results for
both the sessions are calculated separately. To report the results
of a particular session, attack videos captured in that session
are used. Similarly, the Chinese NIR database is divided into
five random folds. Due to the unavailability of the videos in
the real subset of the Chinese NIR dataset, only frame based
results are calculated. For the Indian NIR database, both video
based and frame based protocols are designed. In video-based
protocol, every video is classified as real or attack, and in the
frame-based protocol, an individual entity of a video (frame) is
classified as real or attack. The protocol will help evaluate the
algorithm trained in limited and constrained data settings while
testing large-scale data coming from multiple folds. In place of
single fold train-test evaluation, multi-folds ensure the extensive
assessment and generalizability of the algorithm.
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TABLE 1 | Characteristics of the proposed NIR face presentation attack database.

Ethnicity Type Sessions Subjects Videos Images Faces

Indian Real 1 152 152 36,480 32,629

Attack 2 150 300 72,000 70,221

Chinese Real* 4 725 – 12,469 12,469

Attack 1 98 98 7,840 7,799

*From NIR-VIS 2.0 database (Li et al., 2013).

2.5. Vulnerability of Face Recognition
Against Attack
Researchers have demonstrated that several publicly available
commercial face recognition systems are prone to presentation
attacks (Wen et al., 2015; Agarwal et al., 2017). To show the
effect of the proposed NIR face database on the Commercial-
Off-the-Shelf (COTS) systems, a face identification experiment
is performed. The gallery images are single frontal images of
each subject. For instance, the gallery for the Indian NIR attack
database comprises 150 images, one for each subject. Each attack
video is used as a probe to perform the identification using
FaceVACS3. It is important to observe that with all the attacked
images as a probe, COTS yields the rank-1 identification accuracy
of 100% for the Chinese NIR subset while Indian NIR attack
videos show more than 98% identification accuracy at rank-1.
The face identification experiment thus shows the vulnerability
of the existing face recognition system against the attack in the
NIR spectrum.

3. PROPOSED PRESENTATION ATTACK
DETECTION ALGORITHM

Face presentation attack detection algorithms proposed in the
literature are primarily based on encoding texture measures
and image artifacts such as moiŕe pattern (Patel et al., 2016),
local binary patterns (Määttä et al., 2011; Boulkenafet et al.,
2016; Ramachandra and Busch, 2017), and more recently, deep
learning algorithms have been proposed (Chen et al., 2019;
Tu et al., 2019; Ma et al., 2020). A recent study (Jia et al.,
2020b) shows that hand-crafted image feature-based algorithms
have the potential of handling multiple challenging presentation
attacks while being computationally feasible. Therefore, in this
article, we present a presentation attack detection algorithm
based on combining the image features extracted from global
as well as local facial regions. Raw images provide a global
view of the real and attack data. This global information
can help in extracting discriminative information such as
foreground-background inconsistency and attacking medium
boundary, while local facial regions may help in extracting
textural information/artifact of the face. We hypothesize that
since the attack images are mostly recaptured from the camera,
they can be different in high-frequency content from its
counterpart i.e., real face. The proposed presentation attack

3http://www.cognitec.com

detection algorithm encodes these assertions to differentiate
between real and attacked images. Figure 2 illustrates the
steps involved in the proposed algorithm. To highlight the
low and high frequency of discrimination, the first step of
the algorithm involves applying the wavelet decomposition to
the input image/frame. Wavelet provides the multi-resolution
decomposition of the frame and highlights the edges in multiple
directions: horizontal, vertical, and diagonal (Fowler, 2005).
Discrete wavelet transform (DWT) downsamples the subbands
to M/2 × N/2, where M and N are the height and width
of the image respectively. Since downsampling leads to loss
of information, we apply redundant discrete wavelet transform
(RDWT). RDWT preserves the image size by creating subbands
of the same size as the input image, thereby generating
overcomplete representations.

As mentioned earlier, the effect of presentation attack may
be visible in either facial regions or even as abnormalities
concerning foreground and background regions. Therefore,
wavelet decomposition is applied in two steps. In the first step,
RDWT decomposition is applied on the complete input image
without face detection, while the second step involves first
applying face detection followed by tessellating the facial region
into nine non-overlapping facial patches.

Global information, which is directly computed from the raw
images, is computed without tessellating the frames into multiple
blocks. To compute the information from the local texture, the
face region is first divided into multiple blocks, and then each
block is decomposed using a wavelet filter. The patches generated
are of size 32 × 32. The textural features are then extracted by
applying Haralick features (Haralick and Shanmugam, 1973) on
the RDWT decomposed subbands, which can encode the image
distortion-based information present in the recaptured images
such as intensity distribution and homogeneity.

The basic building block of Haralick features is the Co-
occurrence Matrix, which contains the information of counts of
how many times a certain pixel value is in the neighborhood of
other possible pixel values. The Haralick features used in this
research are listed below:

li,j = Ci,j/S

where C is the Co-occurrence Matrix, and S is the sum of all
elements of C. li,j is the likelihood of occurrence of the pixel value
i in the neighborhood of pixel value j. Ng is the number of gray
levels in matrix C.

• Global Homogeneity:

h1 =

Ng
∑

r=1

Ng
∑

c=1

l(r, c)2 (1)

• Local Homogeneity:

h2 =

Ng
∑

r=1

Ng
∑

c=1

1

1+ (r − c)2
l(r, c) (2)
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FIGURE 1 | Sample face images from the proposed Spoof-in-NIR database. Images are shown from (A) Indian ethnicity and (B) Chinese ethnicity.

• Correlation Measures:

h3 =
ERC − ERC1

max{ER,EC}
(3)

h4 = (1− exp{−2(ERC2 − ERC)})
1
2 (4)

where,

ERC = −

Ng
∑

r=1

Ng
∑

c=1

l(r, c) log
{

l(r, c)
}

ERC1 = −

Ng
∑

r=1

Ng
∑

c=1

l(r, c) log{lr(r)lc(c)}

ERC2 = −

Ng
∑

r=1

Ng
∑

c=1

lr(r)lc(c) log{lr(r)lc(c)}

• Average:

h5 =

2Ng
∑

r=2

rlr+c(r) (5)

• Intensity Variation:

h6 =

Ng−1
∑

n=0

n2
{

∑Ng

r=1

∑Ng

c=1 l(r, c)

}

, |r − c| = n (6)

• Pixel Dependency:

h7 =

∑Ng

r=1

∑Ng

c=1(rc)l(r, c)− µrµc

σrσc
(7)

• Variance

h8 =

Ng
∑

r=1

Ng
∑

c=1

(r − µ)2l(r, c) (8)

• Total Variance:

h9 =

2Ng
∑

r=2

(r − h10)
2lr+c(r) (9)

• Total Entropy:

h10 = −

2Ng
∑

r=2

lr+c(r) log
{

lr+c(r)
}

(10)

• Entropy:

h11 = −

Ng
∑

r=1

Ng
∑

c=1

l(r, c) log
{

l(r, c)
}

(11)

• Variance Difference:

h12 =

Ng−1
∑

r=0

r2lr−c(r) (12)

• Entropy Difference:

h13 = −

Ng−1
∑

r=0

lr−c(r) log
{

lr−c(r)
}

(13)

Here, µr , µc, σr , and σc are the mean and SDs of lr and lc,
respectively. r and c represent the row and column index in the
co-occurrence matrix. lr+c(r) is the likelihood of co-occurrence
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matrix coordinates summing to r + c, and ER, and EC are the
entropies of lr and lc.

The process described above is repeated for each channel
in the RGB image. While the Haralick features are used to
encode the textural information, RDWT provides the high-
frequency information presented in multiple orientations. For
classification, a linear Support Vector Machine (SVM) (Vapnik,
2013) classifier is used based on its popularity in the PAD research
(Ramachandra and Busch, 2017; Jia et al., 2020a). Two different
SVM classifiers are trained: one for the features extracted from
the raw sensor images and the second for the features extracted
from the face region. The final score of a testing frame is
calculated as the weighted sum of the scores obtained from two
different trained SVM. To summarize, the steps involved in the
proposed algorithm are discussed below:

1. The input image is decomposed into individual RGB channels
2. Each channel is then decomposed into four wavelet sub-

bands using Redundant DiscreteWavelet Transform (RDWT)
(Fowler, 2005),

3. Haralick texture features are computed over each wavelet
sub-bands and the original image without decomposition,

4. Haralick features obtained from each subband are
concatenated and input to a linear Support Vector Machine
(SVM) classifier for classification,

5. The face region is cropped using the eye coordinates obtained
using the Viola-Jones face detector,

6. Face region is divided into nine non-overlapping blocks,
7. Each face block is decomposed into four wavelet sub-bands

using Redundant Discrete Wavelet Transform,
8. Haralick texture features are computed over each wavelet

sub-bands and the original face block without decomposition,
9. Haralick features obtained from each subband and original

face are concatenated and input to a linear Support Vector
Machine (SVM) classifier for classification,

10. The scores obtained from SVM in Steps 4 and 9 are fused
using weighted sum rule fusion and then thresholded for
classification.

4. RESULTS ON MULTISPECTRAL PAD
DATABASES

The performance of the proposed algorithm is computed on
the proposed Spoof-in-NIR database along with the publicly
available multispectral MSSPOOF database (Chingovska et al.,
2016) and the CASIA-SURF database (Zhang et al., 2020). The
results are reported in terms of Bonafide (real) Presentation
Classification Error Rate (BPCER), Attack Presentation
Classification Error Rate (APCER), and Average Classification
Error Rate (ACER) also known as Half Total Error Rate (HTER).
BPCER is defined as the rate of the bonafide (real) samples
classified as attack samples. APCER is the proportion of the
attack samples classified as bonafide (real) samples. The results
are also reported using Equal Error Rate (EER).

APCER = 1−

∑A
i=1 ξ

|A|

TABLE 2 | Protocol for the proposed Spoof-in-NIR database experiments.

Ethnicity Session Folds Results Reported

Real Attack

Indian 1 1 15 Video and Frame

1 2 15 Video and Frame

Chinese 1 1 5 Frame

BPCER =

∑B
i=1 ς

|B|

ACER = (APCER+ BPCER)/2

where, |A| and |B| is the total number of presentation attack
and real images, respectively. ξ and ς is 0 if an attack image is
classified as real (bonafide), else 1.

FAR =
FalsePositive

|A|

FRR =
FalseNegative

|B|

HTER = (FAR+ FRR)/2

HTER is an average of FRR and FAR. EER is a specific value of
HTER at which FAR is equal to FRR.

First, the results of the proposed algorithm on existing
MSSPOOF and CASIA-SURF databases along with comparisons
to state-of-the-art (SOTA) algorithms are reported. Later, the
experiments performed on the proposed Spoof-in-NIR database
are described. The comparison of the proposed algorithm
with SOTA algorithms highlights the efficacy of PAD in
multiple spectrums.

4.1. Results on MSSPOOF Database
Multispectral spoof database contains images with print attack
performed in four different ways: 1) original image is captured
in the visible spectrum, while the visible image is recaptured
using visible and near infrared spectrum camera, and 2)
original image is captured in near-infrared spectrum while NIR
image is recaptured back using visible and near infrared filter
camera. The database contains a total of 630 real images in
visible and 624 images in near infrared spectrums pertaining
to 21 subjects, in 7 different environmental conditions. The
database is divided into three disjoint sets: train, dev, and test.
Raghavendra et al. (2016) proposed two different protocols on the
MSSPOOF database:

1. Individual spectrum: NIR and VIS, individual spectrum data
in training and testing.

2. Combined spectrum: both spectrum data in training and
testing.
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We have reported the results using these two protocols along
with the experiments defined in this paper to fully utilize
the characteristics of the database. In the individual spectrum
experiments: the presentation attack detection SVM model is
trained using individual spectrum data such as for visible
spectrum experiments. The partition belonging to the visible
spectrum is used for training and evaluating the classifier. In
the combined spectrum experiment, the train set belonging to
both the spectra is used to learn the classifier, and similarly, for
evaluation, test sets belonging to both spectra are combined.

4.1.1. Results of Individual Spectrum Experiments

The results for individual spectrum experiments are summarized

in Table 3. The proposed algorithm achieves 0% ACER and

BPCER in both the spectrums which shows the consistency of
the algorithm across spectrums. The second best performing
algorithm is by Raghavendra et al. (2016) (LaMTiF) and it
achieves 0.74% and 2.08% ACER in NIR and VIS spectrum,
respectively. LaMTiF uses a combination of Laplacian pyramid
based decomposition to extract the high-frequency information
and Short Term Fourier Transform (STFT) for time and
frequency features. The limitation of the LaMTiF algorithm
is the high error rate for attack detection. Table 3 also
shows the results of several other texture based algorithms
and it can be observed that the algorithms are generally
ineffective in detecting either the bonafide presentation or
attack presentation. The proposed algorithm is robust to both
kinds of data, which is desired and required for real-world

FIGURE 2 | Illustrating the proposed presentation attack detection pipeline.

TABLE 3 | Results (%) on individual and combined spectrum set of MSSPOOF database.

Spectrum VIS NIR VIS + NIR

Algorithm APCER BPCER ACER APCER BPCER ACER APCER BPCER ACER

LBP-SVM* 2.31 11.67 6.99 0.46 8.33 4.39 2.54 7.77 5.16

BSIF-SVM* 5.55 4.44 5.00 4.16 2.22 3.19 3.47 3.33 3.40

LPQ-SVM* 5.55 0.55 3.05 0.92 4.44 2.68 1.85 4.44 3.14

DoG-SVM* 62.03 28.88 45.46 37.03 38.54 37.79 43.05 43.61 43.33

GLCM-SVM* 0 97.22 48.61 0 96.08 48.04 0 98.05 49.02

LaMTiF 4.16 0 2.08 0.92 0.55 0.74 3.00 2.50 2.75

Proposed 0 0 0 0 0 0 0 0 0

*Results are taken from Raghavendra et al. (2016). The top two values are bolded.

Frontiers in Big Data | www.frontiersin.org 7 July 2022 | Volume 5 | Article 836749

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Agarwal et al. Generalized Face PAD Algorithm

presentation attack detection algorithms integrated with face
recognition systems. The misclassification of bonafide data as
attack data can frustrate the genuine user because of the need
to give face data again and again for recognition. At the
same time allowing attack data as bonafide data can cause
serious harm to the face recognition system. The proposed
algorithm yields the best EER (i.e., 0%) on the MSSPOOF
database.

4.1.2. Results on Combined Spectrum Experiments

In the combined spectrum experiment, the data belonging to
both spectrums are utilized to make a joint decision. To learn
the presentation attack detection model, the training set given
in the database for both the spectrums is used and evaluation
is performed on the test set of both the spectrums collectively.
Table 3 shows the results of the proposed and existing algorithms
on the combined set.

The proposed algorithm achieves 0.0% ACER on the
combined spectrum database which is significantly better
than existing algorithms. The results show that the proposed
algorithm is robust towards different kinds of data. Similar to
individual spectrum results, the combined spectrum shows the
ineffectiveness of the existing algorithms in detecting attack or
bonafide data. The GLCM features yield the perfect error rate
in detecting the presentation attack but rejecting the bonafide
almost all the time. Similarly, the second best algorithm yields 3%
APCER. The proposed algorithm yields 1.39% EER on the joint
spectrum dataset.

4.2. Experiments on CASIA-SURF
Database
The recently proposed CASIA-SURF database (Zhang et al.,
2020) is one of the most extensive databases for face presentation
attack detection problems both in terms of modalities and
subjects. The database consists of 21, 000 videos of 1,000 subjects
in RGB (color), IR, and depth modalities. For each subject, one
real video is captured while six fake videos are captured using
eye, mouth, and nose regions cut from the flat and curved printed
face. For example, in attacks 1 and 2, the eye region is cut from the
flat and curved face photo. Similarly, in other attacks, either the
eyes and nose or eyes, nose, and mouth, all portion is cut from
flat and curved face photo. The color, depth, and IR videos are
acquired using the Intel RealSense SR300 camera. The real faces
are first printed out using an A4 color printer and later used by
the attackers while exhibiting real life motions such as turning
left or right, moving up or down, and walk-in or away from the
camera. The database is divided into training, validation, and
testing set and contains 148,089, 48,789, and 295,644 cropped
images, respectively.

In this research, we have used the pre-defined protocol for
evaluation, and the results are reported on fused modalities. The
baseline algorithm (Zhang et al., 2019) consists of the ResNet-18
model as a backbone model where the first three ResNet blocks
are used for feature extraction. The features from each modality,
i.e., color, depth, and IR, are then fused using a squeeze and
excitation module. In the end, two blocks of ResNet are used
for discriminative features learning, followed by global average

TABLE 4 | Error rates (%) of the proposed and baseline algorithms on the

CASIA-SURF database (Zhang et al., 2019).

Type Algorithm Modality EER APCER BPCER ACER

Fused Baseline Color&IR 8.5 14.4 1.6 8.0

Proposed 10.0 10.1 9.9 10.0

Baseline Color&Depth 6.2 4.3 5.6 5.0

Proposed 1.8 1.7 1.9 1.8

Baseline Depth&IR 5.3 1.5 8.4 4.9

Proposed 2.0 1.9 2.1 2.0

Baseline Color&Depth&IR 2.9 3.8 1.0 2.4

Proposed 1.5 1.6 1.4 1.5

Best result is bolded.

FIGURE 3 | Comparing Attack Presentation Classification Error Rate (APCER)

(%) of the proposed algorithm with Zhang et al. (2020).

pooling. The whole pipeline is trained using a softmax classifier.
The comparison of the proposed algorithm with the baseline
algorithm in terms of error rates is given in Table 4.

The scores computed over different modalities are fused using
a weighted sum. The weight parameter across differentmodalities
is learned, which yields the lowest EER on the validation set.
The fusion of all three modalities, i.e., color, depth, and IR,
outperforms the baseline algorithm by 37.5% (i.e., reduces from
2.4% to 1.5%) in terms of ACER. The APCER of the baseline
algorithm (i.e., 3.8%) is more than two times that of the proposed
algorithm (i.e., 1.6%). The proposed fusion of color and IR with
depth modality surpasses the baseline algorithm in identifying
bonafide (i.e., real) images by at least 66%. As shown in Figure 3,
the APCER of the proposed algorithm is significantly better
than the recently proposed face PAD algorithm by Zhang et al.
(2020). For example, when the fusion of color and IR data is
performed, the APCER of the proposed and existing algorithm
(Zhang et al., 2020) is 10.1% and 36.5%, respectively. The
fusion of all modalities in the proposed algorithm yields 1.6%
APCER, whereas, the existing algorithm yields 1.9% APCER.
These superior performances of the proposed algorithm on one
of the largest multi-modal presentation attack databases establish
the efficacy of the proposed algorithm in identifying physical fake
face data.

Frontiers in Big Data | www.frontiersin.org 8 July 2022 | Volume 5 | Article 836749

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Agarwal et al. Generalized Face PAD Algorithm

TABLE 5 | Video and frame based EER (µ ± σ )% on the proposed NIR print

attack database.

Ethnicity Session Algorithm Video Frame

Indian 1 ResNet-18 12.8 ± 3.5 24.1 ± 5.8

Proposed 4.3 ± 2.3 19.7 ± 1.9

2 ResNet-18 10.2 ± 0.9 29.3 ± 2.3

Proposed 0.8 ± 0.6 23.2 ± 1.6

Chinese 1 ResNet-18 - 27.4 ± 3.0

Proposed - 20.7 ± 0.8

Top results are bolded.

4.3. Experiments on Proposed
Spoof-in-NIR Database
The proposed Spoof-in-NIR database contains images and videos
of subjects from two different ethnicities: Indian and Chinese.
Indian NIR database contains 152 real videos and 300 attack
videos collected in two sessions. Chinese NIR database contains
12, 469 real frames taken from CASIA VIS-NIR 2.0 (Li et al.,
2013) and 7, 799 attack frames. According to the protocol
described in Section 2.4, the experiments are performed on the
proposed Spoof-in-NIR database. To make our approach in-line
with the recent literature (Zhang et al., 2019, 2020; Jia et al.,
2020b) which has utilized the ResNet as a backbone or to make
the comparison, we have also performed a comparison with
the ResNet-18 model (He et al., 2016) pre-trained on ImageNet
(Deng et al., 2009). Themodel is fine-tuned for PAD for 50 epochs
using the Adam optimizer and adaptive learning rate, where the
initial value is set to 0.0001.

The results of the proposed algorithm on the Spoof-in-NIR
database are summarized in Table 5. The proposed algorithm
achieves 4.3% and 0.8% EER on sessions 1 and 2 of the Indian
NIR spectrum dataset, respectively, for video-based experiments.
Similarly, for the frame-based evaluation, an EER of 19.7% and
23.2% is achieved for sessions 1 and 2, respectively. On the
Chinese NIR dataset, the proposed algorithm yields 20.7% EER
using a frame-based experiment. The reported results show that
the classification of an individual frame is difficult compared
to video, where the information from multiple frames helps
improve the results. Apart from that, the proposed algorithm
surpasses the deep CNN architecture, i.e., ResNet, by a significant
margin. Due to the imbalanced nature of images/videos of real
and spoof classes in the proposed dataset especially in the
Chinese subset, we have also used another evaluation metric
namely the weighted F-1 score. The weighted F-1 score on the
Chinese PAD subset of the proposed and ResNet-18 architecture
is 0.8230 and 0.6907, respectively. On the Indian subset, the
average weighted F-1 values for video-based classification are
0.9687 and 0.8675 which are obtained from the proposed and
ResNet algorithm, respectively. Comparing the performance with
MSSPOOF (Chingovska et al., 2016) and CASIA-SURF (Zhang
et al., 2020) databases further show the proposed database is
more challenging. The availability of this database to the research
community will further improve the state-of-the-art presentation
attack detection in multiple spectrums.

TABLE 6 | Characteristics of the existing VIS spectrum attack database used in

this research.

Database Attack Unconstrained

CASIA-FASD Print and Replay X

Replay-Attack Print and Replay X

MSU-MFSD Print and Replay X

3DMAD 3D Hard Resin Mask ×

MSU USSA Print and Replay X

SMAD Silicone Mask X

WFFD 3D Wax Figure X

WMCA Print, Replay, and Mask X

SiW-M Print, Replay, and Mask X

5. EXPERIMENTS ON EXISTING VIS
SPECTRUM DATABASES

To further demonstrate the effectiveness of the second
contribution of this article i.e., the development of a robust
algorithm across different attacks, additional experiments are
performed on the existing benchmark databases in the VIS
spectrum. The performance of the proposed algorithm is
evaluated on the CASIA-Face Anti-Spoofing Database (FASD)
(Zhang et al., 2012), Replay-Attack (Chingovska et al., 2012),
MSU-MFSD (Wen et al., 2015), 3D Mask Attack Database
(3DMAD) (Erdogmus and Marcel, 2013), MSU USSA database
(Patel et al., 2016), WMCA (George et al., 2019), SiW-M (Liu
et al., 2019b), Silicone Mask Attack Database (SMAD) (Manjani
et al., 2017), and 3D wax figure face database (WFFD) (Jia et al.,
2019). These databases cover a wide spectrum of attacks such
as print, photo, a replay of video, 3D hard resin masks, and
the most challenging silicone mask. Table 6 summarizes the
characteristics of these databases and a brief description of each
is provided below.

CASIA-FASD database (Zhang et al., 2012) contains three
different kinds of attacks: cut photo (eye portions are cut to
perform the eye blink), warped photo (to make it cylindrical as
a real face), and replay of a video. It contains the videos in three
different image qualities: low, normal, and high. Replay-Attack
database (Chingovska et al., 2012) is captured in controlled
and adverse environments. In the controlled environment, the
background was kept fixed and the fluorescent lamp was used
for illumination. In the adverse environment, the background is
random and natural light is the source of illumination. MSU-
MFSD database (Wen et al., 2015) is captured from 35 subjects
and is one of the mobile face attack databases. Real videos
are captured from two different devices: a built-in camera of
a MacBook Air 13-inch laptop and a front facing camera of
a Google Nexus 5 Android phone. To capture the attack, two
different high-resolution cameras are used: a Canon 550D single-
lens reflex camera and an iPhone 5S back facing camera.

CASIA-FASD, Replay-Attack, and MSU-MFSD databases
are challenging but contain 2D attacks only. To assess the
effectiveness of the algorithm on the 3D attack, the 3DMAD
database (Erdogmus and Marcel, 2013) is also used in this article.
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Advancement in the 3D reconstruction and 3D printer makes the
availability of 3D masks easier. These masks can be worn and can
effectively hide the identity of the person in day-to-day life. These
masks are hard to detect in comparison to wearing photo paper
masks. 3DMADdatabase is captured from 17 subjects where each
subject is wearing a different 3D mask. It is captured in three
sessions, where the real access videos are captured in the first two
sessions and the third session covers the 3Dmask attack. For each
subject ten real and five 3D attack videos are captured, with a total
of 255 videos in the database. While the 3DMAD database is the
challenging 3D mask attack database but it has some limitations.
The masks used to prepare the database are hard resin masks that
do not allow movements similar to the natural face. In the real
world, some challenging cases are found where the robbers have
used silicone masks to hide their identity from the surveillance
cameras. These silicone masks are soft masks that can properly fit

the face and can move with the face. Manjani et al. (2017) have
prepared the Silicone Mask Attack Database (SMAD) which is
currently the most challenging kind of attack to detect.

To tackle the limitations such as diversity in terms of
background, illumination, and image quality, Patel et al. (2016)
prepared one of the largest databases. Such a database is essential
to obtain generalizable and robust anti-spoofing methods,
particularly in face unlock scenarios on smartphones. To create
such a database we selected 1,000 live subject images of celebrities
from the Weakly Labeled Face Database4. The public set of the
MSU USSA database for face anti-spoofing consists of 9, 360
images (out of which 1, 040 are real images and 8, 320 spoof attack
images) of 1, 040 subjects. To perform the experiments standard
database protocol of 5-fold cross-validation is performed.

4http://wlfdb.stevenhoi.com

TABLE 7 | Comparison with existing results on the video based presentation attack detection.

Algorithm CASIA-FASD Replay-Attack MSU-MFSD 3DMAD SMAD

EER EER HTER EER EER EER HTER

Spectral Cubes (Pinto et al., 2015a) 14.0 – 2.8 – – – –

DMD + LBP + SVM (Tirunagari et al., 2015) 21.8 5.3 3.8 – – – –

Multicue Fusion (Patel et al., 2016) 5.88 – 14.6 8.41 – – –

Color Texture (Boulkenafet et al., 2016) 3.2 0.0 3.5 3.5 – – –

C-SURF + Fisher Vector (Boulkenafet et al., 2017a) 2.8 0.1 2.2 2.2 – – –

Deep Dictionary (Manjani et al., 2017) 1.3 – 0.0 – 0.0 12.3 13.1

LGBP + GS-LBP (Peng et al., 2017) 2.53 – 3.13 8.54 – – –

Directional LBP (Qin et al., 2017) 4.44 – 4.88 3.33 – – –

Frame Diff + Fisher Score + LPQ (Azeddine et al., 2017) 4.62 5.60 4.80 2.50 – – –

Depth and patch CNNs (Atoum et al., 2017) 2.67 0.79 0.72 – – – –

Skin Blood Flow (Wang et al., 2017) 7.01 – 4.92 7.23 – – –

Multiscale quality (Yeh and Chang, 2018) 12.7 – 5.38 – – – –

Temporal Texture (Pan and Deravi, 2018) 6.71 – 0.6 10.07 – – –

Motion CodeBook (Edmunds and Caplier, 2018) 17.0 – 5.7 17.0 3.53 – –

Texture Markov Feature (Zhang et al., 2018) 8.0 4.0 4.4 7.5 – – –

3D CNN (Li et al., 2018) 1.4 0.3 1.2 0.0 – – –

Locally Specialized CNN (Gustavo et al., 2018) 4.44 0.33 1.75 – – – –

CNN + STN+ MIL (Lin et al., 2018) – – 1.8 – – – –

Deep Dynamic Texture (Shao et al., 2019) – – – – 0.0 14.9 11.7

GFA-CNN (Tu et al., 2019) – – – 7.5 – – –

Spoof Buster (Bresan et al., 2019) – – 5.50 – – – –

2-stream ResNet-18 + Attention (Chen et al., 2019) 3.15 0.21 0.39 – – – –

Patch and Depth CNN-v2 (Liu et al., 2019a) 4.4 0.0 0.0 – – – –

Multi-Regional CNN (Ma et al., 2020) – – 1.6 – – – –

CCoLBP+Ensemble Learning (Peng et al., 2020) 3.33 – 4.00 5.00 – – –

Color Texture Weighted Features (Song et al., 2020) 7.34 2.32 7.39 – – – –

SFDSF* (Song et al., 2020) 15.38 5.15 6.06 – – – –

FDCNN-AUTO** (Song et al., 2020) 5.06 0.93 2.77 – – – –

SfSNet (Pinto et al., 2020) 3.3 – 3.1 – – – –

SE-ResNet18 (Wang et al., 2020) 3.3 – 1.3 6.3 – – –

Proposed 0.92 0.0 0.75 0.0 0.0 7.7 6.9

Two best results are bolded.

*Spatial-Frequency Domain Selection Feature **Features on Double Convolutional Neural Network and Autoencoder.
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FIGURE 4 | Comparison with existing results including deep forest (Cai and Chen, 2019) on the MSU USSA database for presentation attack detection.

On the grandtest protocol of the WMCA database, the
proposed algorithm achieves 2.4% ACER; whereas, the existing
algorithms such as FASNet (Lucena et al., 2017), DeepPixBis
(George and Marcel, 2019), and MC-ResNetPAD (Parkin and
Grinchuk, 2019) achieve 11.44%, 6.0%, and 2.6%, respectively.
On the unseen protocols of SiW-M, the proposed algorithm
achieves the average EER (%) and ACER (%) of 12.8% and
14.6%, respectively. The ACER (%) of Auxiliary (Liu et al., 2018),
Deep Tree Network (Liu et al., 2019b), DeepPixBis (George and
Marcel, 2019), and MCCNN (George andMarcel, 2020) is 23.6%,
16.8%, 19.6%, and 18.6%, respectively. The extensive results on
these challenging databases further prove the effectiveness of the
proposed algorithm.

Recently, a new modality of 3D attack is highlighted
where wax figure faces are used as a possible adversary on
face recognition systems (Jia et al., 2019). The authors have
shown that state-of-the-art face recognition algorithms such
as OpenFace (Amos et al., 2016) and Face++5 are vulnerable
to wax figure faces. These spoof faces have achieved at least
92% Impostor Attack Presentation Match Rate (IAMPR) across
multiple protocols. Therefore, the identification of wax faces
from real faces is important and challenging because of properties
similar to real faces. In this research, we have used two working
conditions (protocols) provided by the authors. In the first
protocol (Prot. 1), images captured under different recording

5https://www.faceplusplus.com/face-compare-sdk/

devices and environments are used, whereas, in another protocol
(Prot. 3), images captured in different and same recording devices
and environments are combined. Protocol 1 consists of 600
trains, 200 development, and 440 test images; while, protocol 3
consists of 1,320 trains, 440 development, and 440 test images.

To compare the results with existing state-of-the-art
algorithms, the original protocol of each database is followed
and the results are reported both in terms of intra-database and
cross database scenarios. Table 7 shows the comparison of the
proposed algorithm with existing algorithms in video based
attack detection. On one of the most challenging presentation
attack i.e., silicone mask, the proposed algorithm outperforms
the state-of-the-art performances (Manjani et al., 2017; Shao
et al., 2019). EER and HTER of the proposed algorithm on video-
based detection are 7.7% and 6.9% which is more than 37% and
47% lower, respectively. Similarly, on the CASIA-FASD database,
the proposed algorithm gives the lowest EER value of 0.92%.
Perfect EER on Replay-Attack, MSU-MFSD, and 3DMAD shows
the robustness of the algorithm across different attacks and
acquisition/attack devices. The proposed algorithm outperforms
various deep learning algorithms (Manjani et al., 2017; Tu and
Fang, 2017; Ma et al., 2020; Pinto et al., 2020; Song et al., 2020),
multi cue fusion algorithms (Patel et al., 2016; Zhang et al.,
2018), motion algorithms (Edmunds and Caplier, 2018), and
texture algorithms (Boulkenafet et al., 2016; Peng et al., 2020).
The ultra deep neural network proposed by Tu and Fang (Tu
and Fang, 2017) combines a pre-trained deep residual network
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TABLE 8 | Comparison with SOTA results on the frame based presentation attack detection in terms of EEE (%) and HTER (%).

Algorithm CASIA-FASD Replay-Attack MSU-MFSD SMAD

EER EER HTER EER EER HTER

Motion (Anjos and Marcel, 2011) 26.6 11.6 11.7 – – –

LBP (Chingovska et al., 2012) 18.2 13.9 13.8 – – –

CDD (Yang et al., 2013) 11.8 – – – – –

Motion + LBP (Komulainen et al., 2013) – 4.5 5.1 – – –

LBP-TOP (de Freitas Pereira et al., 2014) – 7.9 7.6 – – –

IQA (Galbally et al., 2014) 32.4 – 15.2 – – –

CNN (Yang et al., 2014) 7.4 6.1 2.1 – – –

IDA (Wen et al., 2015) – – 7.4 8.5 – –

Color Texture (Boulkenafet et al., 2016) 2.1 0.4 2.8 4.9 – –

LGBP + GS-LBP (Peng et al., 2017) 2.5 – 3.13 8.54 – –

Deep Dictionary (Manjani et al., 2017) – – – – 14.7 15.0

Proposed 4.95 0.8 2.1 0.0 10.9 10.7

Two best results are bolded.

TABLE 9 | Wax figure face detection error rates (%) on the unconstrained (protocol 1) and real-world protocol (protocol 3) of WFFD database (Jia et al., 2019).

Algorithm EER APCER BPCER ACER

Prot. 1 Prot. 3 Avg. Prot. 1 Prot. 3 Avg. Prot. 1 Prot. 3 Avg. Prot. 1 Prot. 3 Avg.

M-Scale LBP 33.17 34.56 33.86 31.22 33.33 32.27 31.22 32.92 32.07 31.22 33.13 32.17

Color LBP 33.17 36.81 34.99 30.24 35.38 32.81 36.10 35.79 35.94 33.17 35.58 34.37

Reflectance 41.95 44.78 43.36 40.00 46.01 43.00 52.19 46.22 49.20 46.10 46.11 46.10

VGG-16 45.85 48.67 47.26 50.73 45.19 47.96 41.95 49.28 45.61 46.34 47.24 46.79

Proposed 23.50 35.68 29.59 25.50 35.68 30.59 22.00 35.91 28.95 23.75 35.79 29.77

The proposed algorithm reduces the average classification error rate (ACER) and EER by 2.40% and 4.27%, respectively. Two Best results are bolded.

with Long Short Term Memory (LSTM) and yields an EER of
1.22% and 1.03% on CASIA-FASD and Replay-Attack databases,
respectively. The EER of the proposed algorithm is at least 24%
better than (Tu and Fang, 2017) on CASIA-FASD while 0% EER
is achieved on the Replay-Attack database. As shown in Figure 4,
the proposed algorithm outperforms several state-of-the-art
presentation attack detection algorithms including the recent
deep forest (Cai and Chen, 2019) algorithm on one of the largest
MSU-USSA databases. The EER and standard deviation of the
proposed, Deep Forest (Cai and Chen, 2019) and LBP + Color
moment (Patel et al., 2016) algorithm are 1.1± 0.3%, 1.6± 0.6%,
and 3.9± 0.8%, respectively.

Table 8 shows that the proposed algorithm either achieves
state-of-the-art or competitive results even for frame-based
classification with all the challenging face spoofing databases. The
EER value of 0.8%, 4.95%, and 0.0% is achieved on Replay-Attack,
CASIA-FASD, and MSU-MFSD database respectively in frame
based detection. HTER of 2.1% is achieved on the Replay-Attack
database in the grand test attack scenario which is lower than
various texture based algorithms (Boulkenafet et al., 2016; Peng
et al., 2017). On the SMAD database, the proposed algorithm
shows an improvement of more than 25% to 47% from the
baseline performance (Manjani et al., 2017). The detection error
rate using the proposed and existing algorithms on wax figure

faces is reported in Table 9. Similar to other challenging attacks,
the proposed algorithm outperforms several existing algorithms
for wax face detection including hand-crafted and deep learning
algorithms. The ACER of the proposed algorithm is 17.02% better
than VGG-16 based wax face detection.

The proposed algorithm utilizes the weighted score fusion of
the classifier trained using the features computed by tessellating
the face region and full image input. Therefore, to study the
importance of the individual region and segregate them into
small regions, we have performed experiments on multiple
databases. Interestingly, it is found that the features from the
global region without input tessellation are useful in handling
presentation attacks. For example, on MSU-MFSD and Replay-
Attack, the raw input images show effectiveness in detecting
the presentation attacks by achieving at most 0.4% EER. The
fusion of face and full image further improves the detection
performance. On CASIA-FASD, the fusion reduces the EER from
1.1% (face region) to 0.92% (face + raw image).

To further show the generalizability of the proposed PAD
algorithm, cross database experiments are also performed, and
the results are reported in Table 10. For video based scenarios,
when the anti-spoofing algorithm is trained on the CASIA-
FASD database, average HTER values of 26.7% and 35.3%
are reported on the MSU-MFSD and Replay-Attack databases,
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TABLE 10 | Comparison with existing results on the video based presentation attack detection under cross dataset setting.

Train database Algorithm Test database

CASIA-FASD MSU-MFSD Replay-attack

CASIA-FASD (Zhang et al., 2012) Motion (de Freitas Pereira et al., 2013) – – 50.2

Spectral Cubes (Pinto et al., 2015b) – – 34.4

LBP (Boulkenafet et al., 2015) – 36.6 47.0

Color Texture (Boulkenafet et al., 2016) – 20.4 30.3

LBP+ GS-LBP (Peng et al., 2017) – 18.6 48.4

Directional LBP (Qin et al., 2017) – 26.3 21.6

Frame Diff + Multi-Level + Fisher Score + LPQ (Azeddine et al., 2017) – 50.4 50.3

Multiscale quality (Yeh and Chang, 2018) – – 38.1

De-Spoofing (Jourabloo et al., 2018) – – 28.5

Texture Markov Feature (Zhang et al., 2018) – 32.4 32.3

Motion CodeBook (Edmunds and Caplier, 2018) – 50.0 33.7

Spoof Buster (Bresan et al., 2019) – – 53.0

Two stream ResNet-18 + Attention (Chen et al., 2019) – – 36.2

Patch and Depth CNN-v2 w/o update (Liu et al., 2019a) – – 34.7

Patch and Depth CNN-v2 (Liu et al., 2019a) – – 15.4

CCoLBP+Ensemble Learning (Peng et al., 2020) – 18.6 18.7

SAPLC (Sun et al., 2020a) – – 27.3

FCN-LSA (Sun et al., 2020b) – – 27.3

Proposed – 26.7 35.3

Replay-Attack (Chingovska et al., 2012) Motion (de Freitas Pereira et al., 2013) 47.9 – –

Spectral Cubes (Pinto et al., 2015b) 50.0 – –

LBP (Boulkenafet et al., 2015) 39.6 35.2 –

Color Texture (Boulkenafet et al., 2016) 37.7 34.1 –

LBP+ GS-LBP (Peng et al., 2017) 40.3 36.1 –

Directional LBP (Qin et al., 2017) 46.6 31.1 –

Frame Diff + Multi-Level + Fisher Score + LPQ (Azeddine et al., 2017) 42.6 38.0 –

Multiscale quality (Yeh and Chang, 2018) 39.0 – –

De-Spoofing (Jourabloo et al., 2018) 41.1 – –

Texture Markov Feature (Zhang et al., 2018) 45.9 37.7 –

Motion CodeBook (Edmunds and Caplier, 2018) 49.3 40.8 –

Spoof Buster (Bresan et al., 2019) 43.3 – –

Two stream ResNet-18 + Attention (Chen et al., 2019) 34.7 – –

Patch and Depth CNN-v2 w/o update (Liu et al., 2019a) 36.1 – –

Patch and Depth CNN-v2 (Liu et al., 2019a) 23.2 – –

CCoLBP+Ensemble Learning (Peng et al., 2020) 39.3 25.0 –

SAPLC (Sun et al., 2020a) 37.5 – –

FCN-LSA (Sun et al., 2020b) 37.3 – –

Proposed 33.3 23.9 –

MSU-MFSD (Wen et al., 2015) LBP (Boulkenafet et al., 2015) 49.6 – 42.0

Color Texture (Boulkenafet et al., 2016) 46.0 – 33.9

LBP+ GS-LBP (Peng et al., 2017) 40.6 – 45.3

Directional LBP (Qin et al., 2017) 40.2 – 48.8

Frame Diff + Multi-Level + Fisher Score + LPQ (Azeddine et al., 2017) 50.0 – 48.0

Texture Markov Feature (Zhang et al., 2018) 57.0 – 42.7

Motion CodeBook (Edmunds and Caplier, 2018) 47.7 – 30.6

CCoLBP+Ensemble Learning (Peng et al., 2020) 39.6 – 27.2

Proposed 23.7 – 32.3

The results are reported in terms of average HTER (%). HTER of the cross database experiments and comparison with State-of-the-art results using video based countermeasure.

Results of Spoof Buster (Bresan et al., 2019) are reported when a single database is used in training. (Top two results are bolded).

Frontiers in Big Data | www.frontiersin.org 13 July 2022 | Volume 5 | Article 836749

https://www.frontiersin.org/journals/big-data
https://www.frontiersin.org
https://www.frontiersin.org/journals/big-data#articles


Agarwal et al. Generalized Face PAD Algorithm

FIGURE 5 | Ablation study of the proposed PAD algorithm in terms of its performance on the individual color channel of the images. Apart from that the practicality of

the proposed algorithm to be deployed in resource constraint devices using computational speed. (A) Classification results with individual color channel and RGB; (B)

Computational complexity of the PAD algorithms.

respectively. The average HTER on CASIA-FASD and Replay-
Attack is 23.7% and 32.2% respectively when the anti-spoofing
model is trained using the MSU-MFSD database. When the
model is learned using the Replay-Attack database and tested
on each subset of CASIA-FASD and MSU-MFSD the average
HTER value reported is 33.3% and 23.9%, respectively. The anti-
spoof model trained using the Replay-Attack database shows
better generalizability and may be attributed to the fact that it is
captured in different illumination, devices, and background. The
comparison of the proposed countermeasure with the existing
anti-spoofing algorithms is shown in Table 10.

The proposed algorithm outperforms the state-of-the-results
when the countermeasure is trained using Replay-Attack and
MSU-MFSD database. The proposed algorithm improves the
HTER of the 2nd best performing algorithm (Peng et al.,
2020) from 39.6% to 23.7% on the CASIA-FASD database when
the model is trained on MSU-MFSD. Similarly, the proposed
algorithm improves the performance on MSU-MFSD by 1.1%
when the classifier is trained using Replay-Attack. Recently
proposed algorithms based on deep CNN by Chen et al. (2019)
and Sun et al. (2020b) yield an HTER value of 34.7% and
37.3% on the CASIA database when the model is trained on
Replay-Attack, whereas the HTER of the proposed algorithm is
at least 1.4% lower. The patch and depth CNN-v2 (Liu et al.,
2019a) outperform the proposed algorithm in a cross-database
setting; however, the significant drawbacks of the algorithm
are the processing speed and high memory requirement. As
claimed by the authors, their algorithm can process 1–2 frames
per second, hence challenging for large scale implementation
or deployment on mobile devices. Simultaneously, the proposed
algorithm is highly computationally inexpensive both in terms
of speed and memory requirement. Another strength of the
proposed algorithm concerning patch and depth CNN-v2 (Liu
et al., 2019a) is that it outperforms under the same database but
unseen subjects train-test setting (reported in Table 7).

We have also performed the presentation attack detection
using the individual color channel of RGB. To perform these
experiments, random 30 frames from each video are first selected

for feature extraction. The performance is reported on three
challenging benchmark databases: CASIA-FASD, Replay-Attack,
and MSU-MFSD. Results with 30 frames of a train and test
video on the CASIA-FASD, Replay-Attack, and MSU-MFSD
databases are reported in Figure 5A. R channel yields the lowest
EER value of 3.3% on CASIA-FASD database which is lower
than (Feng et al., 2016; Patel et al., 2016). On the Replay-
Attack database, the lowest EER value of 0.1% is given by the
B channel which is equal to the EER reported by Boulkenafet
et al. (2017a). Boulkenafet et al. (2017a) have used all frames
of a video while we have used only 30 frames for such
comparable performance.

Efficacy of the proposed algorithm: In summary, the
strengths of the proposed generalized PAD algorithm are listed
below:

• The proposed algorithm can be implemented in real time. The
feature extraction time on core i7@ 3.4GHz CPU machine
with a Matlab environment is 0.1 frames per second (FPS)
(Figure 5B). The huge deployment of face unlocking on
mobile devices6 needs protection from presentation attacks.
The proposed algorithm with such low computational time
and memory requirement can also be implemented on mobile
devices;

• The proposed algorithm outperforms various state-of-the-
algorithms including 3D CNN (Li et al., 2018), SfSNet (Pinto
et al., 2020), Multi-Regional CNN (Ma et al., 2020), deep
dictionary (Manjani et al., 2017), and SE-ResNet18 (Wang
et al., 2020), for a variety of presentation attacks including
silicone mask attack (Manjani et al., 2017) and 2D attacks;

• The proposed algorithm is also able to handle new modality of
3D attacks i.e., wax faces (Jia et al., 2019). The average EER of
the proposed algorithm is at least 37.4% and 12.6% lower than
VGG-16 deep learning and multi-scale (M-scale) LBP texture
features;

6www.counterpointresearch.com/one-billion-smartphones-feature-face-

recognition-2020/
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• The proposed algorithm is generalizable across imaging
spectrum (VIS/NIR), attacks (2D/3D), acquisition devices
(Mobile/High-def), and quality of images (Low/High).

6. CONCLUSION

Similar to the visible spectrum, face recognition in the near-
infrared (NIR) spectrum is also vulnerable to presentation
attacks. In the literature, there is very limited research on
developing efficient and inclusive countermeasures for the
attack in the NIR spectrum and designing a unified algorithm
to design and evaluate the performance of PAD algorithms
toward continuously evolving presentation attacks in multiple
spectra. In this research, we contribute to this space by
creating a large NIR PAD face database that comprises
videos with different kinds of attacks on Indian and Chinese
ethnicities. We next present a presentation attack detection
algorithm for efficiently differentiating between bonafide and
attacked images in the NIR spectrum. The generalizability
of the proposed algorithm is demonstrated by evaluating
the performance of 11 existing databases and comparing
it with state-of-the-art results reported in the literature. It
is observed that the proposed algorithm yields the best
results on almost all the databases using all three metrics
of APCER, BPCER, and EER. In cross-database evaluations,
while the proposed algorithm yields the best results, the
error rates are comparatively higher. In future study, we plan
to improve the effectiveness of the algorithm so that the

error rates can be further reduced without increasing the
computational complexity.
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