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Abstract—Large-scale fingerprint recognition involves cap-
turing ridge patterns at different time intervals using var-
ious methods, such as live-scan and paper-ink approaches,
introducing intra-class variations in the fingerprint. The per-
formance of existing algorithms is significantly affected when
fingerprints are captured with diverse acquisition settings such
as multi-session, multi-spectral, multi-resolution, with slap
and with latent fingerprints. One of the primary challenges
in developing a generic and robust fingerprint matching
algorithm is the limited availability of large datasets that
capture such intra-class diversity. In this paper, we present the
Multisensor Optical and Latent Fingerprint (MOLF) database
of more than 19000 fingerprint images with different intra-
class variations during fingerprint capture. We also showcase
the baseline results of various matching experiments on
this database. The database is aimed to drive research in
building robust algorithms towards solving the problem of
latent fingerprint matching and handling intra-class variations
in fingerprint capture. Some potential applications for this
database are identified and the research challenges that can
be addressed using this database are also discussed.

I. INTRODUCTION

AFTER decades of research, fingerprint recognition has
become one of the most reliable and commonly used

biometric modalities. In 2012, the market for automated
fingerprint identification systems and fingerprint technolo-
gies contributed the largest share of the global biometrics
market and is to continue to be the primary source of
overall market revenues [1]. This can be ascertained by
the growing number of deployed applications over the last
decade using fingerprint biometrics. Some notable large
scale applications are:

∙ The Office of Biometric Identity Management
(OBIM), previously called the US-VISIT program [2],
provides biometric identification services by collecting
fingerprints and other biometric modalities from all the
visitors applying for U.S. visas. A fingerprint database
of over 90 million identities is currently accessible to
federal and state government agencies.

∙ Aadhaar [3], the brand name of Unique Identification
of Authority of India (UIDAI), is one of the largest
biometrics projects, providing civil and commercial
applications for Indian residents. It uses a combination
of fingerprint and iris biometrics for de-duplication
and authentication for over 800 million population.

∙ FBI IAFIS [4] is the U.S. national fingerprint and
criminal history system. It houses one of the largest
fingerprint databases, recording more than 70 million
suspects, along with more than 34 million civil prints.

On the basis of capture type, fingerprints can be classified
as (i) inked fingerprints, (ii) live-scan fingerprints, and
(iii) latent fingerprints. Using inked methods or using a
live-scan device (e.g. optical sensors, capacitive sensors),
different fingerprint information can be captured such as
flat-dap (single finger flat capture), slap (four finger flat
capture), or rolled fingerprints (nail-to-nail information).
Extensive research has been undertaken for recognizing
fingerprints captured using these methods [5], [6], [7].
Latent fingerprints, on the contrary, are impressions that
are deposited when the sweat, amino acids, proteins, and
natural secretions present in the skin surface comes in
contact with an external surface [8]. These fingerprints are
not directly visible to human eyes and after using special
(chemical) procedures, the latent prints can be lifted or
photographed for further processing. In the same context,
simultaneous latent fingerprints are defined as two or more
latent fingerprints of the same hand deposited concurrently
on the same surface [9]. Research in automated latent
fingerprint recognition and simultaneous latent fingerprint
recognition is still in development stage.

The evolution of fingerprint authentication has resulted
in a broad spectrum of uses including personal authentica-
tion, e-commerce, security, and forensic applications. This
widespread usage has also led to emergence of different
challenges in fingerprint recognition. Some of these chal-
lenges are:

∙ Interoperability across multiple fingerprint sensors:
Wide range of intra-class variations can occur based
on the method or the sensor by which the fingerprint is
captured [10]. Fig. 1 shows sample images of the right
index fingerprint of a subject captured using different
capturing methods, concurrently. It can be observed
that these images visually differ with variations in
capture process or the acquisition sensor. The report
by the National Research Council [11] also discusses
this important challenge and suggests the availability
of a large database with fingerprint impressions from
multiple fingerprint devices can help in improving the
performance of algorithms (Recommendation 12).

∙ Matching latent prints to slap or rolled fingerprints:
Forensic experts in law enforcement agencies lift latent
fingerprints from crime scenes and match them with
enrolled databases containing slap or rolled finger-
prints. Since the information content and quality of
latent fingerprints is significantly different from slap
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Fig. 1: Right index fingerprint captured from two different subjects showing high inter-class and intra-class variations.
Variations are introduced due to different capture methods: (a) inked fingerprint, (b)-(d) live scan fingerprints: (b)
CrossMatch sensor, (c) Secugen Hamster-IV sensor, (d) Lumidigm multi-spectral sensor, and (e) latent fingerprint using
black powder dusting process. (Figure best viewed under zoom).

and rolled fingerprints, there is significant research
required to improve the performance of current sys-
tems [8].

∙ Matching fingerprint images of different resolutions
and spectrums: Fingerprint capture technology was
primarily driven by optical and capacitive sensors.
However, with growing usage of fingerprint in e-
commerce applications and advent of smart mobile
phones, matching fingerprints across different resolu-
tions is also gaining importance. Further, there are fin-
gerprint sensors, such as Lumidigm Venus that utilize
information from multiple spectrums for fingerprint
capture. Matching such images with the ones obtained
from optical or capacitive sensors requires additional
research.

Similar to other data driven research areas, advance-
ments in fingerprint recognition, especially in the academic
community, are dependent on the availability of large
databases. Some of the large publicly available fingerprint
databases include card ink-print databases, live scan fin-
gerprint databases, multisensor fingerprint databases, multi-
resolution fingerprint databases, latent with corresponding
full fingerprint databases, and other special databases. A
comparative analysis of all the existing public fingerprint
databases is provided in Table I, which also provides a
listing of the types of research challenges that can be
addressed using each database.

Existing databases primarily have two limitations:

∙ they generally only contain image variations corre-
sponding to a few challenges, and

∙ some challenges such as latent fingerprint recognition
and cross spectral matching have small databases
associated with them.

Some of these challenges are being researched using non-
public databases and therefore, it becomes challenging to
understand the progression in the state-of-the-art in finger-
prints and to reproduce the results. It is our assertion that the
availability of a large fingerprint database containing im-
ages with variations such as multisensor, multi-spectral, and
latent vs. live-scan fingerprint images can significantly insti-
gate research in the academic community and help visualize
improvements in the literature. Therefore, we have created a
new fingerprint database, termed as Multisensor Optical and
Latent Fingerprint (MOLF) database. The MOLF database
contains 19,200 multisensor, multi-spectral, dap and slap
fingerprint images of 100 subjects obtained from three
different sensors along with mated latent and simultaneous
latent fingerprints. Moreover, the latent and simultaneous
latent fingerprints have manually annotated features. This
database provides a scope for development, evaluation, and
performance assessment of fingerprint matching algorithms
based on single-variate matching as well as cross-variate
matching in several applications. The next section presents
the details of the database.
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TABLE I: Comparison of publicly available fingerprint databases in terms of capture methodology, database size, and
the research challenges that can be addressed.

C
apture

type

Database Classes Images
Research Challenges

Characteristics

M
ulti-session

M
ultisensor

M
ulti-spectral

M
ulti-resolution

Slap
fingerprint

R
olled

fingerprint

L
atent

fingerprint

Inked

NIST SD-30 [12] 360 1008 ✓ ✓ ✓ ✓ Card fingerprint database of 500ppi and 1000ppi images.

NIST SD-29 [13] 2160 3024 ✓ ✓ ✓ Card fingerprint database. Scanned at 500 ppi.

NIST SD-4 [14] 2000 4000 ✓ ✓ Card fingerprint database. Classified into 5 different L1 class.

NIST SD-10 [15] 5520 5520 ✓ Card fingerprint database of rare fingerprint level 1 patterns.

NIST SD-14 v2 [16] 27000 54000 ✓ ✓ Card fingerprint database. WSQ compression.

L
ive-scan

UCSD WWF [17] 300 300 ✓ ✓ Wet and Wrinkled fingerprint matching.

ATVS-FFp [18] 68×2 1632×2 ✓ ✓ Fake fingerprint matching. Captured using 3 sensors.

FVC 2000 [19] 110×4
880×4 ✓ ✓ ✓ Low-cost optical, Low-cost capacitive, optical, and synthetic

fingerprint subsets.

FVC 2002 [20] 110×4 880×4 ✓ ✓ ✓ Optical, capacitive, and synthetic fingerprint subsets.

FVC 2004 [21] 120×4 1440×4 ✓ ✓ ✓ Optical, thermal sweep, and synthetic fingerprint subsets.

FVC 2006 [22] 150×4
1800×4 ✓ ✓ ✓ ✓ Electric field, optical, thermal sweep, and synthetic fingerprint

subsets.

WVU multimodal [23] 272 7219
✓ Captured using CrossMatch, Precise Biometrics, SecuGen sen-

sors at 500 dpi.

CASIA v5.0 [24] 4000 20000 ✓ Captured using URU4000 fingerprint sensor.

MCYT bimodal [25] 1000 24000 ✓ ✓ Digital Persona UareU, Precise Biometrics SC-100 sensors.

C
am

era

NIST SD-24 [26] 100
100 ✓ ✓ MPEG-2 Compressed digital video of live-scan fingerprint data.

(video) 10 seconds of fingerprints at various rotated angles.

HKPU low-resolution [27] 306 3080 ✓ ✓ Fingerprints captured directly using a web camera.

PolyU HRF [28] 148 3170 ✓ ✓ Fingerprints captured directly using a high-resolution camera.

L
atent

Tsinghua OLF [29] 12 100 ✓ Overlapped latent fingerprint segmentation and matching.

NIST SD-27A [30] 258 258
✓ ✓ ✓ Latent to 500 ppi and 1000 ppi exemplars matching.

Manual annotation of features for latent prints available.

IIIT-D SLF [9] 180 420
✓ ✓ ✓ Simultaneous latent fingerprints with 500 ppi slap prints.

Manual annotation of features available.

IIIT-D Latent
150 1241

✓ ✓ ✓ ✓ Latent to latent with 500 ppi slap fingerprints.

Fingerprint [31] Latent images directly captured using a high-resolution camera.

IIIT-D MOLF Database
(proposed)

1000 19200
✓ ✓ ✓ ✓ ✓ Dap, slap, latent and simultaneous latent fingerprints.

Manual annotation of features available.

TABLE II: Different subsets of the MOLF database along with fingerprint type, capture protocol, and its properties.

Subset Fingerprint type No. of Images Image Size Capture protocol Comment
DB1 Multi-spectral live-scan dap 4000 352× 544 100 users × 10 fingers ×

2 sessions × 2 instances
Lumidigm Venus IP65 Shell

DB2 Live-scan dap 4000 258× 336 100 users × 10 fingers ×
2 sessions × 2 instances

Secugen Hamster-IV

DB3 Live-scan slap 1200 1600× 1500 100 users × 3 slap prints
× 2 sessions × 2 instances

CrossMatch L-Scan Patrol

DB3 A Live-scan dap 4000 variable 100 users × 10 fingers ×
2 sessions × 2 instances

Cropped prints from DB3

DB4 Latent 4400 variable 100 users × 2 hands × 2
sessions × 11 instances

Latent fingerprints, cropped from simul-
taneous prints

DB5 Simultaneous latent 1600 1924× 1232 100 users × 2 hands × 2
sessions × 4 instances

Simultaneous impression with annotated
ROI, core points and minutiae



4

II. MULTISENSOR OPTICAL AND LATENT FINGERPRINT
DATABASE

The MOLF database contains large number of fingerprint
images with variations in terms of sensor, resolution, and
capture spectrum, with slap, latent, and simultaneous latent
fingerprint images. Therefore, it provides the opportunity to
develop and evaluate algorithms for preprocessing, feature
extraction, and matching in different scenarios including
latent fingerprint matching. As shown in Table II, the
database contains 19,200 fingerprint samples from all 10
fingers of 100 individuals (1000 classes, treating each finger
as a class) captured in two independent sessions with an
average time difference of 15 days. There are 68 male
participants and 32 female participants and the overall age
range of the participants is between 18 and 52. The database
is captured in an indoor environment under controlled
illumination. During each session, each individual provides
the following information:

1) two independent instances of all 10 fingerprints cap-
tured using Lumidigm Venus sensor,

2) two independent instances of all 10 fingerprints cap-
tured using Secugen Hamster-IV sensor,

3) two independent instances of slap fingerprints (4+4+
2) captured using CrossMatch L-Scan Patrol sensor,
and

4) four independent simultaneous latent impressions
(2 + 2 + 3 + 4 latent fingerprints) of left and right
hand fingers, separately.

A sample fingerprint instance captured from all the sen-
sors is shown in Fig. 2. Depending on the type of problems
that can be addressed, the database is partitioned into six
subsets: DB1 contains the flat dap (all 10) fingerprints
collected using Lumidigm Venus sensor and DB2 contains
the same fingerprints collected using Secugen Hamster-
IV sensor. DB3 contains the slap fingerprints (4 + 4 + 2
configuration) collected using CrossMatch L-Scan patrol
sensor while DB3 A contains the dap fingerprints cropped
from DB3 using NFSEG tool [32]. DB4 contains the latent
fingerprints and DB5 contains the simultaneous latent
fingerprints. Latent fingerprints are obtained by manually
cropping the simultaneous latent fingerprints. Table II pro-
vides details about the different subsets of the database.

A. Fingerprint Data Collected with Optical Sensors

The MOLF database has fingerprints taken using three
optical sensors: (i) Lumidigm Venus IP65 Shell, (ii) Secu-
gen Hamster-IV, and (iii) CrossMatch L-Scan Patrol. The
three sensors comply with FBI’s Image Quality Speci-
fications (IQS). The resolution of images captured from
Lumidigm, Secugen, and CrossMatch sensors are 500ppi
each while the image sizes are 352× 544, 258× 336, and
1600× 1500, pixels respectively.

For 100 individuals, each of the 10 fingerprints is cap-
tured in two sessions and in each session, two independent
instances are captured. For each sensor, there are 4000 im-
ages (DB1, DB2, DB3 A) with 1000 fingerprint classes.
During the first session, the whole process of collection

is explained to all the volunteers (subjects) and they are
assisted in cleaning their fingers using dry or wet tissues,
depending on the requirement. During the second session,
the volunteers are allowed to act upon their own and
without forced cleaning. The capture is not controlled by
the expert and no constraints are applied on the finger’s
condition. The key motive behind this procedure is to
mimic the practical situation of an intentionally registered
gallery fingerprint (session I) and an unconstrained probe
fingerprint (session II).

B. Latent Fingerprint Collection
The latent and simultaneous latent fingerprints are cap-

tured using a black powder dusting process [6]. The usual
method of lifting dusted fingerprints using forensic tapes
introduces non-linear distortion in the fingerprint ridge
information. Therefore, instead of lifting the dusted finger-
prints using tapes, a camera setup is created to directly
capture the simultaneous latent fingerprint. The camera
setup is an improved version of the setup created during the
capture of the IIIT-D SLF database [9]. The setup consists
of a USB programmable UEye camera with a capture size
of 3840× 2748 pixels. It has a 0.5-inch CMOS sensor and
captures at a maximum rate of three frames per second. A
manual C-Mount CCTV lens having a focal length of 8mm
is mounted on the camera with finer focus for capturing the
latent fingerprint. An illumination ring is attached around
the camera to enhance the capture quality. The camera setup
is mounted on a flexible Manfrotto magic arm - an elbow
arm, clamped to the camera on one end using a Manfrotto
super clamp and clamped to a table or to any support (near
the dusted fingerprint) on the other end. Fig. 3(a) shows
the camera setup used for capturing latent fingerprints.

The volunteers deposit their simultaneous latent finger-
prints on a ceramic tile. Though the data collection happens
in a closed environment, the participants are completely
unconstrained, introducing a large amount of variation and
challenges in the deposited latent fingerprint. Two different
slabs of the same tile are used to capture the left and right
hands of the user during a single session. Four impressions
of both hands of the user are captured during each session
as follows:

1) thumb and index finger,
2) index and middle finger,
3) index, middle, and ring finger,
4) index, middle, ring, and little finger.

Fingerprints are then directly captured using the camera
apparatus. Thus, 16 instances of simultaneous latent fin-
gerprints are captured from each individual in two different
sessions. A total of 1600 simultaneous latent impressions
are captured constituting DB5. The simultaneous latent fin-
gerprints are manually cropped to get the individual latent
fingerprints, thus forming DB4. As shown in Table II, there
are a total of 4400 latent fingerprints from 100 subjects with
1000 classes. DB4 contains two latent print instances of
every thumb and little finger, four instances of ring finger,
six instances of middle finger, and eight instances of index
finger.
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Fig. 2: Sample fingerprints captured of a subject representing capture variations in the MOLF database: (a) 500ppi
fingerprint set from Secugen live scan sensor, (b) multi-spectral fingerprint set from Lumidigm live scan sensor, (c)
slap fingerprint set from CrossMatch L-Scan Patrol live scan sensor, (d) latent fingerprint set, (e) simultaneous latent
fingerprint set of subject’s right hand, and (f) simultaneous latent fingerprint set of subject’s left hand. The simultaneous
impressions are captured with black powder dusting method and are directly captured using a camera setup created. The
latent fingerprints are manually cropped from the simultaneous impressions.
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(a) (b)

Fig. 3: (a) The latent fingerprint capture setup utilizing a 0.5-inch CMOS sensor with a 8mm focal length CCTV lens
mounted on a Manfrotto magic arm that yields an image of size 3840× 2748 and (b) a sample screen shot of the GUI
based software tool developed for fingerprint feature annotation.

C. Latent Fingerprint Annotation

Automatic feature extraction from latent and simulta-
neous latent fingerprints is an important research chal-
lenge [33]. One of the major goals of FBI’s Next Gen-
eration Identification (NGI) system is to develop a “lights-
out” (fully automatic) fingerprint matching algorithm. To
evaluate automated algorithms, a large latent fingerprint
database, with manually annotated feature points, is essen-
tial. To facilitate the evaluation of such systems, manually
marked ground truth feature points are provided for latent
and simultaneous latent fingerprints in DB4 and DB5,
respectively. For every simultaneous latent impression from
DB5, three different features are marked: (i) Region Of
Interest (ROI) boundary around every finger impression, (ii)
singular points - core and delta (only those found within the
available impression) on each finger, and (iii) minutiae on
all fingers. Two different annotators1 independently marked
the features, each annotating equal number of images from
DB5. The annotators marked these features at the rate of
2 − 3 subjects per day and completed the annotation task
in 22 days. The annotators worked for about 8 hours a
day with regular breaks to avoid stress. Using the manually
marked ROI, individual fingerprints are cropped from the
simultaneous impressions and provided as latent finger-
prints in DB4. The corresponding features for individual
latent fingerprints are also separated and provided along
with DB4.

To enable simultaneous latent fingerprint annotation and
to ease the process, we have also developed a manual
annotation tool in Matlab. A screenshot of the tool is shown
in Fig. 3(b). The GUI based tool allows the annotator to
mark the singular (reference) points, minutiae, and ROI.
Along with the database and manually annotated feature

1The annotators are not certified latent experts. The authors request
the researchers in the biometrics and forensics community to improve the
annotation and make it publicly available.

points, the tool for manual annotation will also be made
available to the research community. As the manually
annotated features are provided publicly, their accuracy
could be improved by further verification from experts.

D. Availability of Database

All the fingerprints are available in compressed WSQ
(Wavelet Scalar Quantization) format and uncompressed
BMP format. Table III shows the naming convention of
images in different subsets of the MOLF database. sub-
jectID defines the subject number (1-100) while captureID
defines the capture session instance number (1-4) where
1 and 2 belong to the first session, while 3 and 4 belong
to the second session. fingerID defines the captured finger
number (1-10) with 1-5 from right thumb to right little
finger and 6-10 from left thumb to left little finger. handID
defines the slap fingerprint capture ID where 1 denotes
the right four fingers, 2 denotes the left four finger, and 3
denotes the two thumbs. handCode defines which hand the
simultaneous latent is captured from (L, R), and instanceID
is the particular instance of capture of the impression where
1-4 belongs to first session and 5-8 belongs to second
session. The total size of the database in WSQ format is
600 MB and in uncompressed BMP format is 18.2 GB.
The database is made available for research purpose at:
http://research.iiitd.edu.in/groups/iab/molf.html

TABLE III: The nomenclature followed for the five subsets
of the MOLF database.

Database Image Nomenclature
DB1 subjectID captureID fingerID
DB2 subjectID captureID fingerID
DB3 subjectID captureID handID
DB3 A subjectID captureID fingerID
DB4 subjectID handCode instanceID fingerID
DB5 subjectID handID instanceID
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III. RESEARCH APPLICATIONS OF THE DATABASE

The MOLF database provides an opportunity to study
multiple challenging problems related to fingerprint recog-
nition. Major applications and new research challenges
that can be addressed using the database are discussed as
follows:

∙ Intersensor fingerprint matching: DB1, DB2, and
DB3 A contain images captured from three different
live-scan fingerprint sensors. By having one of the
subsets as a gallery and any other as a probe, the per-
formance of a fingerprint matcher can be evaluated for
sensor interoperability. This also represents a practical
scenario where the gallery and probe images are not
captured using the same sensor.

∙ Latent fingerprint feature extraction and matching:
Forensic applications require matching latent finger-
print with live-scan fingerprints [33]. Extracting reli-
able features from latent fingerprints is a challenging
task [34]. Given the ground truth minutiae annotations,
the performance of a minutiae extraction algorithm
can be evaluated with good confidence. Also, with
an exemplar gallery set (any one of DB1, DB2, or
DB3 A) and latent probe set (DB4), the performance
of a latent fingerprint matching system can be ana-
lyzed.

∙ Latent to latent fingerprint matching: The DB4 subset
can be used for evaluating the performance of a latent
to latent fingerprint matcher for crime scene linking
applications [31]. Since the latent prints in DB4
consist of multiple instances of the same finger, both
gallery and probe can be formed using latent prints in
DB4.

∙ Simultaneous latent fingerprint matching: The DB5
subset can be used for matching simultaneous latent
fingerprints [9], [35]. Simultaneous latent fingerprints
in DB5 can be matched with live-scan dap fingerprints
in DB1, DB2, or DB3 A, and slap fingerprints in
DB3 to evaluate the performance of the matcher.

∙ Simultaneous latent fingerprint segmentation: As the
manual segmentation results for simultaneous latent
fingerprints in DB5 are provided, the ground truth
can be used to assess the proficiency of automatic
segmentation algorithms.

IV. EXPERIMENTAL EVALUATION FOR BASELINE
RESULTS

To establish the baseline performance on the MOLF
database, several experiments are performed. These experi-
ments are designed to demonstrate the challenges associated
with the proposed database and to highlight its usage. The
baseline results for livescan fingerprint experiments are
computed using two fingerprint matching algorithms: NBIS
(NIST Biometric Imaging Software) [32] and VeriFin-
ger [36]. NBIS is an open source minutiae based matching
algorithm developed by NIST whereas VeriFinger is a low
cost proprietary software by Neurotechnology.

Latent fingerprint matching is an open research prob-
lem that the community is attempting to address. It is
important to note that there is no standard latent fingerprint
matching Software Development Kit (SDK) or commercial
system available in the public domain, using which baseline
performance can be established. In literature, we have
observed that local Minutiae Cylinder Code (MCC) [37],
[38] description for manually marked minutiae provides
state-of-the-art results [39]. Therefore, MCC descriptors
are utilized for establishing baseline results on the latent
fingerprint dataset.

First, a NFIQ-based [40] analysis is performed to un-
derstand the quality distributions of different subsets of the
databases. Thereafter, three different sets of experiments are
performed to establish the baseline in different application
scenarios. The first experiment (Experiment I) evaluates the
performance of optical scanner fingerprints while the other
two experiments (Experiment II and Experiment III) pertain
to latent fingerprint matching. For Experiment I, both
identification and verification experiments are performed
and the results are reported using the Cumulative Match
Characteristics (CMC) curve and the Receiver Operating
Characteristics (ROC) curve, respectively. For Experiment I
and Experiment II, identification experiments are performed
and the results are reported in terms of the CMC curve.
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Fig. 4: NFIQ quality score distribution of (a) DB1 (Lu-
midigm) images, (b) DB2 (Secugen) images, (c) DB3 A
(CrossMatch) images, and (d) DB4 (latent) images. In
NFIQ measure, 1 denotes the best quality score while 5
denotes the worst.

A. Quality Analysis

Quality of all the fingerprints captured is analyzed using
NFIQ (NBIS Fingerprint Image Quality) [40]. It is an open
source minutiae-based quality extraction algorithm that
provides a quality value {1, 2, 3, 4, 5}, with 1 representing
the best quality and 5 the worst. NFIQ quality distribution
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(a) (b) (c)

Fig. 5: Sample images showing quality variations across
the three sensors (a) Secugen Hamster-IV, (b) CrossMatch
L-Scan Patrol, and (c) Lumidigm Venus. It can be observed
that some of the images captured using Secugen Hamster-
IV have poor capture quality because of its unconstrained
capture mode.

of DB1, DB2, DB3 A, and DB4 are shown in Fig. 4.
In live-scan fingerprints, it can be observed that the images
from DB1 (Lumidigm) have the best quality images high-
lighting the robustness of multi-spectral images. Lumidigm
Venus sensor captures the fingerprint in multiple spectrums
and while fusing them, enhances the image quality. Also,
CrossMatch L-Scan Patrol has an in-built quality control
mechanism and captures only those fingerprints that pass
the quality threshold. However, no such quality constraint
is imposed on Secugen Hamster-IV scanner, thus some
of the fingerprints in DB2 have relatively lower quality
scores, as shown in Fig. 5. As expected, latent fingerprints
in DB4 are poor quality fingerprints with almost 96% of
them having a quality score of 5. However, NFIQ is not
designed to evaluate the quality of latent fingerprints and a
standard (open source) latent fingerprint specific assessment
algorithm is still a research challenge [41]. Similarly, there
is no exclusive quality measure for simultaneous latent
fingerprints (DB5) as well. Therefore, this is a high impact
research challenge which could be addressed using this
database.

B. Sensor Interoperability Analysis

This experiment (termed as Experiment I) is performed
to establish the baseline accuracy with fingerprints captured
in different sessions using multiple sensors. In all three sub-
sets, the first two instances captured during the first session
are taken as gallery and the fingerprints captured during
the second session are used as probe. Thus, the gallery
and probe both contain 2000 images pertaining to 1000

(100× 10) classes. Datasets DB1, DB2, and DB3 A are
used. Since DB3 contains slap fingerprints, it is not used
for this experiment. NBIS [32] and VeriFinger SDK [36]
are then used for feature extraction and matching. Both
identification and verification experiments are performed
and the results are reported in Table IV. The corresponding
CMC curves are shown Fig. 6, Fig. 7 and the ROC curves in
Fig. 8, Fig. 9. The major observations made are as follows:

∙ In Experiment I, VeriFinger is observed to yield higher
accuracies compared to NBIS on all three subsets of
the database. VeriFinger provides same-sensor rank-1
matching accuracy in the range of 96%-98% whereas
NBIS is at least 7% lower in performance.

∙ From Experiment I, it can be observed that matching
performance is high when the gallery and probe fin-
gerprints are captured using the same sensor. However,
when the gallery and probe fingerprints are captured
using different sensors, performance is reduced signif-
icantly for both NBIS and VeriFinger. This highlights
that cross-sensor fingerprint matching, especially when
one sensor is a multi-spectral sensor, is a research
challenge.

∙ Verification experiments performed using NBIS show
the clear impact of cross-sensor matching, having
about 40% more errors than same-sensor matching.
However, VeriFinger reduces the effect of cross-sensor
matching to great extent showing a difference of only
about 3%. Nonetheless, in large scale applications such
as India’s Aadhaar project, 3% is a significant error
and might have a greater impact.

C. Latent Fingerprint Matching

This experiment is performed to establish the base-
line accuracy of latent fingerprint matching. There are
two different experiments performed on latent fingerprint
matching: (i) latent fingerprint matching using manually
annotated minutiae (termed as Experiment II), and (ii) latent
fingerprint matching using automatically extracted minutiae
(termed as Experiment III). In Experiment II, 4400 latent
images in DB4 are used as probes and matched against
three different galleries of DB1, DB2, and DB3 A. The
results are computed with two different approaches (a)
MCC descriptor and (b) Bozorth3 (an open source matcher)
available as a part of NBIS. The results are reported in
Table V and the CMC curves are shown in Fig. 10. In
Experiment III, both MINDTCT (NBIS) and VeriFinger
are used for feature extraction and matching. Latent finger-
prints in DB4 are matched with live-scan fingerprints in
DB1, DB2, and DB3 A, individually. The gallery-probe
splits used are the same as in Experiment II. Two sets
of experiments are performed: (a) using all probe images
in DB4, and (b) after removing the Failed To Process
(FTP) latent fingerprints from DB4. The results of all latent
fingerprint matching using automatically extracted minutiae
are reported in Experiment IIIa. During automatic minutiae
extraction in Experiment IIIa experiments, the minutiae
extractor (MINDTCT or VeriFinger) failed to extract even
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TABLE IV: Rank-1 identification accuracy and equal error rate (for verification) pertaining to experiment I (sensor
interoperability analysis). Equal Error Rate (EER) is the value where false accept rate and false reject rate are equal.

Experiment Algorithm Gallery Images Probe Images Accuracy (%) EER (%)

I: Live-scan fingerprints

NBIS

DB1 (Lumidigm)
DB1 (Lumidigm) 84.90 8.57
DB2 (Secugen) 42.50 10.11
DB3 A (CrossMatch) 43.50 49.67

DB2 (Secugen)
DB1 (Lumidigm) 44.75 10.05
DB2 (Secugen) 91.70 7.85
DB3 A (CrossMatch) 44.70 49.77

DB3 A (CrossMatch)
DB1 (Lumidigm) 42.45 46.74
DB2 (Secugen) 43.95 46.67
DB3 A (CrossMatch) 84.90 08.88

Verifinger

DB1 (Lumidigm)
DB1 (Lumidigm) 96.75 3.16
DB2 (Secugen) 47.40 6.46
DB3 A (CrossMatch) 46.90 6.42

DB2 (Secugen)
DB1 (Lumidigm) 47.35 6.47
DB2 (Secugen) 98.10 3.20
DB3 A (CrossMatch) 46.20 3.94

DB3 A (CrossMatch)
DB1 (Lumidigm) 47.80 6.42
DB2 (Secugen) 43.25 3.94
DB3 A (CrossMatch) 97.05 3.51

TABLE V: Rank-50 identification accuracy of experiment II (latent matching with manually marked minutiae) and
experiment III (latent matching with automatically extracted minutiae).

No. Experiment Algorithm Gallery Images Probe Images Accuracy (%)

MCC
DB1 (Lumidigm)

DB4 (Latent)
7.84

IIa Latent fingerprints (manually annotated minutiae) DB2 (Secugen) 7.28
DB3 A (CrossMatch) 5.88

Bozortℎ3
DB1 (Lumidigm)

DB4 (Latent)
31.86

IIb Latent fingerprints (manually annotated minutiae) DB2 (Secugen) 31.49
DB3 A (CrossMatch) 33.38

NBIS
DB1 (Lumidigm)

DB4 (Latent)
6.06

DB2 (Secugen) 9.09
IIIa Latent fingerprints (automatically DB3 A (CrossMatch) 10.60

extracted minutiae - without FTP)
VeriFinger

DB1 (Lumidigm)
DB4 (Latent)

6.80
DB2 (Secugen) 6.37
DB3 A (CrossMatch) 6.51

NBIS
DB1 (Lumidigm)

DB4 (Latent)
53.03

DB2 (Secugen) 42.42
IIIb Latent fingerprints (automatically DB3 A (CrossMatch) 46.97

extracted minutiae - with FTP)
VeriFinger

DB1 (Lumidigm)
DB4 (Latent)

55.60
DB2 (Secugen) 49.27
DB3 A (CrossMatch) 56.09

one minutia from several latent probes. In Experiment
IIIb, these images are excluded from the probe set and
considered as Failed To Process error [7]. The identification
results are reported in Fig. 10 and Table V. The following
key observations are made:

∙ Experiment IIa exhibits that state-of-the-art MCC de-
scriptor provides very low rank-50 identification ac-
curacy of about 5%-7%, showcasing the challenging
nature of latent fingerprints in this database.

∙ Experiment IIb shows that with manually annotated
minutiae, rank-50 matching accuracy of latent finger-
prints is in the range of 31%-34%. This indicates
that even after manual annotation of minutiae, latent
fingerprint matching has a scope for designing robust
algorithms for minutiae matching in partial finger-
prints.

∙ For Experiment III with DB4 subset, MINDTCT
(NBIS) extracts an average of four minutiae per la-
tent fingerprint, while VeriFinger extracted almost 42
minutiae per latent fingerprint. On the other hand,

an average of 11 minutiae per latent fingerprint are
marked during manual annotation. This indicates that
MINDTCT produces too few minutiae while VeriFin-
ger extracts too many spurious minutiae for latent
fingerprints.

∙ Experiment IIIa shows the results of matching la-
tent and live-scan prints using an automated feature
extractor and matcher. The results obtained are in
the range of 6%-11%, which shows that automated
feature extraction requires a significant amount of
research. Similar to Experiment II, the best matching
performance is obtained for NBIS matcher while using
DB3 A (CrossMatch) as gallery.

∙ After removing the FTP latent fingerprints from DB4,
the performance improves and the accuracy of Exper-
iment IIIb is found to be in the range of 42%-56%. It
is interesting to note that NBIS shows a very high FTP
rate of almost 78% while the FTP rate for VeriFinger
is approximately 17%. However, we would like to
emphasize that VeriFinger and NBIS are not meant
for matching latent fingerprints.
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Fig. 6: CMC curves using NBIS for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and
(c) DB3 A (CrossMatch) as gallery. For all three cases, probe is also varied to study the effect of interoperability.
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Fig. 7: CMC curves using VeriFinger for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery,
and (c) DB3 A (CrossMatch) as gallery. For all three cases, probe is also varied to study the effect of interoperability

∙ NFSEG in NBIS is used to crop slap fingerprints
captured using CrossMatch sensor. A segmentation
accuracy of 98.4% is obtained for segmenting 1200
slap fingerprints into 4000 individual fingerprints, fail-
ing to segment 64 fingerprint images. These images
are further manually cropped for our experiments.
However, NFSEG fails to perform segmentation in
simultaneous fingerprints, segmenting only 134 latent
fingerprints from a total of 4400 prints (with ∼ 3%
accuracy).

Since there is no automatic algorithm for establishing
simultaneity or automatic simultaneous latent fingerprint
matching, baseline results are not computed for DB5.

V. CONCLUSION

Fingerprint matching with live-scan fingerprints is a well
studied research problem. However, the academic research
in latent fingerprints is in nascent stages. The primary
reason for this is the lack of a large publicly available
database. In this research work, we have developed a new
fingerprint database, the Multisensor Optical and Latent
Fingerprint (MOLF) database, that addresses this limitation.
This database also acts as a very important resource to

address diverse challenges in fingerprint recognition in-
cluding interoperability between optical and multi-spectral
sensors, latent to slap fingerprint matching, latent to latent
fingerprint matching, and simultaneous latent fingerprint
matching. It is our assertion that the availability of such
a database will promote further research in the community
and improve the state-of-the-art in these challenging and
important research problems.

VI. ACKNOWLEDGEMENT

The authors would like to thank Brian Powell and Ishan
Nigam for their feedback on this paper. Mayank Vatsa
is partly supported through the DST FAST grant from
the Department of Science and Technology, India. Anush
Sankaran is partly supported by the TCS PhD research
fellowship.

REFERENCES

[1] “Biometrics Research Group Inc..” http://www.biometricupdate.com.
[2] “United States Visitor and Immigrant Status Indicator Technology

program (US-VISIT).” http://www.dhs.gov/obim.
[3] “Aadhaar, Unique Identification Authority of India (UIDAI).” Plan-

ning Commission, Government of India, http://uidai.gov.in/.
[4] “Integrated Automated Fingerprint Identification System.”

http://www.fbi.gov/about-us/cjis/fingerprints biometrics/iafis/iafis.



11

(a) (b) (c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)

G
e
n
u
in

e
 A

c
ce

p
t 
R

a
te

 

 

with DB1 (Lumidigm) ( EER = 8.57 )

with DB2 (SecuGen) ( EER = 10.11 )

with DB3_A (CrossMatch) ( EER = 49.67 )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)

G
e
n
u
in

e
 A

c
ce

p
t 
R

a
te

 

 

with DB1 (Lumidigm) ( EER = 10.05 )

with DB2 (SecuGen) ( EER = 7.85 )

with DB3_A (CrossMatch) ( EER = 49.77 )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)

G
e
n
u
in

e
 A

cc
e
p
t 
R

a
te

 

 

with DB1 (Lumidigm) ( EER = 46.74 )

with DB2 (SecuGen) ( EER = 46.67 )

with DB3_A (CrossMatch) ( EER = 8.88 )

Fig. 8: ROC curves using NBIS for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery, and
(c) DB3 A (CrossMatch) as gallery. For all three cases, probe is also varied to study the effect of interoperability.

(a) (b) (c)

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)

G
e
n
u
in

e
 A

cc
e
p
t 
R

a
te

 

 

with DB1 (Lumidigm) (EER = 3.16 )

with DB2 (SecuGen) (EER = 6.46 )

with DB3_A (CrossMatch) (EER = 6.42 )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)
G

e
n
u
in

e
 A

c
ce

p
t 
R

a
te

 

 

with DB1 (Lumidigm) (EER = 6.42 )

with DB2 (SecuGen) (EER = 3.94 )

with DB3_A (CrossMatch) (EER = 3.51 )

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

False Accept Rate (%)

G
e
n
u
in

e
 A

cc
e
p
t 
R

a
te

 

 

with DB1 (Lumidigm) (EER = 6.47 )

with DB2 (SecuGen) (EER = 3.2 )

with DB3_A (CrossMatch) (EER = 3.94 )

Fig. 9: ROC curves using VeriFinger for experiment I. (a) DB1 (Lumidigm) as gallery, (b) DB2 (Secugen) as gallery,
and (c) DB3 A (CrossMatch) as gallery. For all three cases, probe is also varied to study the effect of interoperability

[5] P. Komarinski and Ed., “Automated Fingerprint Identification Sys-
tems (AFIS),” Elsevier Academic Press, 2001.

[6] H. C. Lee, R. Ramotowski, and R. Gaensslen, Advances in finger-
print technology. CRC press, 2001.

[7] D. Maltoni, D. Maio, A. K. Jain, and S. Prabhakar, Handbook of
fingerprint recognition, 2nd edition. Springer-Verlag, 2009.

[8] A. Sankaran, M. Vatsa, and R. Singh, “Latent fingerprint matching:
A survey,” IEEE Access, vol. 2, pp. 982–1004, 2014.

[9] A. Sankaran, M. Vatsa, and R. Singh, “Hierarchical fusion for
matching simultaneous latent fingerprint,” International Conference
on Biometrics: Theory, Applications and Systems, pp. 377–382,
2012.

[10] F. Alonso-Fernandez, R. Veldhuis, A. Bazen, J. Fierrez-Aguilar, and
J. Ortega-Garcia, “Sensor interoperability and fusion in fingerprint
verification: A case study using minutiae-and ridge-based matchers,”
in International Conference on Control, Automation, Robotics and
Vision, pp. 1–6, 2006.

[11] “Strengthening forensic science in the United States: a path forward,
National Research Council,” 2009.

[12] “Dual resolution images from paired fingerprint cards - NIST special
database 30.” http://www.nist.gov/srd/nistsd30.cfm, 2010.

[13] “Plain and rolled images from paired fingerprint cards - NIST special
database 29.” http://www.nist.gov/srd/nistsd29.htm, 2010.

[14] “Fingerprint Minutiae from Latent and Matching Tenprint Images -
NIST special database 4.” http://www.nist.gov/srd/nistsd4.htm, 2010.

[15] “NIST Supplemental Fingerprint Card Data (SFCD - NIST special
database 10.” http://www.nist.gov/srd/nistsd10.cfm, 2010.

[16] “NIST 8-bit gray scale images of Fingerprint Image Groups (FIGS)
- NIST special database 14 version 2,” 2010.

[17] P. Krishnasamy, S. Belongie, and D. Kriegman, “Wet fingerprint

recognition: Challenges and opportunities,” in International Joint
Conference on Biometrics, pp. 1–7, 2011.

[18] J. Galbally, J. Fierrez, F. Alonso-Fernandez, and M. Martinez-Diaz,
“Evaluation of direct attacks to fingerprint verification systems,”
Telecommunication Systems, vol. 47, no. 3, pp. 243–254, 2011.

[19] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain,
“FVC2000: Fingerprint Verification Competition,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 3,
pp. 402 –412, 2002.

[20] D. Maio, D. Maltoni, R. Cappelli, J. L. Wayman, and A. K.
Jain, “FVC2002: second Fingerprint Verification Competition,” in
International Conference on Pattern Recognition, pp. 811–814, 2002.

[21] D. Maio, D. Maltoni, R. Cappelli, J. Wayman, and A. Jain,
“FVC2004: third Fingerprint Verification Competition,” Biometric
Authentication, pp. 1–5, 2004.

[22] R. Cappelli, M. Ferrara, A. Franco, and D. Maltoni, “Fingerprint Ver-
ification Competition 2006,” Biometric Technology Today, vol. 15,
no. 7, pp. 7–9, 2007.

[23] L. Hornak, A. Ross, S. G. Crihalmeanu, and S. A. Schuckers,
“A protocol for multibiometric data acquisition storage and dis-
semination,” tech. rep., West Virginia University, https://eidr. wvu.
edu/esra/documentdata. eSRA, 2007.

[24] “CASIA fingerprint image database version 5.0.”
http://biometrics.idealtest.org/.

[25] J. Ortega-Garcia, J. Fierrez-Aguilar, D. Simon, J. Gonzalez,
M. Faundez-Zanuy, V. Espinosa, A. Satue, I. Hernaez, J.-J. Igarza,
C. Vivaracho, et al., “MCYT multimodal baseline corpus: a bimodal
biometric database,” IEE Proceedings on Vision, Image and Signal
Processing, vol. 150, no. 6, pp. 395–401, 2003.

[26] “NIST Digital Video of Live-scan Fingerprint Database - NIST
special database 24.” http://www.nist.gov/srd/nistsd24.htm, 2010.



12

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

Rank

A
c
c
u
ra

cy
 (

%
)

 

 

with DB1 (Lumidigm) (31.86 %)

with DB2 (Secugen) (31.49 %)

with DB3_A (CrossMatch) (33.38 %)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Rank

A
cc

u
ra

cy
 (

%
)

 

 

with DB1 (Lumidigm) (53.03 %)

with DB2 (Secugen) (42.42 %)

with DB3_A (CrossMatch) (46.97 %)

0 5 10 15 20 25 30 35 40 45 50
0

10

20

30

40

50

60

Rank

A
cc

u
ra

cy
 (

%
)

 

 

with DB1 (Lumidigm) (55.60 %)

with DB2 (Secugen) (49.27 %)

with DB3_A (CrossMatch) (56.09 %)

(a)

(c) (d)

(b)

0 5 10 15 20 25 30 35 40 45 50
0

1

2

3

4

5

6

7

8

9

10

Rank

A
cc

u
ra

cy
 (

%
)

 

 

with DB1 (Lumidigm) (7.84 %)

with DB2 (SecuGen) (7.28 %)

with DB3 (CrossMatch) (5.88 %)

Fig. 10: CMC curves for experiments IIa, IIb and IIIb. The results are computed with (a) manually marked minutiae
matched using Minutiae Cylinder Code, (b) manually marked features matched using BOZORTH3, (c) NBIS, and (d)
VeriFinger.

[27] A. Kumar and Y. Zhou, “Contactless fingerprint identification using
level zero features,” in Computer Vision and Pattern Recognition
Workshops (CVPRW), pp. 114–119, 2011.

[28] “The Hong Kong Polytechnic University (PolyU) High-Resolution-
Fingerprint (HRF) database.” http://www.comp.polyu.edu.hk/ bio-
metrics/HRF/HRF.htm.

[29] J. Feng, Y. Shi, and J. Zhou, “Robust and efficient algorithms for
separating latent overlapped fingerprints,” IEEE Transactions on
Information Forensics and Security, vol. 7, no. 5, pp. 1498 –1510,
2012.

[30] “Fingerprint Minutiae from Latent and Matching Tenprint Images -
NIST special database 27 (a).” http://www.nist.gov/srd/nistsd27.htm,
2010.

[31] A. Sankaran, T. I. Dhamecha, M. Vatsa, and R. Singh, “On matching
latent to latent fingerprints,” International Joint Conference on
Biometrics, pp. 1–6, 2010.

[32] “NBIS (NIST Biometric Image Software).”
http://www.nist.gov/itl/iad/ig/nbis.cfm.

[33] A. Jain and J. Feng, “Latent fingerprint matching,” IEEE Transac-
tions on Pattern Analysis and Machine Intelligence, vol. 33, no. 1,
pp. 88–100, 2011.

[34] A. Sankaran, P. Pandey, M. Vatsa, and R. Singh, “On latent fin-
gerprint minutiae extraction using stacked denoising sparse autoen-
coders,” in International Joint Conference on Biometrics, pp. 1–7,
2014.

[35] M. Vatsa, R. Singh, A. Noore, and K. Morris, “Simultaneous latent
fingerprint recognition,” Applied Soft Computing, vol. 11, no. 7,
pp. 4260–4266, 2011.

[36] “VeriFinger by NeuroTechnology.”
www.neurotechnology.com/verifinger.html.

[37] R. Cappelli, M. Ferrara, and D. Maltoni, “Minutia cylinder-code: A
new representation and matching technique for fingerprint recogni-
tion,” IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, vol. 32, no. 12, pp. 2128–2141, 2010.

[38] M. Ferrara, D. Maltoni, and R. Cappelli, “Noninvertible minutia
cylinder-code representation,” IEEE Transactions on Information
Forensics and Security, vol. 7, no. 6, pp. 1727–1737, 2012.

[39] A. A. Paulino, J. Feng, and A. K. Jain, “Latent fingerprint matching
using descriptor-based Hough transform,” IEEE Transactions on
Information Forensics and Security, vol. 8, no. 1, pp. 31–45, 2013.

[40] E. Tabassi, C. Wilson, and C. Watson, “NIST Fingerprint Image
Quality (NFIQ),” NIST Report NISTIR7151, 2004.

[41] A. Sankaran, M. Vatsa, and R. Singh, “Automated clarity and quality
assessment for latent fingerprints,” in International Conference on
Biometrics: Theory, Applications and Systems, pp. 1–6, 2013.



13

Anush Sankaran received the B.Tech. degree in
computer science from the Coimbatore Institute
of Technology, Coimbatore, India, in 2010. He
is currently pursuing the Ph.D. degree with the
Indraprastha Institute of Information Technology,
New Delhi, India. His research interests include
deep learning, image processing, and their appli-
cations in biometrics. He was a recipient of the
TCS Ph.D. Research Fellowship from 2010 to
2015, and the Best Poster Awards in the IEEE
BTAS 2013 and the IEEE IJCB 2014.

Mayank Vatsa received the M.S. and Ph.D.
degrees in computer science in 2005 and 2008,
respectively from the West Virginia University,
Morgantown, USA. He is currently an Asso-
ciate Professor and AR Krishnaswamy Faculty
Research Fellow at the Indraprastha Institute
of Information Technology (IIIT) Delhi, India.
He has more than 150 publications in refereed
journals, book chapters, and conferences. His
research has been funded by the UIDAI and
DeitY, Government of India. He is a recipient

of the FAST award by DST, India. His areas of interest are biometrics,
image processing, computer vision, and information fusion. Dr. Vatsa
is a member of the IEEE, Computer Society and the Association for
Computing Machinery. He is the recipient of several best paper and best
poster awards in international conferences. He is also an associate editor
of IEEE Access, area editor of Information Fusion, Elsevier, and IEEE
Biometric Compendium, and served as the PC Co-Chair of ICB 2013 and
IJCB 2014.

Richa Singh received the M.S. and Ph.D. de-
grees in computer science in 2005 and 2008,
respectively from the West Virginia University,
Morgantown, USA. She is currently an Associate
Professor and recipient of the Kusum and Mo-
handas Pai Faculty Research Fellowship at the
Indraprastha Institute of Information Technology
(IIIT) Delhi, India. Her research has been funded
by the UIDAI and DeitY, Government of India.
She is a recipient of the FAST award by DST, In-
dia. Her areas of interest are biometrics, pattern

recognition, and machine learning. She has more than 150 publications in
refereed journals, book chapters, and conferences. She is also an editorial
board member of Information Fusion, Elsevier and EURASIP Journal on
Image and Video Processing, Springer. Dr. Singh is a member of the
CDEFFS, IEEE, Computer Society and the Association for Computing
Machinery. She is a recipient of several best paper and best poster awards
in international conferences.


