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Abstract

Several successful adversarial attacks have demon-
strated the vulnerabilities of deep learning algorithms.
These attacks are detrimental in building deep learning
based dependable AI applications. Therefore, it is imper-
ative to build a defense mechanism to protect the integrity
of deep learning models. In this paper, we present a novel
“defense layer” in a network which aims to block the gen-
eration of adversarial noise and prevents an adversarial at-
tack in black-box and gray-box settings. The parameter-free
defense layer, when applied to any convolutional network,
helps in achieving protection against attacks such as FGSM,
L2, Elastic-Net, and DeepFool. Experiments are performed
with different CNN architectures, including VGG, ResNet,
and DenseNet, on three databases, namely, MNIST, CIFAR-
10, and PaSC. The results showcase the efficacy of the
proposed defense layer without adding any computational
overhead. For example, on the CIFAR-10 database, while
the attack can reduce the accuracy of the ResNet-50 model
to as low as 6.3%, the proposed “defense layer” retains the
original accuracy of 81.32%.

1. Introduction
Modern machine learning algorithms generally uti-

lize deep learning architectures to achieve state-of-the-art
(SOTA) results. However, these algorithms are vulnerable
due to the singularities of deep learning. Szegedy et al. [34]
have shown that the deep learning algorithms misclassify an
input image if some adversarial noise is added. As shown
in Figure 1, the adversarial attacks can “learn” a noise pat-
tern such that when it is embedded in the input image, it can
misclassify the sample with high confidence.

The adversarial examples can be generated in a number
of ways. Researchers have used techniques such as box-
constrained optimization, simple signed gradient addition,
evolutionary algorithms, and minimization of logit layer
representation to fool a healthy system [6, 13, 15, 22, 23].
These attacks highlight the singularities of DNN mod-
els towards unseen data distribution. With advancements
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Figure 1: An illustration of an adversarial attack and pro-
posed defense mechanism. A CNN model (e.g. VGG16)
correctly classifies a clean input as Dog with confidence
value of 99.87%; however, after adding adversarial noise,
the same model classifies it as “Frog’ with a very high con-
fidence of 98.81%. The proposed defense algorithm adds
a pre-processing layer to defend against adversarial pertur-
bations and the CNN model correctly classifies the image
with a confidence of 99.87%. The perturbations here are
magnified 6 times for clarity.

in attack generation algorithms, adversarial samples have
achieved translation, scaling, and rotation invariance [29].
Athalye and Sutskever[3] have shown the existence of 3D
adversarial examples that can fool the DNN models in the
physical world. The adversarial attack can be in the form of
black-box and white-box scenarios. In the black-box case,
the attacker generates adversaries that fool the model with-
out actually having any information about it. In contrast, in
the white-box case, the attacker holds complete information
about the architecture and weights of the model.

As shown in Figure 1 (last row), a defense mechanism
can be incorporated to defend CNN against adversarial at-
tacks. Defense algorithms proposed in the literature can
be classified into three groups: (i) detection, (ii) mitigation
through data manipulation, and (iii) mitigation through net-
work manipulation [14, 37]. Recently, Theagarajan et al.



[35] introduced a theoretical framework that negates the ef-
fects of the adversarial perturbations by levaraging a prob-
abilistic model to project perturbed samples to adversarial-
free zones. Adversarial training [36] retrains an entire DNN
network with clean and adversarial examples with the hope
of increasing robustness towards adversarial examples. Pa-
pernot et al. [26] proposed the modification in the network
so that the gradient magnitude can be reduced. Most of the
existing defense algorithms have potential limitations and
fail to defend within their claimed threat model assumptions
[2, 5, 6, 10]. A detailed survey of existing adversarial de-
fense algorithms can be found in [27, 38].

Studies to find the cause of adversarial effects have been
performed; however, no substantial results have been es-
tablished so far [8, 9, 22, 30]. Some researchers observed
that the linearity [13, 21] of DNN models in the input space
could be a reason for adversarial effects. The other school of
thought believes that large singular values of internal layer’s
weights [9] make the models vulnerable to slight modifica-
tion. Some believe that there might be a potential drawback
in the DNN architecture, and these architectural flaws or
flaws in the learning of networks might have opened the
doors for adversarial examples.

In this research, we propose the reconfiguration of the
CNN model through a defensive layer that “blocks” the ad-
versary generation process. The proposed concept of de-
fense layer, termed as ‘DNDNet’ (aka Do not disturb Net-
work), is shown in Figure 2. In the existing defense al-
gorithms either the external classifier is trained or CNN
model is retrained with adversarial examples or the network
is modified with an increased parameter for adversarial ro-
bustness [1, 11, 20, 25, 26, 32, 36]. However, the proposed
model modifies the architecture of conventional CNN mod-
els without any “trainable parameters”. This makes the
proposed model computationally efficient with the advan-
tage of adversarial robustness in a ‘gray-box’ and ‘black-
box’1 settings.

2. CNN and Adversarial Vulnerability

Convolutional neural networks learn by training the
weight parameters on (preferably) large databases via gra-
dient descent. For the specific purpose of image classifica-
tion, the convolution layers are followed by a dense layer
(usually a softmax classifier), which has neurons equal to
the number of classes. In the case of a softmax classifier,
the output of a neuron j from the last dense layer gives the
probability of an image belonging to class j; P (y = j | I).
The weight update rule of CNNs can be defined using the
following equations:

1The scenarios where the attacker has limited knowledge or no knowl-
edge of the target model and defense mechanism deployed for its security
is referred to as gray-box and black-box setting, respectively.

υi+1 = c1 · υi − c2 · ε · ωi − ε · {|
∂L

∂ω
|ωi}Di

ωi+1 = ωi + υi+1 (1)

where, c1 and c2 are the hyperparameters of the model. i,
υ, and ε denote the iteration, momentum, and learning rate
ingredients of the conventional CNN model. {·} is the av-
erage of the gradient of the loss function over batch size
D. Using a train set, back propagation algorithm helps
to train a model M . This model outputs the probability
vector values P for a particular image I belonging to the
classes present in the test set. The model assigns the im-
age I to the class j due to the maximum value in the vector
P = [p1, p2, ··, pj , · · pn] at the jth location. Suppose, c
is the true class label of I; an adversarial attack aims to
fool the model such that the predicted label is not c. The
minimal adversarial noise N is added into the image with
the conditions of two folds (i) visual imperceptibility and
(ii) decrease in the probability value of the true class. To
find the best adversarial noise N , following generalized op-
timization is solved:

minimizeD ||N ||
p = f(I +N)

max(p1, p2, ··, pn − pc) > 0

(2)

such that Min ≤ I + N ≤ Max, where Min and Max
represent the lowest and highest intensity value of an image,
respectively. f is the classification function resulting prob-
ability values from the model. The adversarial optimization
formulation for simplicity can be written as follows:

minimizeD ||N ||+ ε · CE(p, pa)

p = f(I +N)

Min ≤ I +N ≤Max

(3)

where, pa denotes the probability of the class label in
which the adversarial images need to be classified, ε is
the constant value, and CE is the cross-entropy loss of the
model.

In many adversarial generation algorithms, the gradient
of the network is used to lead the model to misclassifica-
tion. For example, in the case of a fast gradient sign method
(FGSM) attack [13], the signed gradient is added back in the
input image to find the adversarial examples. This increases
the error function leading to probable chances of misclassi-
fication. The calculation of perturbation vector p can be
defined as: p = ε · sign(∇IJ(I)), where, ε is the confi-
dence of the attack and J is the classification loss function.
∇ represents the gradient of the loss function J with respect
to input I .



Input Image
First Convolutional
Layer with 6 filters

First Pooling Layer
Second Convolutional
Layer with 10 filters

Second Pooling
Layer

Fully Connected
Layer 1

Logits Layer

Defence Layer New Input 

Figure 2: Architecture of the proposed convolutional neural network with defense layer, i.e., DNDNet. Here for illustration
purposes we have depicted the concept of defense layer with a shallow network, but as shown in experiments, defense layer
can be added to ‘any’ CNN models such as VGG, ResNet, and DenseNet.

Carlini and Wagner [6] formulate the fooling system as
a trade-off between two terms. The first term minimizes
the L2 norm between the original and perturbed image, and
the second term makes sure that the perturbed image gets
classified either into the target class or into any class other
than the actual class. The formulation of C&W L2 attack is
defined as:

minimize||1
2
(tanh (I + p) + 1)− I||22+

c · f(1
2
(tanh (I + p) + 1))

(4)

where,

f(I) = max(max{Z(I)i : i 6= t} − Z(I)t,−κ)

is the maximum score corresponding to the non-target class,
t is the target class, and Z is the logits layer representation.
κ is the parameter that controls the confidence of misclassi-
fication and p is the introduced perturbation that minimizes
the above expression.

Inspired by the learning of adversarial examples, in this
research, the aim is to find a “defense layer”, which can
counter the adversarial learning process in ‘gray-box’ and
‘black-box’ settings. The central concept of the proposed
defense layer is to utilize gradient flow to protect against
adversarial attacks.

3. DNDNet: Proposed Defense Layer
Krotov and Hopfield [19] argued that changing the non-

linearity might increase a model’s robustness. Similarly, Pa-
pernot et al. [26] hypothesized that the distillation of deep
networks into smaller ones could decrease the sensitivity
towards adversarial examples. However, Carlini and Wag-
ner [5] show that distillation based defense is ineffective
hence dismissing the claim towards network size on adver-
sarial examples. Inspired by these findings, in this research,
we propose a new architecture that shows adversarial ro-
bustness over various existing adversarial attacks. DND-
Net leverages the fact that a majority of successful adver-
sarial attacks require the knowledge of the flow of gradients

within the network to produce useful perturbations. The
proposed defense layer conceals the gradient flow without
any computational overheads and performance degradation.
For simplicity, the proposed defense layer is explained with
respect to how the gradient is used to generate an attack.

The learning rule of a network f(I, θ) with input I and
trainable parameters θ can be defined as:

θ := θ − ∂f(I, θ)

∂θ

where, ∂ represents the partial derivative with respect to
the model parameters θ. If the partial derivative of the loss
function with respect to model parameter is known then the
partial derivative with respect to the input can be defined
using chain rule as:

∂f(I, θ)

∂I
=
∂f(I, θ)

∂θ
· ∂θ
∂I

This information, although superfluous for model pa-
rameter learning, is crucial for conducting a successful
gradient-based adversarial attack. Gradient-based attack
generation algorithms monitor the effects of the input im-
age on the target network. They do it by either explicitly
calculating the rate of change of the model’s loss function
with respect to the inputs or by implicitly calculating the
rate of change of their proposed formulation (which indi-
rectly depends on the model’s output) with respect to the
input image. The algorithms use this information to guide
the adversarial samples for either misclassification to a ran-
dom or into target class. This shows how small information
leaks like this can prove to be fatal for an otherwise healthy
and developed DNN.

3.1. Architecture Details

As shown in Figure 3, in this paper, we propose a de-
fense layer L that calculates the kth root (for example ‘cube
root’) of the difference of inputs I and a constant a, as a ap-
proaches I . However, the chosen value of k must be greater
than 1. Mathematically, the proposed defense layer can be
defined as follows:
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Figure 3: Illustrating the process of addition of new defense
layer in the network.

L(I) = (I − a) 1
k |a→I (5)

dL(I)

dx
=

1

k
· 1

(I − a) k−1
k |a→I

(6)

Consider a single layer network with trainable weights
and bias as w and b, respectively and activation function φ.
From figure 3 output of the network is:

f(I, w, b) = φ(w · (I + L(I)) + b)

df(I, w, b)

dI
= φ

′
(w ·(I+L(I))+b) ·(w+w · dL(I)

dI
) (7)

Equation 6 suggests that dL(I)
dI → ∞. This renders

equation 7 not defined. The implication of undefined na-
ture shows no generation of adversarial noise to fool the
inbuilt defense layer models. The proposed defense layer
has “no trainable parameters”, and is successfully able
to block the generation of adversarial noise. The proposed
CNN model with defense layer is termed as Do not disturb
CNN network (‘DNDNet’).

For any general network, the forward pass output of the
first trainable layer O1, given that the trainable weights and
bias are w and b, respectively and the activation function
used is φ is given by:

O1 = φ(w · (I + L(I)) + b) (8)

The above equation using the notation of proposed layer
L defined in equation 6 where the constant (a) equals to the
input image (I), can be reduced to the following form:

O1 = φ(w · I + b) (9)

which is essentially the forward pass learning rule of a
typical DNN.

Backward pass in the proposed network remains iden-
tical to a typical DNN. Here we present the computation of
gradients at layer 1. Let the cost function of the network be
C, the pre-activation output of layer 1 be z1 and the weights
and bias in the first and the second layer be w1, b1, w2 and
b2, respectively. At layer 1, we have

∂C

∂w1
=

∂C

∂φ(z1)
· ∂φ(z1)

∂z1
· ∂z1
∂w1

(10)

and
∂C

∂b1
=

∂C

∂φ(z1)
· ∂φ(z1)

∂z1
· ∂z1
∂b1

(11)

where,
z1 = w1 · (I + L(I)) + b

The first two terms of the gradient are known by previous
iterations of backpropagation and

∂z1
∂w1

= I + L(I)→ I (12)

∂z1
∂b1

= 1 (13)

This shows that the learning rule of the backward pass
does not change as well. Hence, the basic functionality of
the proposed defended CNN model i.e. classification does
not get affected.

4. Experimental setup
We perform experiments to show the effectiveness of the

proposed defense layer against various attack generation al-
gorithms on different state of the art models.

4.1. Databases and CNN Models

Databases: The experiments are performed on MNIST2,
CIFAR10 [18] and Point and Shoot Cameras (PaSC) [4]
databases. The MNIST database contains the handwritten
digits of values ranging from 0-9. CIFAR10 is a popular
database of object recognition in color space. The database
has images of 10 different objects classes. The MNIST and
CIFAR-10 database contains 60, 000 and 50, 000 training
images, respectively. Both the databases contain 10, 000
testing images. The databases such as MNIST and CI-
FAR10 contain low-resolution images of digits and objects.
To further demonstrate the performance, experiments with
high-resolution PaSC face database is also performed. The
faces images vary in terms of resolutions, background, il-
lumination, and expression. The database contains 3, 224
images of resolution 224 × 224 from 293 individuals. We
divide the PaSC database into a train set, which consists
of 80% images of each person, and the test set consists of
the remaining 20% images. Each image in the test set is
matched with the train set to form the face identification
score (1:N matching) matrix.
Models: The effect of the proposed defense layer is ex-
perimented with five existing state-of-the-art architectures
including VGG16, VGG19 [31], ResNet50 [16], Incep-
tionV3 [33], and DenseNet121 [17] on several adversarial

2http://yann.lecun.com/exdb/mnist/



attacks. Other than VGG models, all models are trained
from scratch. The performance of both undefended (i.e.,
conventional) and defended model is demonstrated with ob-
ject classification accuracy and robustness under adversarial
attacks.
Attack Generation Algorithms: We test the proposed de-
fense layer against FGSM [13], C&W L2 [6], PGD [22],
DeepFool [24], and Elastic-Net (EAD) [7] attacks. Details
of these attacks are given in the respective papers.

4.2. Implementation Details

To setup our experiments, we make a custom layer that
implements Equation 5 and places it in conjunction with
the input layer. The stochastic gradient descent rule with
a constant learning rate of 7 × 10−5 is used to learn the
model parameters. The training of the models is stopped af-
ter the nature of validation loss changes to non-decreasing.
In this research, we have used ‘cube’ root in the defense
layer; however, similar performance is observed for other
root values as well.

For the FGSM attack, we fix the attack step size param-
eter (ε) to 0.1. For C&W L2 attack, the default parameter
setting is used with a number of binary search steps equal
to 9, initial parameter constant set to 0.001, and learning
rate set to 0.01. We perform the C&W attack for 5000 it-
erations with batch size set to 20. Similar to [6], we use
Adam optimizer for perturbation optimization. The existing
attack algorithms are implemented using SmartBox adver-
sarial toolbox [12].

5. Experimental Results and Analysis
First, the results of object/digit classification and face

identification experiments are reported to showcase that the
addition of the defense layer does not affect the generic
nature of CNN models. Later, the adversarial robustness
against the gradient and strong optimization-based attack is
reported.

5.1. Classification Performance

The classification performance on MNIST, CIFAR10,
and face PaSC database are computed with state-of-the-art
CNN models. In this experiment, we first trained the con-
ventional models and then matched their performance with
new models with the proposed defense layer. Figures 4, 5,
and 6 show the result of each classification task with con-
ventional and defended CNN models. It is evident from the
results that the new proposed defense layer has no signif-
icant ‘negative’ impact on the classification nature of the
conventional models (as also concluded from section 3).
The analysis of the results can be summarized using the fol-
lowing points:

1. As defined in section 3, the learning of the CNN mod-

Figure 4: MNIST digit classification performance of the
conventional and proposed defense layered CNN models.
LD denoted the layer defended version of the network.

Figure 5: CIFAR10 object classification performance of the
conventional and proposed defense layered CNN models.
LD denoted the layer defended version of the network.

Figure 6: PaSC face identification performance of the con-
ventional and proposed defense layered CNN models. LD
denoted the layer defended version of the network.

els with the addition of the new layer is not affected. It
is also gets reflected in the classification performance,
which shows that the models either retain the accuracy
or gets improved.

2. On the MNIST database, the conventional VGG16
model yields 98.17% accuracy, whereas the proposed



defended model shows a slight drop in accuracy with a
value of 97.59%.

3. Similarly, when the object recognition task on the
CIFAR10 database is performed using the ResNet50
model, the highest classification accuracy of 81.32%
is achieved. This shows that the defended models are
able to retain the classification performance with re-
spect to base models.

4. Conventional and defended DenseNet models show
the face identification accuracy of 64.98% and
65.13%, respectively. The proposed model is not
only able to retain the performance on low-resolution
databases such as MNIST and CIFAR10 but also on
the high-resolution images of PaSC.

5. Even in the case of the conventional ResNet50 model,
the defended model shows similar performance with
a slight improvement of 1.15%, 0.08%, and 0.16%
in digit recognition, object classification, and face
identification performance, respectively. Similar per-
formance improvement has been noticed against the
DenseNet model for digit and face identification ex-
periments.

In general, it is our observation that the object recogni-
tion accuracy of the conventional and defended networks
are within the same range. The object recognition ex-
periments across each state-of-the-art (SOTA) CNN model
show that modification through defense does not affect the
recognition performance. Therefore, the proposed model
can be utilized for object recognition with high adversarial
robustness.

5.2. Adversarial Robustness

In this paper, several attack generation algorithms imple-
mented in SmartBox [12] are utilized to test the robustness.
Based on the way the algorithms are wired, different algo-
rithms react differently to the proposed defended network:

• FGSM: The results before and after the defense-
related to FGSM adversarial attack are listed in Table
1. In all cases, the proposed algorithm is able to defend
with very high accuracy.

• Optimization Attacks: While C&W L2 [6] and
Elastic-Net (EAD) [7] produces black images, FGSM
[13] returns the images containing no adversarial in-
formation. For conventional CNN, the C&W attack is
successfully able to reduce the accuracy to 0%; how-
ever, for the defended network, they can be discarded
before processing. Therefore, with respect to the L2

and EAD attack, no drop in recognition accuracy is

Table 1: Identification accuracy (%) on the MNIST, CI-
FAR10, and PASC databases under the FGSM attack, with
and without the proposed defense layer.

CNN Model MNIST CIFAR-10 PaSC
VGG-16 (attacked) 0.2 4.3 0.0
VGG-16 (with defense) 98.17 77.2 65.18
ResNet50 (attacked) 1.3 6.3 0.1
ResNet50 (with defense) 96.37 81.32 60.27
DenseNet121 (attacked) 0.9 1.40 0.0
DenseNet121 (with defense) 97.86 78.63 65.13

reported. Similar to previous attacks, the proposed de-
fense layer is successfully able to block the adversarial
nature of the DeepFool adversary [24].

Figure 7 shows the optimization procedure of the C&W
L2 attack before and after the addition of the defense layer
and Figure 8 shows the distribution of added perturbations
by FGSM before and after addition of the proposed defense
layer. Without the defense layer, optimization of C&W
L2 attack proceeds as expected; however, due to blocking
the adversarial gradients by the defense layer, the optimiza-
tion procedure does not proceed further. Similarly, for the
FGSM attack, the perturbations calculated using the origi-
nal network can be represented as a standard Gaussian dis-
tribution, but since there are no perturbations generated for
a network with the defense layer, they can be at best de-
scribed using a Dirac delta function.

The accuracy of the VGG16 model on the generated
adversarial images from the same network drops to 0.2%,
4.3%, and 0.0% on MNIST, CIFAR10, and PaSC database,
respectively. The defended models regain the classification
accuracy similar to original images on each database. Sim-
ilar performance is observed across other secured and con-
ventional CNN models against each adversarial attack.

Similar to recent adversarial defense, including Defense
GAN [28], the proposed defended model is tested against
recent projective gradient descent (PGD) attack [22]. The
attack is performed using default parameters provided with
the paper. For example, on the CIFAR10 database, when
conventional VGG16 is used for experimentation, the PGD
adversarial examples accuracy drops to 0.0%. The pro-
posed defended model improves the accuracy to 51.4%.
The slight drop in efficiency is observed because of some
random noise added initially in the input images itself.

Other Architectural Modifications: Other than the de-
fense layer L defined in equation 6, we have also explored
other configuration as the defense layer and found the ro-
bustness against existing attacks. The layer which we also
found effective with addition to input layer is defined as the
addition of Gaussian (Gaussian(I)) and mean filtered image
(Mean(I)) with strength parameters c1 and c2. The revised



Figure 7: L2 attack optimization for conventional CNN (left) and DNDNet (right). By blocking the gradients, the attack
algorithm does not get a signal and hence it cannot proceed with the optimization process.

Figure 8: The FGSM perturbation generated using Conventional CNN and DNDNet (i.e., with defense layer). With the
addition of the proposed defense layer, the attack fails to produce perturbations.

layer can be written as:

L(I) + c1 ×Gaussian(I) + c2 ×Mean(I)

where, L(I) is the proposed defense layer defined in equa-
tion 5. To compensate for the addition of image data in the
defense layer, the feedback is weighed down to 1− c1 − c2
times I . The layer with different input pre-processing helps
in reducing the effect of noise present in the input image,
such as in the case of PGD attack. In our experiments, we
have observed c1=c2=0.1.

In the present scenario with the gray-box threat model,
to the best of our knowledge, none of the existing gradient-
based adversarial attack algorithms is able to generate the
adversarial noise from the proposed ‘DNDNet’.

6. Conclusion
The existence of adversaries is a significant problem for

deep learning algorithms. Existing defense systems either
require additional time, computational resources, or knowl-
edge of the system. This research proposes a solution for
adversarial defense by reconfiguring CNN. We have devel-
oped a defense layer with no “trainable parameters”,

which successfully shields the target network against the
gradient and robust optimization-based adversarial attacks.
The effectiveness of the proposed algorithm is demonstrated
on three databases using multiple networks such as VGG,
ResNet, and DenseNet, and attacks. We observe that the
addition of the new layer does not have any time-based or
precision-based performance costs. The proposed solution
is designed for a black-box and gray-box threat models. In
the future, we intend to extend this work and provide a solu-
tion for a white-box threat model where the attacker has the
knowledge of the target model and the defense mechanism.
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