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Abstract. Frequency spectrum has played a significant role in learn-
ing unique and discriminating features for object recognition. Both low
and high frequency information present in images have been extracted
and learnt by a host of representation learning techniques, including
deep learning. Inspired by this observation, we introduce a novel class
of adversarial attacks, namely ‘WaveTransform’, that creates adversar-
ial noise corresponding to low-frequency and high-frequency subbands,
separately (or in combination). The frequency subbands are analyzed
using wavelet decomposition; the subbands are corrupted and then used
to construct an adversarial example. Experiments are performed using
multiple databases and CNN models to establish the effectiveness of the
proposed WaveTransform attack and analyze the importance of a partic-
ular frequency component. The robustness of the proposed attack is also
evaluated through its transferability and resiliency against a recent ad-
versarial defense algorithm. Experiments show that the proposed attack
is effective against the defense algorithm and is also transferable across
CNNs.

Keywords: Transformed Domain Attacks, Resiliency, Transferability,
Wavelet, CNN, and Object Recognition

1 Introduction

Convolutional neural networks (CNNs) for image classification are known to uti-
lize both high and low frequency information [32], [39]. Goodfellow et al. [20]
show that the CNN activations are sensitive towards high-frequency information
present in an image. It is also shown that some neurons are sensitive towards
the upper right stroke, while some are activated for the lower edge. Further-
more, Geirhos et al. [15] have shown that the CNN trained on ImageNet [11] are
highly biased towards texture (high-frequency) and shape of the object (low-
frequency). We hypothesize that if an attacker can manipulate the frequency
information presented in an image, it can fool CNN architectures as well. With
this motivation, we propose a novel method of adversarial example generation
that utilizes the low-frequency and high-frequency information individually or
in combination. To find the texture and shape information, a wavelet-based de-
composition is an ideal choice which yields multi-resolution high-frequency and
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Fig. 1. Fooling of CNN model using the proposed attack on a broad range of databases
including object recognition (Tiny ImageNet [45], ImageNet [11], CIFAR-10 [28]), face
identification (Multi-PIE [23]), and Fashion data classification (Fashion-MNIST [42]).
In each image set, the first image is the clean image, the second is an adversarial image,
and the last is the adversarial noise. It can be clearly observed that the proposed attack
is able to fool the networks with high confidence score.

low-frequency images. Therefore, the proposed method incorporates wavelet de-
composition to obtain multiple high and low-frequency images and adversarial
noise is added to individual or combined wavelet components through gradient
descent learning to generate an adversarial example. Since almost every CNN
learns these kinds of features; therefore, the attack generated by perturbing the
high frequency (edge) information makes it easily transferable to different net-
works. In brief, the key highlights of this research are:

– a novel class of adversarial example generation is proposed by decomposing
the image into low-frequency and high-frequency information via wavelet
transform;

– extensive experiments concerning multiple databases including ImageNet
[11], CIFAR-10 [28], and Tiny ImageNet [45],

– multiple CNN models including ResNet [24] and DenseNet [25] are used to
showcase the effectiveness of the proposed WaveTransform;

– the robustness of the proposed attack is evaluated against a recent complex
adversarial defense.

Fig. 1 shows the effectiveness of the proposed attack on multiple databases
covering color and gray-scale object images to face images. The proposed at-
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tack can fool the network trained on each data type with high confidence. For
example, on the color object image (the first image of the top row), the model
predicts the correct class (i.e., 0) with confidence 0.99, while, after the attack,
the network misclassifies it to the wrong category (i.e., 83) with confidence 1.00.

2 Related Work

Adversarial generation algorithms presented in the literature can be divided into
the following categories: (i) gradient-based, (ii) optimization-based, (iii) decision
boundary-based, and (iv) universal perturbation.

Goodfellow et al. [20] proposed a fast attack method that calculated the gra-
dient of the image concerning the final output and pushed the image pixels in
the direction opposite to the sign of the gradient. The adversarial noise vec-
tor can be defined as: η = εsign(OxJθ(x, l)), where ε controls the magnitude
of perturbation, Ox represents the gradient of image x with respect to network
parameters θ. The perturbation vector η is added in the image to generate the
adversarial image. The above process is applied for a single step, which is less
effective and can easily be defended [30]. Therefore, several researchers have
proposed the variant where the noise is added iteratively [29], [31], and with
momentum [13]. Moosavi-Dezfooli et al. [34] have proposed a method that can
transfer clean images from their decision boundaries to some other, belonging
to a different class. The attacks are performed iteratively using a linear approx-
imation of the non-linear decision boundary. Carlini and Wagner [8] presented
attacks by restricting the L2 norm of an adversarial image. The other variant,
such as L∞ and L1, are also proposed; however, they are found to be less ef-
fective as compared to L2. Similar to L2 norm minimization, Chen et al. [10]
have proposed the elastic norm optimization attack, which is the combination
of L2 and L1 norm. Goswami et al. [21,22] presented several black-box attacks
to fool the state-of-the-art face recognition algorithms. Later, both adversarial
examples detection and mitigation algorithms are also presented in the paper.
Agarwal et al. [3] shown the use of filtering operations in generating adversarial
noise in a network-agnostic manner.

Other popular adversarial generation algorithms are based on generative net-
works [41], and EoT [5]. The application of an adversarial attack is not restricted
to 2D object recognition but also explored for semantic segmentation [43], 3D
recognition [40], audio classification [9], text recognition [14], and reinforcement
learning [6]. Goel et al. [19] have developed an adversarial toolbox for the gener-
ation of adversarial perturbations and defense against them. The details of the
existing algorithms can be found in the survey papers presented by Yuan et al.
[47] and Singh et al. [37].

3 Proposed WaveTransform Attack Algorithm

Adversarial attacks generally modify the image in the spatial domain. In this
research, we propose a new class of attack termed as WaveTransform where
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Fig. 2. Schematic diagram of the proposed ‘WaveTransform’ adversarial attack algo-
rithm. DWT and IDWT are the forwards and inverse discrete wavelet decomposition.
The noise is added to the desired wavelet subband and optimized to increase the loss
of the network. LL represents the low pass subband. LH, HL, and HH represent the
high-pass subbands in horizontal, vertical, and diagonal directions.

the image is first transformed into the frequency (scale) domain using wavelet
decomposition. A digital image is composed of low frequency and high-frequency
information, where the role of each frequency component might be different in
its spatial representation. With this observation, high and low-frequency bands
are perturbed such that the reconstructed image is an adversarial example but
visually close to the clean example. The proposed attack can be defined using
the following equation:

min α‖Iorg − Ipert‖∞ + L(F( Ipert) , t) (1)

where, Iorg, Ipert ∈ [ 0, 1] represent the clean and perturbed images, respectively.
α is the loss term trade-off parameter, L is the classification loss function of
the target CNN classifier F , and t is the target label. The aim is to find an
adversarial image Ipert that maximizes the classification error for a target label
while keeping the noise imperceptible to the human observer.

A discrete wavelet transform (DWT ) is applied on Iorg to obtain the LL,LH,
HL, and HH subbands, using low pass and high pass filters. The LL band con-
tains low frequency information. Whereas LH, HL, and HH contain the high
frequency information in horizontal, vertical, and diagonal directions, respec-
tively. These subbands are then modified by taking a step in the direction of
the sign of the gradient of the subbands concerning the final output vector. The
image is then reconstructed with the modified subbands using an inverse dis-
crete wavelet transform (IDWT ), to obtain the desired image Ipert. As shown
in Fig. 2, the attack is performed iteratively to find an adversarial image with
minimal distortion. It is ensured that Ipert remains a valid image after updat-
ing its wavelet subbands by projecting the image back onto a L∞ ball of valid
pixel values such that Ipert ∈ [ 0, 1] . If the noise that can be added or removed,
is already limited to ε, we add another clipping operation limiting pixel values
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Algorithm 1: Subband Updating (Proposed Adversarial Attack)

Initialization:
– Let the selected subbands be expressed by θ, for a particular image Ij .
– Let the perturbed image be I

′
j ← IDWT ( θ)

– Let lj be the ground truth label of the image.
– Let r be the number of random restarts taken, k be the number of steps to

optimize the objective function
– Let γ be the step size of the update and let n be the minibatch size.
– Let the CNN model be expressed as F .
– Let ε be the maximum amount of noise that may be added to I

′
j , such that

I
′
j ∈ [ Ij − ε, Ij + ε]

for restarts in r do

Initialize I
′
j by adding random noise to Ij from range [−ε, ε]

for steps in k do

Obtain subbands (θ) by decomposing I
′
j .

θlow, θhigh ← DWT ( I
′
j)

Update subband(s) to maximize classification error by gradient ascent
using the term:

θ ← θ + γ( sign(∇θL(F( IDWT ( θlow, θhigh) ) , lj) )

x← IDWT ( θlow, θhigh)

Project x into valid range by clipping pixels and update I
′
j ;

I
′
j ← x;

if F(x) 6= lj then

Return I
′
j

Return I
′
j

such that Ipert ∈ [ Iorg − ε, Iorg + ε] . Since, in this setting, there is no need
to minimize the added noise explicitly, we also fix the trade-off parameter to
α = 0. Based on this, we propose our main method called Subband Updating,
where particular subbands obtained by the discrete wavelet transform of the im-
age are updated using projected gradient ascent. The proposed ‘WaveTransform’
adversarial attack algorithm is described in Algorithm 1.

4 Experimental Setup

The experiments are performed using multiple databases and CNN models. This
section describes the databases used to generate the adversarial examples, CNN
models used to report the results and parameters for adversarial attack and
defense algorithms.
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Databases: The proposed method is evaluated with databases comprising a
wide range of target images: Fashion-MNIST (F-MNIST) [42], CIFAR-10 [28],
frontal-image set of Multi-PIE [23], Tiny-ImageNet [45], and ImageNet [11].
Fashion-MNIST comprises low-resolution grayscale images of 10 different ap-
parel categories. CIFAR-10 contains low-resolution RGB images of 10 different
object categories. Multi-PIE database has high-resolution RGB images of 337
individuals and Tiny-ImageNet [45] contains 10,000 images from over 200 classes
from the ILSVRC challenge [36]. To perform the experiments on ImageNet, the
validation set comprising 50,000 images are used. These datasets also vary in
color space, CIFAR-10 and Tiny-Imagenet contain color images while F-MNIST
contains gray-scale images.

CNN Models and Implementation Details: Recent CNN architectures with
high classification performance are used for the experiments. For Multi-PIE, we
use a ResNet-50 model [24] pretrained on VGG-Face 2 [7] and an InceptionNet-
V1 [38] pretrained on CASIA-Webface [46]. For CIFAR-10, pretrained ResNet-
50 [24] and DenseNet-121 [25] are used, pretrained on the same. For Fashion-
MNIST, a 10-layer custom CNN, as described in Table 1, has been used, and
a pretrained ResNet-50 is used with Tiny-ImageNet and ImageNet. The stan-
dard models are fine-tuned, replacing the last layer of the network to match the
number of classes in the target database and then iterating over the training
split of the data for 30 epochs using the Adam [27] optimizer with a learning
rate of 0.0001 and batch size of 128. Standard train-validation-test splits are
used for CIFAR-10, Fashion-MNIST, and Tiny-ImageNet databases. From the
Multi-PIE database [23], 4753 training images, 1690 validation, and 3557 test
images are randomly selected. All the models use images in the range [0, 1], and
the experimental results are summarized on the test split of the data, except for
ImageNet and Tiny-ImageNet, where experimental results are reported on the
validation split.

Attack Parameters: In the experiments, each attack follows the same setting
unless mentioned. Cross-entropy is used as the classification loss function L.
The SGD [26] optimizer is used to calculate the gradient of the subbands con-
cerning the final logits vector used for classification. The experiments are per-

Table 1. Architecture of the custom model used for Fashion-MNIST experiments. [42].

Layer Type Output Size Description

Batch Norm 2D 28x28 channels 1, affine False

Conv 2D 28x28 5x5, 10, stride 1

Max Pool 2D 24x24 kernel 2x2

ReLU 23x23 -

Conv 2D 23x23 5x5, 20, stride 1

Max Pool2D 21x21 kernel 2x2

ReLU 20x20 -

Dropout 2D 20x20 Dropout prob 0.2

Flatten 400x1 Convert to a 1D vector

Linear 400x1 320, 10

Output 10x1 Final logits
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formed using multiple different wavelet filters including Haar, Daubechies (db2
and db3), and Bi-orthogonal. Before computing the discrete wavelet transform,
input data is extrapolated by zero-padding. Each attack runs for 20 iterations
with 20 restarts, where the adversarial image is initialized with added random
noise. This is referred to as random restarts by Madry et al. [31], where the at-
tack algorithm finally returns the first valid adversarial image produced between
all restarts. The maximum amount of noise that may be added to (or removed
from) a clean image is fixed at ε = 8.0/255.0 in terms of L∞ norm for all the
attacks. The step size of the subband update is fixed at γ = 0.05.

5 Results and Observations

This section describes the results corresponding to original and adversarial im-
ages generated via perturbing the individual or combined wavelet components.
Extensive analysis has been performed to understand the effect of different fil-
ters with wavelet transformation. To demonstrate the effectiveness of the trans-
formed domain attack, we have compared the performance with prevalent pixel-
level attacks and recent steganography based attacks. We have also evaluated
the transferability of the proposed attack and resiliency against a recent defense
algorithm [39].

5.1 Effectiveness of WaveTransform

To evaluate the effectiveness of attacking different subbands, we performed ex-
periments with individual subbands and different combinations of subbands. Fig.
3 shows samples of clean and adversarial images corresponding to individual
subband from the Multi-PIE [23] and Tiny-ImageNet [45] databases. Individual
wavelet components of both image classes help understand the effect of adver-
sarial noise on each frequency information. While the noise in the low-frequency
image is quasi subtle, it is visible in the high-frequency components. Among the
high-frequency components, the HH component yields the highest amount of
distortion. It is interesting to note that the final adversarial images are close to
their clean counterpart. Fig. 4 shows adversarial images generated by perturbing
the different frequency components of an image. Adversarial image, whether cre-
ated from low-frequency perturbation or high-frequency, can fool the classifier
with high confidence.

Table 2 summarizes the results on each database for the clean as well as the
adversarial images. The ResNet-50 model trained on the CIFAR-10 database
yields 94.38% object classification accuracy on clean test images. The perfor-
mance of the model decreases drastically when any of the wavelet frequency
band is perturbed. For example, when only the low frequency band is corrupted,
the model fails and can classify 3.11% test images only. The performance drops
further when all the high subbands (HL, LH, and HH) are perturbed and
yields only 1.03% classification accuracy. The results show that each element
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Fig. 3. Illustrating the individual wavelet components of the adversarial images gen-
erated using clean images from Multi-PIE [23] and Tiny-ImageNet [45] databases.
While the adversarial images are visually close to the clean images; the individual
high-frequency components (LH, HL, and HH) clearly show that the noise is injected
to fool the system. The wavelet components corresponding to the HH subband show
the maximum effect of the adversarial noise.

is essential, and perturbing any component can significantly reduce the net-
work performance. Similarly, on the Tiny-ImageNet [45], the proposed attack
can fool the ResNet-50 model almost perfectly. The model, which yields 75.29%
object recognition accuracy on clean test images, gives 0.01% accuracy on adver-
sarial images. On the Multi-PIE database, the ResNet-50 model yields 99.41%
face identification accuracy, which reduces to 0.06% when both low and high-
frequency components are perturbed.

On the Fashion-MNIST [42] database, the proposed attack reduces the model
accuracy from 87.88% to 58.36%. In comparison to other databases, the drop
on the F-MNIST database is low, which can be attributed to the lack of high
textural and object shape information. It is also interesting to note that the
model used on F-MNIST is much shallower as compared to the models used for
other databases. While the deeper models give higher recognition accuracy as
compared to the shallow model; they also find more sensitivity against adversar-
ial perturbations in comparison to the shallow model [30]. The results reported
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Fig. 4. Adversarial noise generated by attacking different subbands and adding to the
clean image to obtain the corresponding adversarial images. Images are taken from
Tiny-ImageNet [45] (left) and Multi-PIE [23] (right). It is observed that adversarial
images generated using low-frequency or high-frequency or both the components, are
effective in fooling the CNN with high confidence.

Table 2. Classification rates (%) of the original images and adversarial images gener-
ated by attacking different wavelet subbands. The ResNet-50 model is used for CIFAR-
10 [28], Multi-PIE [23] and Tiny-ImageNet [45]. The results on F-MNIST [42] are re-
ported using custom CNN (refer Table 1). Bold values represent the best fooling rate
achieved by perturbing all subbands, and ‘underline’ value represents if the fooling rate
is the same with all subbands perturbation.

Dataset CIFAR-10 F-MNIST Multi-PIE Tiny-ImageNet

Original Accuracy 94.38 87.88 99.41 75.29

LL Subband Attack 3.11 59.04 0.08 0.01

LH Subband Attack 7.10 78.51 0.06 0.01

HL Subband Attack 6.56 72.73 0.10 0.01

HH Subband Attack 13.77 80.56 0.10 0.54

High Subbands Attack 1.03 70.04 0.08 0.01

All Subbands Attack 0.16 58.36 0.06 0.01

in Table 2 corresponds to a ‘white-box’ scenario where an attacker has complete
access to the classification network.

Importance of Filter: A filter is a critical part of DWT; therefore, to under-
stand which types of filters are useful in crafting the proposed attack, we have
performed experiments with multiple types of filters: Haar, Daubechies (db2 and
db3), and Bi-orthogonal. Across the experiments on each database and CNN
models, it is observed that ‘Haar’ is more effective in comparison to other filters
in reducing the classification performance. For example, on the F-MNIST [42]
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Clean image FGSM PGD Ud Din et al. Ours (all subbands)

Fig. 5. Comparison of the adversarial images generated using the proposed and existing
attacks including FGSM, PGD and Ud Din et al. [12] on the ImageNet. Images used
have been resized and center-cropped to make them of size 224× 224× 3.

database, the Haar filter reduces the model accuracy to 58.36% from 87.88%,
which is at least 1.61% better than Daubechies and Bi-orthogonal.

5.2 Comparison with Existing Attack Algorithms

We next compare the performance of WaveTransform with pixel-level attacks and
recent wavelet based attacks in literature. Fig. 5 shows the adversarial images
generated using the proposed, existing pixel level attacks FGSM and PGD, and
steganography attack by Ud Din et al. [12].
Pixel-level Attacks: While most of the existing adversarial attack algorithms
work at the pixel level, i.e., in the image space only; the proposed attack works
at the transformation level. Therefore, we have also compared the performance
of the proposed attack with popular methods such as Projected Gradient De-
scent (PGD) [31] and Fast Gradient Sign Method (FGSM) [20] with ε = 0.03
in terms of accuracy and image degradation. Image degradation metrics such as
Universal Image Quality Index (UIQI) [50] is a useful measure for attack quality.
An adversarial example with a higher UIQI (with the maximum being 100, for
the original image), is perceptually harder to distinguish from the clean image.
On the CIFAR-10 database, while the proposed attack with perturbation on
both low and high-frequency subbands reduces the performance of ResNet-50 to
0.16% from 94.38%, existing PGD and FGSM reduce the performance to 0.06%
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and 46.27%, respectively. Similarly, on the ImageNet validation database, the
proposed attack reduces the performance of ResNet-50 to 0.05% from 76.13%.
On the contrary, the existing PGD and FGSM attacks reduce the recognition
accuracy to 0.01% and 8.2%, respectively. The experiments show that the pro-
posed attack can either surpass the existing attack or perform comparably on
both databases.

While the perturbation strength both in the existing and proposed attacks
is fixed to quasi imperceptible level, we have evaluated the image quality of the
adversarial examples. The average UIQI computed from the adversarial examples
computed on the CIFAR-10 and ImageNet databases show a value of more than
99. The higher value (close to maximum, i.e., 100) shows that both existing and
proposed attacks retain the quality of images and make the noise imperceptible
to humans.
Comparison with Recent Attack: The closest attack to the proposed attack
is recently proposed by Yahya et al. [44] and Ud Din et al. [12]. These attacks are
based on the concept of steganography, where a watermark image referred to as a
secret image is embedded in the clean images using wavelet decomposition. The
performance of the model is dependent on the secret image. To make the attack
highly successful, i.e., to reduce the CNN’s recognition performance, a compelling
steganography image is selected based on its fooling rate on the target CNN.
However, the proposed approach has no requirement of an additional watermark
image and learns the noise vector from the network itself. Since Yahya et al. [44]
have shown the effectiveness of the attack on the simple MNIST database only,
we have compared the performance with Ud Din et al. [12]. They have evaluated
their method on a validation set of ImageNet.

To maintain consistency, the experiments are performed on a validation set
of ImageNet with ResNet-50. Along with visual comparison, the results are also
compared using fooling ratio as the evaluation metric, which is defined as

ψ =
|{f(xi + η) 6= f(xi) }|

M
,∀i ∈ {1, 2, ...,M} (2)

where f is a trained classifier, xi is a clean image from the database, M is
the total number of samples, and η is the adversarial noise. Using the best
steganography image, the attack by Ud Din et al. [12] on a pretrained ResNet-
50 achieves a fooling ratio of 84.77% whereas, the proposed attack achieves a
fooling ratio of 99.95%.

5.3 Transferability and Resiliency of WaveTransform

Finally, we evaluate the transferability and resiliency of the proposed attack on
multiple databases.
Transferability: In the real-world settings, the attacker might not know the
target CNN model, which he/she wants to fool. In such a scenario, to make
the attack more practical, it is necessary to evaluate its effectiveness with an
unseen testing network - the adversarial images generated using one model are
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Fig. 6. Illustrating transfer capability of the proposed attack using CIFAR-10 database
[28]. The graph on the right shows the results of adversarial images generated on
ResNet-50 being tested on DenseNet-121. The plot on the left shows the results of
adversarial images generated on DenseNet-121 being tested on ResNet-50. The per-
formance of ResNet-50 and DenseNet-121 are degraded upto 43.02% from 94.38% and
47.82% from 94.76%, respectively.

used to fool another unseen model. The scenario refers to ‘black-box’ setting
in adversarial attack literature [4] where an attacker does not have access to
the target model. The experiments are performed on the CIFAR-10 [28] and
Multi-PIE [23] databases.

For CIFAR-10 [28], two state-of-the-art CNN models are used, i.e., ResNet-50
and DenseNet-121, and the results are summarized in Fig. 6. The ResNet model
yields 94.38% accuracy on clean images of CIFAR-10 [28]; on the other hand,
DenseNet gives 94.76% classification accuracy. When the adversarial images gen-
erated using the ResNet model are used for classification, the performance of the
DenseNet model reduces to 46.94%. Similar performance reduction can be ob-
served on the performance of the ResNet model when the adversarial images
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Table 3. Classification rates (%) for the original and adversarial images generated by
attacking different wavelet subbands in the presence of kernel defense [39]. ResNet-50
model is used for CIFAR-10 [28] and the results on F-MNIST [42] are reported using
the custom CNN.

Database Original
Wavelet Subbands

LL LH HL HH High All

CIFAR-10
Before Defense 94.38 3.11 7.10 6.56 13.77 1.03 0.16
After Defense 91.92 2.42 5.73 5.03 10.05 0.65 0.11

F-MNIST
Before Defense 87.88 59.04 78.51 72.73 80.56 70.04 58.36
After Defense 81.29 57.99 72.74 69.05 74.84 66.76 57.84

generated using the DenseNet model are used. The adversarial images generated
by perturbing all the high-frequency wavelet bands reduce the classification ac-
curacy up to 51.36%. The sensitivity of the network against the unseen attack
generated models shows the practicality of the proposed attack. Other than
that, when adversarial examples are generated using the ResNet on Multi-PIE
[23] and used for classification by InceptionNet [38], the performance of the net-
work reduces by 26.77%. The perturbation of low-frequency components hurts
the performance most in comparison to the modification of high-frequency com-
ponents. The highest reduction in accuracy across the unseen testing network is
observed when both low and high-frequency components are perturbed.

WaveTransform works by corrupting low frequency and high frequency in-
formation contained in the image. It is well understood that the low frequency
information corresponds to the high level features learned in the deeper layers of
the network [32,15]. Moosavi-Dezfooli et al. [33] have shown that the high level
features learned by different models tend to be similar. We assert that since the
proposed method perturbs low frequency information that is used across models,
it shows good transferability.

Adversarial Resiliency: With the advancement in the adversarial attack do-
main, researchers have proposed several defense algorithms [1,2,16,17,18,35]. We
next evaluate the resiliency of the attack images generated using the proposed
WaveTransform against the recently proposed defense algorithm by Wang et al.
[39]1. The concept of the defense algorithm is close to the proposed attack, thus
making it a perfect fit for evaluation. The defense algorithm performs smoothing
of the CNN neurons at earlier layers to reduce the effect of adversarial noise.

Table 3 summarizes the results with the defense algorithm on CIFAR10 and
F-MNIST databases. Interestingly, we observe that in the presence of the defense
algorithm, the performance of the network is further reduced. We hypothesize
that, while the proposed attack is perturbing the frequency components, the ker-
nel smoothing further attenuates the noise and yields a higher fooling rate. This
phenomenon can also be seen from the accuracy of clean images. For example,

1 Original codes provided by the authors are used to perform the experiment.
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the ResNet model without defense yields 94.38% accuracy on CIFAR-10, which
reduces to 91.92% after defense incorporation. The proposed attack can fool the
defense algorithm on each database. For example, on the CIFAR-10 database,
the proposed attack reduces the accuracy up to 0.16% and it further reduces to
0.11% after the defense. Similar resiliency is observed on the F-MNIST database
as well.

The PGD attack, which shows a similar reduction in the performance on
the CIFAR-10 database, is found less resilient against the defense proposed by
Wang et al. [39]. The defense algorithm can successfully boost the recognition
performance of ResNet-50 by 30%; whereas, the proposed attack is found to be
resilient against the defense.

The robustness of the proposed attack is also evaluated against state-of-
the-art defense methods such as Madry et al. [31] and Zhang et al. [49] on
the CIFAR-10 database. The defense model presented by Madry et al. [31] uti-
lizes the ResNet-50 model, which yields 87.03% accuracy on clean images of the
database, but the accuracy significantly reduces to 60.81% when the proposed
attack is applied. Similarly, the accuracy of the defended WideResNet [48] model
by Zhang et al. [49] reduces to 62.73% from 84.92%.

6 Conclusion

High and low frequency components present in an image play a vital role when
they are processed by deep learning models. Several recent research works have
also highlighted that CNN models are highly sensitive towards high and low-
frequency components. The attack generation algorithms in the literature gener-
ally learn the additive noise vector without considering the individual frequency
components. In this research, intending to understand the role of different fre-
quencies, we have proposed a novel attack by decomposing the images using
discrete wavelet transform and adding learned adversarial noise in different fre-
quency subbands. The experiments using multiple databases and deep learn-
ing models show that the proposed attack poses a significant challenge to the
classification models. The proposed attack is further evaluated under unseen
network training-testing settings to showcase its real-world application. Other
than that, the proposed WaveTransform attack is found to be challenging to
mitigate/defend.
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