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Abstract—Deaths and injuries are common in road accidents, violence, and natural disaster. In accidents and natural disasters
scenarios, one of the tasks of responders is to retrieve the identity of the victims to reunite families or ensure proper identification of
deceased persons. Apart from this, the identification of unidentified dead bodies due to violence and accidents is crucial for the police
investigation. In the absence of identification cards, different forensic techniques such as DNA profiling and dental profiling may be
used for identification. In this research, we present face recognition as a fast and viable approach for recognizing individuals with
injuries. Face, which can be captured easily, is one of the most commonly used and widely accepted biometric modalities. However,
face recognition is challenging in the presence of injuries as facial injuries change the appearance and geometric properties of the face
due to swelling, bruises, blood clots, and accidental cuts. These changes introduce large intra-class variations among the same subject
and small inter-class separability among different subjects. To address the challenge, we propose a novel Subclass Injured Face
Identification (SCIFI) loss which is used in learning feature representation agnostic to injury variations. Additionally, an extended
Injured Face (IF-V2) database of 150 subjects is presented which helps in evaluating the performance of face recognition models.
Multiple experiments and comparisons are performed to showcase the efficacy of the proposed SCIFI loss based face recognition.

Index Terms—Injured Face Recognition, Biometrics, Face Identification, Injury.
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1 INTRODUCTION

Road accidents, violence, and natural disasters are com-
mon causes of deaths and injuries. A report of the World
Health Organization (WHO) [1] states that every year, 1.25
million people are killed and 50 million are injured in road
accidents worldwide. Several studies have reported that in
such cases, face is one of the most affected regions of the
human body [2], [3], [4]. A survey has shown that 50% to
70% of people surviving traffic accidents have a facial injury
[5]. In the majority of such instances, victim identification
becomes difficult as the facial regions are partially or com-
pletely damaged. The problem is exaggerated if the victim
is in an unconscious state without any identity proof.

Apart from accidents, natural calamities and violence
often result in unclaimed and unidentified dead bodies with
facial injuries. According to the National Security Strategy
[16], 80-90% of the recovered unidentified dead bodies never
get identified. Retrieving the identity of the deceased person
becomes difficult because the primary source of identity
retrievals such as print or electronic media does not accept
images with facial injuries as they may cause anxiety and
discomfort to the viewers [17]. In such scenarios, tech-
niques such as DNA profiling and dental profiling [18],
[19], [20] are used by forensic experts and odontologists
to recover the identity of injured victims and unidentified
dead bodies. While these are popular primary modalities,
they may be relatively slow to process or may not have
the corresponding databases for identification purposes. For
instance, not everyone has their dental or DNA records
stored in some databases to be matched. Further, processing
these modalities also require human expertise which may
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Fig. 1. (a) Sample images of five subjects from the Injured Face-
Version2 (IF-V2) database to showcase the challenging nature of the
problem statement. (b) t-SNE visualization of the corresponding sub-
jects in the feature space obtained using pre-trained LCNN-29 [6] (Im-
ages are blurred for user privacy purposes).

not be available in all geographic locations. As an attractive
supplement, we postulate that faces can be used to help the
law enforcement agencies to reduce the search space and
speed up the identification process. Face is one of the most
commonly used and widely accepted biometric modality for
recognition. A face can be captured easily from the injured
victim or the dead body, which can be matched with the
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TABLE 1
Literature review of the studies related to facial injuries and identification of dead bodies.

Authors Year Summary

Nassar et al. [7] 2008
Appearance-based features and string matching are used for the automatic construction of dental charts.
It is observed that the appearance-based features takes less time for identification and outputs
comparable accuracy compared to the methods in the literature.

Singh et al. [8] 2012 Analyzed 1,038 patients with maxillofacial injuries. It is concluded that road accidents are the main cause
of maxillofacial injuries, and the age group of 21-30 years have more involvement in such cases.

Qiu et al. [9] 2017 Analyzed the Victoria Admitted Episodes Dataset that consists of facial trauma in Victoria between 2004
to 2014. It is found that falls from height are the major cause of facial trauma.

Black et al. [10] 2017 Studied different sports-related injuries and protective measures taken to reduce such injuries.

Sauerwein et al. [11] 2017 Evaluated human observers, including professionals and students, for the task of visual identification of
a missing person given the antemortem facial photograph.

Majumdar et al. [12] 2018 Proposed an automatic framework to distinguish victims of domestic violence from others using facial
images.

Canzi et al. [13] 2019 Provided a measuring scale for facial trauma by introducing the Comprehensive Facial Injury (CFI) score.

Trokielewiez et al. [14] 2019 Studied postmortem human iris recognition of 37 deceased subjects. It is shown that high performance is
achieved when the images are taken shortly after death.

Bolme et al. [15] 2019 Evaluated face recognition models for decomposed human body recognition. Images are divided into six
categories based on the decomposition level.

reference images in large (national level) databases.
Even though face recognition is a well research area,

identifying victims using faces is still challenging because
the injuries often affect the appearance and facial features.
These changes induce large intra-class variations among the
images of the same subject. Fig. 1 shows the t-Distributed
Stochastic Neighbor Embedding (t-SNE) visualization of
the non-injured and non-injured + injured images of five
subjects obtained using pre-trained LCNN-29 [6] model. It is
observed that while non-injured images are well separated
in the feature space, the overlap increases when both the
injured and non-injured samples of a subject are given as
input to the pre-trained model.

To address the variations due to injured faces, in this
research, we have proposed a novel loss function, termed
as Subclass Injured Face Identification (SCIFI) loss1. It
considers injured and non-injured images as two different
subclasses and operates in the Subclass Space, which is a
2-dimensional space of scores computed using non-injured
and injured images. The proposed loss function optimizes
the scores to achieve a two-fold objective in the feature
space: (a) the distance between the samples of different
subjects should be same while maintaining equidistance
between the samples of same subject and (b) the distance
between the samples of different subjects should be greater
than the distance between the samples of the same subject.
We have also extended the Injured Face (IF) database [21] to
150 (Injured Face-Version2 database) subjects and annotated
the injured facial regions.

The proposed approach can be used as a stand alone
identification framework followed by human-in-the-loop
verification of the results. Further, it can be used as a
supplement to a secondary modality such as DNA or dental
records. Specifically, the proposed approach can be used
to reduce the identification search space and then positive
identification can be done using another modality.

2 RELATED WORK

Face is one of the widely accepted biometric modalities, and
there has been a lot of progress in the field of face recog-

1. This paper is an extension of our work presented at BTAS2019 [21].

nition using deep models. However, recognizing faces with
injuries during accidents or natural disasters still requires
significant research. As shown in Table 1, a very few studies
have been conducted related to this problem domain. To
present an overview, we have divided the literature as fol-
lows: (i) injuries analysis and detection, (ii) face recognition
using deep models, and (iii) recognition of injured faces.
Injury Analysis and Detection: Injuries and Violence Pre-
vention Department of the World Health Organization
has developed the International Classification of External
Causes of Injury (ICECI) for studying injuries [22]. ICECI
collects injury-related data such as the mechanism of injury,
objects/substances producing injury, place of occurrence,
activity when injured, the role of human intent, use of
alcohol, and use of psychoactive drugs. This data is used
by researchers to study injuries in different body parts.

In the literature, facial injuries have been studied in dif-
ferent fields, including medical science and forensic science
for measuring the severity of facial trauma, identification
of dead bodies, distinguishing injuries of domestic violence
from accidents, and for studying the psychological effect of
facial trauma. The common form of facial injuries include
facial cuts, knocked out tooth, nosebleeds, eye injuries, and
bleeding from the ears [23]. Qiu et al. [9] have analyzed
54,730 patients with facial trauma over ten years and found
that interpersonal violence, transport accidents, and injuries
from falls are the three common causes of facial trauma.
According to Singh et al. [8], facial injuries are more fre-
quent in males as compared to females. Researchers have
also studied sports-related injuries and the requirement of
medical treatment in such cases. Black et al. [10] have found
that more than 41% of sports injuries require medical treat-
ment. It is also found that helmets, eye protection, mouth
guards, and face guard play a key role in reducing facial
injuries. However, in most of the high-risk sports, these
safety measures are not followed, which in turn results in
facial injuries. Kampakis et al. [24] have studied football-
related injuries and developed a framework using neural
network and support vector machine to predict the recovery
time of a football player automatically. A measuring scale
of the facial trauma is proposed by Canzi et al. [13] that
summarizes the surgical duration and care required for the
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treatment. Facial injuries are also common in violence. A
ten-year survey related to interpersonal violence (IPV) is
provided by Coulibaly et al. [25]. It is found that facial
injuries due to IPV occur mostly in young and male adults
involved in brawls. An automatic framework to distinguish
injuries of domestic violence from others is proposed by
Majumdar et al. [12]. VGG-Face [26] model is fine-tuned
to discriminate injuries of domestic violence. Authors have
shown that features extracted from the injured regions are
useful in classifying victims of domestic violence from oth-
ers. However, they have not performed the recognition of
injured faces to identify the victim.

Different techniques such as face, iris, fingerprint, DNA,
and dental recognition have been proposed for identifying
unidentified dead bodies. Caplova et al. [27] evaluated the
performance of human observers for recognizing deceased
persons with their corresponding facial photographs. It is
found that the alteration of facial hair and age-separated
images lead to lower performance. Researchers have also
studied the effect of dead body decomposition on face
recognition. Bolme et al. [15] collected a custom dataset of
42 subjects with different levels of decomposed face images.
They evaluated the performance of commercial-off-the-shelf
systems and existing pre-trained models for recognizing de-
composed faces. It is observed that all the algorithms failed
to recognize faces that were deformed or decomposed. Trok-
ielewiez et al. [20] performed postmortem iris recognition
and evaluated four independent iris recognition methods.
They observed that iris recognition performs well up to 5-
7 hours of death and are correctly recognizable with more
than 90% accuracy. Sauerwein et al. [11] have shown that
face and fingerprint are long-lasting biometric identifiers
in postmortem cases while iris images lose their viability
in a short span of time due to the loss of the moisture.
Nassar et al. [7] have used appearance-based features and
string matching for postmortem identification by construct-
ing dental charts. Abaza et al. [28] proposed an algorithm
on efficient retrieval of dental records to assist the forensic
experts in rapid identification of deceased individuals. Balla
[29] compared the practice of forensic dental identification
in India with other Western countries. Kitayama et al.
[30] evaluated the rapid DNA system for disaster victim
identification (DVI). They observed that the success rate of
fresh DVI samples ranges from 80% to 100%. Johnson and
Riemen [31] discussed the role of digital fingerprint capture
technology in accelerating the process of disaster victim
identification. Levinson and Domb [32] discussed the role of
police and medical examiner for the task of disaster victim
identification using fingerprint matching.
Face Recognition using Deep Models: From the literature
related to injuries, it is observed that existing methods
for identifying the victims with facial injuries are time-
consuming, non-scalable, and requires manual efforts. This
demands the need for an automated system to speed up the
process of identification. In recent years, a lot of progress has
been made towards designing deep learning models for face
recognition. Researchers have proposed several methods to
enhance the discriminative power of the learned features for
the task of face recognition. Hadsell et al. [33] have proposed
Contrastive loss, where the loss function runs over pairs
of samples. It minimizes the Euclidean distance between

the pairs of similar samples while maximizes the distance
between the pairs of dissimilar samples. The aim is to reduce
the intra-class distance and increase the inter-class separa-
bility in the feature space. Wen et al. [34] have proposed
center loss and combined it with softmax loss to enhance the
supervision of the softmax loss to learn more discriminative
features. Schroff et al. [35] proposed FaceNet, which uses
triplet loss to unify the face embeddings in the Euclidean
space. Later, Liu et al. [36] have shown that the Euclidean
margin-based losses combined with softmax loss do not per-
form well to learn the discriminative features and proposed
the A-softmax loss function to learn discriminative features
angularly. This loss function modified the existing softmax
loss to incorporate the angular information and introduced
a margin parameter to control the angular margin. Wang
et al. [37] have proposed a large margin cosine loss by
modifying the softmax loss function as a cosine loss by L2
normalization of features and weight vectors. This helped
in the removal of radial variations. Deng et al. [38] have
proposed Additive Angular Margin Loss (ArcFace) to learn
discriminative features for face recognition. This loss func-
tion computes the loss between the feature and the target
weight and further adds an angular margin. It optimizes
the geodesic distance margin on a hypersphere. Zheng et al.
[39] have proposed a feature normalization technique, Ring
loss, which constrains the norm by applying soft normal-
ization and preserves the convexity. Zhang et al. [40] have
shown the limitations of cosine based loss functions for face
recognition, as they require tuning the scale parameter and
angular margin. They have further proposed a loss function
termed as AdaCos, which is hyperparameter free and uses
an adaptive method for adjusting the scale parameter.
Recognition of Injured Faces: The literature on face recog-
nition with injury variations is very limited. We have in-
troduced the problem of injured face recognition in [21]
where a database of 100 subjects (with and without injury)
and Subclass Contrastive Loss (SCL) based deep learning
model are proposed. The aim of SCL loss is to achieve an
optimized feature space where the feature representations of
the injured and non-injured subclasses of the same subject
are close to each other while the feature representations of
other subjects are far apart.

3 INJURED FACE RECOGNITION WITH PROPOSED
SCIFI LOSS

We have observed that facial injuries increase the overlap
among different subjects due to high intra-class variations
and low inter-class separability in the feature space. Al-
gorithms trained on non-injured faces generally do not
perform well for injured face recognition. Therefore, we
propose to model the injured and non-injured as two dif-
ferent subclasses. The concept of subclasses has been used
in the literature for different classification tasks; for instance,
Zhu and Martinez [41] have proposed subclass discriminant
analysis (SDA). It approximates the underlying distribution
of each class as a mixture of Gaussians and finds the optimal
division of the classes into a set of subclasses. Mandal et
al. [42] extended the concept by dividing each class into
subclasses to capture intra-class variations and proposed a
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Fig. 2. Illustrating the steps involved in training a model for injured face recognition using the proposed SCIFI loss. In the first step, 3-tuples are
generated by taking two samples from the non-injured subclass and one from the injured subclass. 3-tuples are then given as input to the model
for obtaining the corresponding feature representations. In the next step, subclass score vectors are computed and projected to the 2-dimensional
subclass space, where LG, LM , LS1

, and LS2
are minimized and LInter is maximized to train the recognition model (best viewed in color).

method of eigen-spectrum modeling. However, these meth-
ods estimated the number of subclasses in each class and
require a large number of images per class.

In this research, we define non-injured and injured im-
ages as two subclasses, and propose a new space, termed
as Subclass Space, to address the problem of injured face
recognition. It is a 2-dimensional space of scores, where the
scores are optimized to reduce the overlap between different
subjects in the feature space. For this purpose, a novel
Subclass Injured Face Identification (SCIFI) loss is proposed
with two-fold objective in feature space: (a) to maintain
equal inter-class distance between the samples of different
subjects and equal intra-class distance between the samples
of same subject and (b) the inter-class distance should be
greater than the intra-class distance.

Fig. 2 summarizes the training process of the proposed
approach for injured face recognition. Let d1 and d2 be
the distances between {non-injured, non-injured} and {non-
injured, injured} samples of the same subject, respectively.
Similarly, d3 and d4 represent the distances between {non-
injured, non-injured} and {non-injured, injured} samples of
different subjects, respectively. The problem statement can
be defined as “given a dataset X of non-injured and injured sub-
classes of each subject, train a model φW such that, in the feature
space, the intra-sample distance d1, d2 is equal while maintaining
same inter-sample distance d3, d4, where d1, d2 < d3, d4.”. The
details of the loss function are discussed below.

3.1 SCIFI Loss

Let X be the dataset with n subjects, represented as X =
{X1,X2, ...,Xn}. Each subject Xi consists of non-injured
and injured subclasses, denoted by:

Xi = {XN
i ,X

I
i } (1)

where, XN
i and XI

i represent the set of non-injured images
and the set of injured images, respectively. In order to train
the network for injured face recognition, 3-tuples are gener-
ated by taking two samples from the non-injured subclass
and one from the injured subclass.

Ta = {XN
i,p,X

N
j,q,X

I
k,r} (2)

where, Ta is the ath 3-tuple. XN
i,p and XN

j,q are the pth

and qth samples corresponding to XN
i and XN

j subclasses,
respectively. Similarly, XI

k,r is the rth sample of XI
k subclass.

Let φW be a Convolutional Neural Network (CNN) with
weights W, which outputs the feature Zi for input Xi. The
feature of the 3-tuple Ta is represented as:

Ta = {ZN
i,p,Z

N
j,q,Z

I
k,r} (3)

Let Ya be the label of the 3-tuple Ta, where Ya = 0 denotes
the genuine 3-tuple and Ya = 1 denotes the imposter 3-
tuple. Mathematically, it is represented as:

Ya =

{
0 if i = j = k
1 if i 6= j, i 6= k

(4)

The next task is to compute the subclass scores and project it
to the 2-D subclass space. Subclass score represents the dis-
tance between the feature representations of the subclasses.
The first dimension of the subclass space represents the
distance between the features of the samples from the non-
injured subclass. The second dimension represents the dis-
tance between the features of the samples from non-injured
and injured subclasses. The subclass score corresponding to
the first and second dimensions of subclass space for the
3-tuple Ta is computed as:

Sa,NN = D(ZN
i,p,Z

N
j,q) (5)

Sa,NI = D(ZN
i,p,Z

I
k,r) (6)

where, D(.) is a distance metric. It is important to note
that the subclass score corresponding to the first dimension
will be d1 for genuine 3-tuple and d3 for imposter 3-tuple.
Similarly, the subclass score corresponding to the second
dimension will be d2 for genuine 3-tuple and d4 for imposter
3-tuple. Mathematically, it is represented as:

Sa,NN =

{
d1 if Ya = 0
d3 if Ya = 1

(7)

Sa,NI =

{
d2 if Ya = 0
d4 if Ya = 1

(8)

The subclass score Sa of the 3-tuple Ta is represented as:

Sa =

[
Sa,NN

Sa,NI

]
(9)
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Fig. 3. Illustration of the proposed SCIFI loss. (a and b) Represents the feature space and subclass space, where (b) demonstrates the optimization
among genuine and imposter clusters for three subjects in subclass space and (a) shows the corresponding feature representations of the three
subjects in feature space. (c and d) Represents the optimized feature space and subclass space (best viewed in color).

If m represents the number of 3-tuples generated for train-
ing the model, then there will be m subclass score vectors in
2-D subclass space. The subclass score vectors correspond-
ing to genuine and imposter 3-tuples result in genuine and
imposter clusters, respectively, in the subclass space. Let CG

and CM represent the centers of the genuine and imposter
clusters, respectively. The centers are computed as follows:

CG =

∑m
a=1(1− Ya)Sa∑m
a=1(1− Ya)

CM =

∑m
a=1 YaSa∑m
a=1 Ya

(10)

The aim is to maintain equal inter-class distance between
the samples of different subjects and equal intra-class dis-
tance between the samples of same subject in the feature
space, such that the inter-class distance is greater than the
intra-class distance. For this purpose, the subclass score
vectors corresponding to genuine and imposter clusters
are pulled towards the center of their respective clusters.
Mathematically, it is represented as:

LG =

∑m
a=1(1− Ya)D(Sa,CG)∑m

a=1(1− Ya)
(11)

LM =

∑m
a=1 YaD(Sa,CM )∑m

a=1 Ya
(12)

In order to reduce the overlap between the subjects in the
feature space, the inter-cluster distance between the centers
of the genuine and imposter clusters is increased. Following
represents the inter-cluster loss:

LInter = max(0, α−D(CG,CM )) (13)

where, α is the margin with a value greater than or equal
to zero that controls the separation among genuine and
imposter clusters. While increasing the separability among

the clusters, it is possible that the separability is increased
along a particular dimension and not the other. This con-
dition could lead to overlap among different subjects in
the feature space. In order to overcome this problem, the
centers of the genuine and imposter clusters are separated
along the straight line with a 450 angle with respect to the
first dimension. Since x and y coordinates of any point on a
straight line with 450 angle are equal, the centers are shifted
towards the line using the following loss functions:

LS1 = D(CG,NN , CG,NI) (14)

LS2
= D(CM,NN , CM,NI) (15)

where, CG,NN and CG,NI represents the first and second
dimensions of center CG, respectively. Similarly, CM,NN

and CM,NI represents the first and second dimensions of
center CM , respectively. The overall loss function to be
minimized is:

L = LG + LM + LInter + LS1 + LS2 (16)

where, L is the final loss that increases the inter-class sep-
arability while maintaining approximately equal distance
between the samples of different subjects as well as equal
distance between the samples of the same subject in the
feature space.

Fig. 3 illustrates the proposed SCIFI loss with an exam-
ple. Consider a dataset with three subjects having injured
and non-injured images. The feature space representations
of samples of all the subjects are shown in the first plot of
Fig. 3(a). The corresponding projection of subclass vectors
with genuine and imposter clusters in subclass space is
shown in the first plot of Fig. 3(b). Next, genuine cluster loss
LG and imposter cluster loss LM are computed, as shown
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in the second plot of Fig. 3(b). Here, LG enforces the non-
injured samples of the same subject to maintain distance
d1 among them. Simultaneously, it enforces distance d2
among non-injured and injured samples of the same subject.
Similarly, LM enforces distance d3 and d4 for samples of dif-
ferent subjects. The visualization in feature space is shown
in the second plot of Fig. 3(a). The third plot of Fig. 3(b)
computes the inter-cluster loss LInter among the genuine
and imposter clusters in the subclass space. This will either
increase the difference between d1 and d3, d2 and d4 or both
to increase the inter-class separability. The corresponding
feature representations are shown in the third plot of Fig.
3(a). In order to achieve the optimal inter-cluster separation
in both the dimensions, the centers of genuine and imposter
clusters are shifted along the straight line with a 450 angle
w.r.t the first dimension is shown in the fourth plot of Fig.
3(b). The fourth plot of Fig. 3(a) shows the corresponding
representation in the feature space. The plot shows that
the separability among all the subjects is further enhanced.
Fig. 3 (c and d) show the optimized feature space and
subclass space, respectively. It is observed that the proposed
SCIFI loss optimizes the genuine and imposter clusters in
the subclass space, which in turn optimizes the feature
representations of all the subjects as well. It is important to
note that the aim of the proposed SCIFI loss is to maximize
the relative difference among the intra-class and inter-class
separation in the feature space.

3.2 SCIFI Loss for Face Recognition

For recognition of injured faces, faces are first detected and
aligned from the input images using Dlib library [43]. Next,
features corresponding to the aligned faces are extracted us-
ing the trained model with SCIFI loss. Extracted features are
matched with the enrolled gallery using Euclidean distance
for identification. In this research, LightCNN-29 network
is used as the base network for fine-tuning it with the
proposed SCIFI loss.

4 INJURED FACE-VERSION2 DATABASE

Injured Face (IF) database proposed in our previous work
[21], was the first ever database for injured face recognition.
The database was created by collecting images from online
resources. All the images are captured in the unconstrained
environment with pose (−200 to +200) and illumination
variations. This paper extends the database to 150 subjects
(120 males and 30 females). To promote research on this
problem, we have released the database2. Details regarding
the creation of the Injured Face-Version2 (IF-V2) database
and annotation of injured regions are discussed below.

4.1 Creation of Injured Face-Version2 Database

Injured Face-Version2 (IF-V2) database comprises injured
and non-injured images of different subjects collected from
the Internet. The problem of injured face recognition re-
quired matching injured face images of a subject with non-
injured images enrolled in the database. On the other hand,

2. The database (in the form of weblinks) and the trained models are
available at: http://iab-rubric.org/resources/ifv2.html

TABLE 2
Number of images with injuries in different facial regions.

Region Images Region Images
Forehead 179 Right Cheek 214
Left Eye 224 Nose 179

Right Eye 182 Mouth 148
Left Cheek 181 Multiple 367

retrieving information or whereabouts of a missing person
sometimes requires matching the non-injured face image
of the missing person with unidentified victims or dead
bodies with facial injuries. Therefore, for each subject, two
types of images are collected: i) faces with real injuries and
ii) normal or non-injured face images. Injured face images
include faces injured during accidents, violence, and sports.
The database contains a total of 1363 images corresponding
to 150 subjects, out of which 524 are injured and 839 are
non-injured face images.

4.2 Annotation of Injured Facial Regions
Injuries on different facial regions may affect the recognition
performance differently. To study this impact, the injured
region in the faces of the IF-V2 database are annotated.
In cases where the image contains injuries on multiple
facial regions, all the injured regions are annotated. Table 2
summarizes the number of images with injuries in different
facial regions.

5 EXPERIMENTS AND RESULTS

The performance of the proposed SCIFI loss and existing
face recognition models and loss functions are evaluated
for problems such as identification of injured victims and
retrieving information of missing persons. The details of the
experiments are given below.

• The first experiment involves establishing the base-
line performance of existing pre-trained models
namely, VGG-Face [26], OpenFace [44], LightCNN-
9 [6], and LightCNN-29 [6].

• The second experiment evaluates the performance
of the proposed SCIFI loss, and compares it with
existing loss functions. This experiment is performed
under two scenarios: i) probe with injured images
and ii) probe with non-injured + injured images. The
first scenario represents the case of matching injured
images with non-injured gallery for identifying the
victims of road accidents or unidentified dead bodies
with facial injuries. The second scenario represents
the case of matching both non-injured and injured
images with non-injured gallery. This scenario is
applicable where the recognition system is deployed
for both non-injured and injured face recognition.

• The last experiment evaluates SCIFI loss for the task
of injured image retrieval, given normal images.

Protocol: Experiments are performed by dividing the IF-V2
database into non-overlapping (unseen) training and test-
ing sets with 70%-30% subject-wise partitioning. Training
and testing partitions are created by three times repeated
random sub-sampling. For all the experiments, the training
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TABLE 3
Mean identification accuracy (%) with standard deviation of existing

pre-trained models on the IF-V2 database.

Rank 1 Rank 5 Rank 10
VGG-Face 4.28 ± 1.9 15.55 ± 2.7 29.34 ± 3.2
OpenFace 4.75 ± 1.5 19.55 ± 1.3 32.59 ± 2.5
LCNN-9 46.65 ± 6.4 68.18 ± 3.9 83.20 ± 0.5
LCNN-29 63.93 ± 3.6 85.48 ± 2.0 90.47 ± 1.5

and testing sets are divided into gallery and probe. During
training, the gallery contains non-injured/normal images,
and the probe contains injured images of each subject.
During testing, multiple gallery and probe partitions are
created for each experiment. In the first experiment, the
gallery contains a single non-injured image per subject, and
the probe contains multiple injured images per subject. The
second experiment is performed with a gallery of single
non-injured image per subject, and the probe of multiple
injured images per subject and multiple non-injured + in-
jured images per subject. In the third experiment, the gallery
contains a single injured image per subject while the probe
contains multiple non-injured images per subject.
Implementation Details: All the experiments are performed
on aligned faces. Experiments are performed on NVIDIA
Tesla P100 server with 96GB RAM and 16GB GPU memory,
in PyTorch environment. Adam optimizer is used with a
learning rate of 6 × 10−5. For SCIFI loss function, the
LightCNN-29 network is fine-tuned for 10 epochs with a
batch size of 50, and α is set to 2.6. While for the existing
algorithms, a batch size of 50 is used, and the LightCNN-29
network is fine-tuned for 30 epochs with Adam optimizer.
To fine-tune the network with Subclass Contrastive Loss
(SCL) [21], the two margins are set to 1.5 and 2.6, respec-
tively, and a learning rate of 3 × 10−6 is used. A margin of
2 is used to fine-tune the siamese network with Contrastive
Loss (CL) with a learning rate of 3 × 10−6. During fine-
tuning with Triplet Loss (TL), a learning rate of 8 × 10−6 is
used, and the margin is set to 0.4.

5.1 Injured Face Recognition using Pre-trained Models

In this experiment, the performance of existing pre-trained
models, namely, VGG-Face, OpenFace, LightCNN-9, and
LightCNN-29, are evaluated for the task of injured face
recognition. For this purpose, features are extracted from
the gallery and probe of the testing set using the pre-trained
models. Extracted features of the probe images are matched
with the gallery images using Euclidean distance. Three
times random subsampling based cross-validation is per-
formed, and the mean identification accuracy with standard
deviation at rank 1, rank 5, and rank 10 are shown in Table
3. Fig. 4 shows the Cumulative Match Characteristic (CMC)
curves. The results indicate that existing pre-trained models
do not perform well for the task of injured face recognition.
Injuries change the facial features and deteriorate the perfor-
mance of existing models by incorporating large intra-class
variations among the images of the same subject and reduce
the inter-class separability. From Table 3, it is observed that
LightCNN-29 yields the best performance with an average
identification accuracy of 63.93% at rank 1.

1 2 3 4 5 6 7 8 9 10

Rank

0

10

20

30

40

50

60

70

80

90

100

Id
en

tif
ic

at
io

n 
A

cc
ur

ac
y 

(%
)

VGGFace
OpenFace
LCNN9
LCNN29

Fig. 4. CMC curves of the four existing pre-trained face recognition
models (best viewed in color).
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Fig. 5. Comparison of mean intra-class and inter-class distance of
gallery image of each subject with probe images of same and other
subjects using existing (CL, ISCL, TL, ISTL, and SCL) and proposed
algorithms in the testing set (best viewed in color).

5.2 Injured Face Recognition using SCIFI Loss

In order to evaluate the performance of the proposed SCIFI
loss, experiments are performed on the IF-V2 database
and the results are compared with existing loss functions
including Contrastive Loss (CL) [33], Triplet Loss (TL) [35],
Center Loss [34], CoCo Loss [45], Ring Loss [39], SphereFace
[36], CosFace [37], ArcFace [38], AdaCos [40], Subclass Con-
trastive Loss (SCL) [21], and variants of Contrastive Loss
and Triplet Loss, termed as, Injury Specific Contrastive Loss
(ISCL) and Injury Specific Triplet Loss (ISTL), respectively,
by fine-tuning LCNN-29 model. To incorporate the injury
specific information in CL and TL, we have modified the
sampling technique for pairs and triplets generation. In
ISCL, pairs are generated using one sample from the injured
subclass and other from the non-injured subclass. Similarly,
for ISTL, triplets are generated by taking anchor from the
non-injured subclass while positive and negative from the
injured subclass. However, for CL and TL, subclasses are not
considered during pairs or triplet generation. LightCNN-29
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TABLE 4
Identification accuracy (%) on the IF-V2 database using the proposed and existing loss functions. The left block shows the results for the probe

with injured images, while the right block shows the results for the probe with injured + non-injured images.

Loss Function Probe: Injured Probe: Injured + Non-injured
Rank 1 Rank 5 Rank 10 Rank 1 Rank 5 Rank 10

Contrastive Loss [33] 64.68 ± 3.6 85.23 ± 2.9 91.46 ± 1.0 82.23 ± 2.6 92.58 ± 2.3 95.72 ± 0.4
Injury Specific CL 66.70 ± 4.4 84.98 ± 4.1 91.73 ± 0.7 82.68 ± 2.8 92.25 ± 2.5 95.72 ± 0.7
Triplet Loss [35] 67.68 ± 2.2 86.99 ± 3.7 94.01 ± 2.6 83.01 ± 2.1 93.03 ± 2.1 96.74 ± 1.7
Injury Specific TL 68.71 ± 4.4 87.48 ± 2.2 94.76 ± 2.9 83.57 ± 2.4 92.69 ± 1.8 97.08 ± 1.5
Center Loss [34] 63.97 ± 6.0 82.74 ± 4.1 88.73 ± 2.1 81.34 ± 4.0 91.13 ± 2.9 94.48 ± 1.5
CoCo Loss [45] 65.94 ± 2.7 85.23 ± 2.3 91.22 ± 0.7 82.67 ± 2.4 92.58 ± 1.9 95.71 ± 0.6
Ring Loss [39] 64.93 ± 3.5 84.22 ± 1.9 90.23 ± 1.1 82.11 ± 2.7 92.35 ± 1.6 95.04 ± 0.7
SphereFace [36] 67.45 ± 5.4 84.47 ± 2.4 90.22 ± 0.5 83.47 ± 3.5 92.24 ± 1.9 95.15 ± 0.4
CosFace [37] 66.96 ± 5.2 85.98 ± 1.6 91.74 ± 1.5 83.25 ± 3.7 93.02 ± 1.6 95.72 ± 1.3
ArcFace [38] 68.92 ± 4.1 84.47 ± 3.3 91.72 ± 1.0 84.48 ± 2.7 92.58 ± 1.7 95.83 ± 0.6
AdaCos [40] 69.21 ± 3.9 87.48 ± 2.4 91.73 ± 0.9 83.81 ± 2.7 93.70 ± 1.5 95.82 ± 0.5
SCL [21] (BTAS2019 version) 69.97 ± 5.0 88.98 ± 1.7 92.99 ± 1.0 84.26 ± 3.3 94.16 ± 1.9 96.28 ± 0.6
Proposed SCIFI Loss 72.22 ± 4.8 88.75 ± 3.1 96.27 ± 3.9 84.60 ± 3.6 93.82 ± 2.2 97.65 ± 2.0

TABLE 5
Comparing the value of metric R.

CL ISCL TL ISTL SCL SCIFI
Ratio 0.0992 0.0963 0.1377 0.1363 0.1081 0.1389

performs the best among the baseline models. Therefore,
experiments are performed using LightCNN-29 as the base
network. The base network is fine-tuned using the proposed
and existing loss functions for the task of injured face
recognition. The features of 256-dimension from the last
fully connected (fc) layer of the LCNN-29 model are used
for performing experiments.

Table 4 shows the average identification accuracy with
standard deviation at ranks 1, 5, and 10 with injured probe
and injured + non-injured probe. It is observed that the
proposed SCIFI loss outperforms existing algorithms for
both cases. For instance, the classification accuracy at rank-1
is 72.22% and 69.46%, corresponding to SCIFI loss and SCL,
respectively, when the probe are injured images. Similarly,
when the probe are injured + non-injured images, the
proposed SCIFI loss outperforms at rank-1 and rank-10 with
a comparable performance at rank-5. This showcases that
the proposed SCIFI loss works well for both the cases. It
is also observed that incorporating the injury information
(ISCL and ISTL) improves the performance of CL and TL.
It is important to note that the proposed SCIFI loss out-
performs recent state-of-the-art face recognition algorithms
[36], [37], [38], [40]. To further validate the improvement in
the accuracies, McNemar’s test is performed to statistically
compare ArcFace and AdaCos with the proposed SCIFI loss.
It is observed that the results of SCIFI loss are significantly
different at 5% significance level. The p-value corresponding
to the comparison of ArcFace and SCIFI loss is 0.03, while
the p-value for comparison of AdaCos and SCIFI loss is 0.04.

In order to understand the variations in intra-class and
inter-class distances with different loss functions, we have
introduced a metric R that computes the ratio of the dif-
ference between mean inter-class and intra-class distance to
the mean inter-class distance.

R =
Inter − Intra

Inter
(17)
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Fig. 6. Illustration of the shift of genuine and imposter cluster centers
with different epochs during training (best viewed in color).

Here, it is assumed that Inter > Intra and the range
of R is 0 to 1. The value of metric R becomes 1 when
the Intra tends to zero or Inter >> Intra. Therefore,
the higher the value of R, the better the performance of
the algorithm. Fig. 5 compares the mean intra-class and
inter-class distances of all the samples in the testing set.
From Fig. 5, it is observed that the proposed SCIFI loss has
higher intra-class as well as inter-class distance. However,
we cannot directly compare the performance by observing
intra-class and inter-class distance individually. Therefore,
the metric R is computed corresponding to the proposed
loss and existing loss functions. The intra-class and inter-
class distances are computed using the 256-dimensional
feature vector from the last fc layer of the trained LCNN-
29 model and the results are summarized in Table 5. It is
observed that the proposed SCIFI loss has the highest R
value. Next, Fig. 6 shows the shift of the genuine cluster
center and imposter cluster center with different epochs
during training. It is observed that both the cluster centers
move along the straight line, which represents the increase
in intra-class and inter-class distances. However, the relative
difference among the genuine and imposter cluster centers
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Fig. 7. t-SNE visualization of the SCL and SCIFI loss of 10 randomly
selected subjects from the testing set (best viewed in color).

X axis

Y 
ax

is

SCL SCIFI

Fig. 8. UMAP visualization of the SCL and SCIFI loss of 10 randomly
selected subjects from the testing set (best viewed in color).

increases with epochs, which in turn reduces the overlap
among different subjects in the feature space.

The t-Distributed Stochastic Neighbor Embedding (t-
SNE) visualization of the feature representation of 10 ran-
domly selected subjects from the testing set using SCL and
SCIFI loss is shown in Fig. 7. It is observed that the subjects
are better separated in feature space using the proposed
SCIFI loss compared to SCL. For better interpretation, we
have also shown Uniform Manifold Approximation and
Projection (UMAP) visualization of 10 randomly selected
subjects from the testing set in Fig. 8. t-SNE preserves local
structure in the data while UMAP preserves both local
and global structure in the data. Therefore, UMAP helps to
interpret both within-cluster and between-cluster distances.
Similar to the t-SNE visualization, UMAP also shows that
the subjects are better separated in the feature space using
the proposed SCIFI.

We have also evaluated the performance in terms of the
verification accuracy. For this purpose, 100 genuine and 100
imposter pairs are randomly generated from the database
and Fig. 9 shows the Genuine Accept Rate (GAR) at 0.1
False Accept Rate (FAR). It is observed that SCIFI loss
outperforms other loss functions. For instance, the GAR
corresponding to SCIFI loss and SCL is 0.92 and 0.83,
respectively. Fig. 10 shows the genuine and imposter score
distributions using SCL and the proposed SCIFI loss, respec-
tively. It is observed that the proposed SCIFI loss reduces the
overlap between the two distributions, which in turn results
in improved performance. These results indicate that the
proposed SCIFI loss performs well for both identification
and verification of injured faces.
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Fig. 10. Genuine and imposter score distributions of the SCIFI loss and
SCL (best viewed in color).

TABLE 6
Identification accuracy (%) on the IF-V2 database by ablating different

loss terms in the proposed SCIFI loss.

Loss Terms Rank 1 Rank 5 Rank 10
LG and LS1

67.42 ± 1.4 87.21 ± 1.1 92.48 ± 0.5
LM and LS2

69.20 ± 3.0 89.21 ± 0.3 94.22 ± 1.5
LInter 58.45 ± 4.8 79.73 ± 3.6 87.47 ± 0.7

LS1
and LS2

69.46 ± 4.0 87.72 ± 2.0 94.24 ± 1.8

5.3 Injured Image Retrieval

Injured image retrieval has several real-world applications.
For instance, retrieving the information of a missing person
sometimes requires matching the non-injured face images of
the missing person with some unidentified victims or dead
bodies with facial injuries. Therefore, the proposed SCIFI
loss is also evaluated for the task of injured image retrieval.
For evaluation, the model is trained on the training set of the
IF-V2 database. For evaluation, the testing set of the IF-V2
database is divided into gallery with injured images and
probe with non-injured images. In this experiment, non-
injured images are matched with injured images, and it
is observed that the proposed SCIFI loss yields the mean
identification accuracy of 73.23% at rank-1, which is 2.88%
higher than SCL.

5.4 Ablation Study and Choice of Hyper-parameters

To investigate the effect of individual terms in the proposed
SCIFI loss function, we have performed four different exper-
iments by ablating individual loss terms. The identification
accuracy at ranks 1, 5, and 10 are shown in Table 6. The
results indicate that each term is important and ablating
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TABLE 7
Analyzing the effect of varying the margin α at learning rate = 6× 10−5

and batch size = 50.

Alpha Rank 1 Rank 5 Rank 10
1.6 69.45 ± 3.0 87.47 ± 2.0 94.72 ± 1.6
2.1 69.70 ± 3.2 88.97 ± 0.2 94.98 ± 0.6
2.6 72.22 ± 4.8 88.75 ± 3.1 96.27 ± 3.9
3.1 70.93 ± 2.2 88.97 ± 0.5 93.97 ± 1.2

TABLE 8
Analyzing the effect of varying the batch size at α = 2.6 and learning

rate = 6× 10−5.

Batch Size Rank 1 Rank 5 Rank 10
50 72.22 ± 4.8 88.75 ± 3.1 96.27 ± 3.9
75 71.44 ± 1.4 87.72 ± 1.1 95.23 ± 1.2
100 70.44 ± 2.1 89.45 ± 1.8 93.47 ± 0.9
125 70.19 ± 1.9 87.96 ± 1.0 95.23 ± 1.2

TABLE 9
Analyzing the effect of varying the learning rate (LR) at α = 2.6 and

batch size = 50.

LR Rank 1 Rank 5 Rank 10
3× 10−5 66.93 ± 2.3 87.46 ± 1.2 94.72 ± 0.6
6× 10−5 72.22 ± 4.8 88.75 ± 3.1 96.27 ± 3.9
9× 10−5 71.69 ± 1.9 89.48 ± 1.5 96.24 ± 1.1
1× 10−4 70.94 ± 2.8 87.22 ± 0.9 94.97 ± 1.9

any of the loss terms degrades the overall performance.
Among different loss terms, ablating LS1

and LS2
has the

least effect on the performance and the accuracy reduces
by 2.76%. However, LInter, which controls the separation
among the genuine and imposter cluster centers, has the
highest impact on the SCIFI loss. It is observed that on
ablating LInter, the rank 1 accuracy of the SCIFI loss reduces
by 13.77%. Removing this term increases the overlap among
genuine and imposter clusters, which in turn degrades the
performance of the model. From Equation 13, it is clear
that LInter becomes zero when the distance between the
genuine and imposter clusters i.e., D(CG,CM ) ≥ α. In
this scenario, the LInter loss does not have a role in the
minimization of the SCIFI loss function and the LInter

loss can be disregarded. However, in practical real world
problems like injured face recognition, this smaller distance
between these clusters is one of the most crucial factors, and
should not be disregarded.

To compare the choice of hyper-parameters for model
training, experiments are performed with different values
of α, batch size, and learning rate. In the literature, differ-
ent methods such as grid search, Bayesian approach, and
gradient based approach have been proposed to estimate or
optimize hyper-parameters [46], [47], [48], [49], [50], [51],
[52]. In this research, hyper-parameters are chosen using
grid search approach. Three times repeated random sub-
sampling is performed for training and testing partitioning
and hyper-parameter tuning. For each hyper-parameter, a
set of values is used for performing grid search. For each
hyper-parameter, the value that yields the best results across
all the partitions (by averaging) is selected. Tables 7, 8, 9
show the impact of varying α, batch size, and learning rate,
respectively, on the final result. From Table 7, it is observed
that on varying the margin α, which is a parameter of LInter
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Fig. 11. Rank 1 identification accuracy (%) with existing and proposed
loss functions and ResNet-18 model. Results are shown for the probe
as (a) injured images and (b) injured + non-injured images.

loss term, the rank-1 accuracy varies from 69.45% to 72.22%.
Table 9 shows that a small learning rate results in lower
rank-1 accuracy. These results indicate that carefully crafted
hyper-parameters play an important role in improving the
generalizability on unseen data. Further, among the three
parameters, learning rate is a very important parameter to
optimize followed by the margin α.

Apart from grid search based approach, we have per-
formed experiment using the Tree-structured Parzen estima-
tors (TPE) approach which is a sequential model-based op-
timization technique. In this experiment, we have obtained
the learning rate as 4.15×10−5 and alpha as 2.58. The mean
classification accuracy with standard deviation obtained at
rank 1, 5, and 10 is 71.03 ± 4.7, 88.99 ± 2.9, and 96.41 ±
0.7, respectively. It is observed that the accuracy obtained
using hyperparameters estimated via TPE approach is close
to the grid search approach.

5.5 Results of ResNet18 Experiment
In order to evaluate the generalizability of the SCIFI loss
with other deep learning networks, we have also per-
formed experiments using ResNet-18 network [38] as the
base model. Experiments are performed using the protocol
mentioned in Section 5 under the following two scenarios:
probe with injured images and probe with injured + non-
injured images. Fig. 11(a) and 11(b) show the results of SCIFI
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and existing loss functions for probe with injured images
and injured + non-injured images, respectively. Compared
to existing loss functions, the proposed SCIFI loss yields
3.51% to 10.27% higher rank-1 accuracy for the probes with
injured images. Similarly, 0.11% to 4.04% improvements are
observed for the probes with injured + non-injured images.
This experiment showcases that the proposed SCIFI loss can
be used in conjunction with other deep learning models and
compared to existing loss functions, it has more expressive
power to improve the performance for injured face recog-
nition. The performance of LightCNN-29 and ResNet18 is
summarized in Table 4 and Fig. 11, and it is observed
that LightCNN-29 yields better performance compared to
ResNet18.

6 CONCLUSION

Facial injuries are common in road accidents, violence, and
natural disasters. Several real-world cases require timely
identification of unconscious victims or unidentified dead
bodies with facial injuries. However, injuries change the
appearance, geometric properties, and physical structure of
face due to swelling, blood clots, bruises, and accidental
cuts. In such scenarios, identification becomes difficult as
these variations increase the overlap among different sub-
jects in the feature space. In this research, a novel Subclass
Injured face Identification (SCIFI) loss is proposed to ad-
dress the problem of injured face recognition. The proposed
loss function performs optimization in the subclass space,
which in turn optimizes the feature space. Additionally, the
Injured Face database is extended to 150 subjects. Multi-
ple experiments are performed on the IF-V2 database to
showcase the efficacy of the proposed SCIFI loss along
with analysis for the improved performance. In future, we
plan to extend this work by detecting injuries in different
facial regions and analyzing the impact of different types of
injuries on the face recognition system.
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“Inter personal violence-related facial injuries: a 10-year survey,”
Journal of Oral Medicine and Oral Surgery, vol. 24, no. 1, pp. 2–5,
2018.

[26] O. M. Parkhi, A. Vedaldi, A. Zisserman et al., “Deep face recogni-
tion.” in British Machine Vision Conference, 2015.

[27] Z. Caplova, Z. Obertova, D. M. Gibelli, D. Mazzarelli, T. Fracasso,
P. Vanezis, C. Sforza, and C. Cattaneo, “The reliability of facial
recognition of deceased persons on photographs,” Journal of Foren-
sic Sciences, vol. 62, no. 5, pp. 1286–1291, 2017.

[28] A. Abaza, A. Ross, and H. Ammar, “Retrieving dental radiographs
for post-mortem identification,” in IEEE International Conference on
Image Processing, 2009.

[29] S. B. Balla et al., “Forensic dental identification: Practice in indian
context compared to western countries,” Journal of Forensic Science
and Medicine, vol. 2, no. 1, p. 44, 2016.

[30] T. Kitayama, T. Fukagawa, H. Watahiki, Y. Mita, K. Fujii,
K. Unuma, K. Sakurada, K. Uemura, K. Sekiguchi, and N. Mizuno,
“Evaluation of rapid dna system for buccal swab and disaster
victim identification samples,” Legal Medicine, p. 101713, 2020.

[31] B. T. Johnson and J. A. Riemen, “Digital capture of fingerprints in
a disaster victim identification setting: a review and case study,”
Forensic sciences research, vol. 4, no. 4, pp. 293–302, 2019.

[32] J. Levinson and A. Domb, “Applying new police technologies
to disaster victim identification,” Forensic Research & Criminology
International Journal, no. 5, 2016.

[33] R. Hadsell, S. Chopra, and Y. LeCun, “Dimensionality reduction
by learning an invariant mapping,” in IEEE Conference on Computer
Vision and Pattern Recognition, 2006.

Authorized licensed use limited to: Indian Institute of Technology - Jodhpur. Downloaded on January 29,2021 at 08:08:04 UTC from IEEE Xplore.  Restrictions apply. 



2637-6407 (c) 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBIOM.2020.3047274, IEEE
Transactions on Biometrics, Behavior, and Identity Science

IEEE T-BIOM 12

[34] Y. Wen, K. Zhang, Z. Li, and Y. Qiao, “A discriminative feature
learning approach for deep face recognition,” in European confer-
ence on computer vision. Springer, 2016, pp. 499–515.

[35] F. Schroff, D. Kalenichenko, and J. Philbin, “Facenet: A unified
embedding for face recognition and clustering,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2015.

[36] W. Liu, Y. Wen, Z. Yu, M. Li, B. Raj, and L. Song, “Sphereface: Deep
hypersphere embedding for face recognition,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2017.

[37] H. Wang, Y. Wang, Z. Zhou, X. Ji, D. Gong, J. Zhou, Z. Li,
and W. Liu, “Cosface: Large margin cosine loss for deep face
recognition,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2018.

[38] J. Deng, J. Guo, N. Xue, and S. Zafeiriou, “Arcface: Additive
angular margin loss for deep face recognition,” in IEEE Conference
on Computer Vision and Pattern Recognition, 2019.

[39] Y. Zheng, D. K. Pal, and M. Savvides, “Ring loss: Convex feature
normalization for face recognition,” in IEEE Conference on Com-
puter Vision and Pattern Recognition, 2018.

[40] X. Zhang, R. Zhao, Y. Qiao, X. Wang, and H. Li, “Adacos:
Adaptively scaling cosine logits for effectively learning deep face
representations,” in IEEE Conference on Computer Vision and Pattern
Recognition, 2019.

[41] M. Zhu and A. M. Martinez, “Subclass discriminant analysis,”
IEEE transactions on Pattern Analysis and Machine Intelligence,
vol. 28, no. 8, pp. 1274–1286, 2006.

[42] B. Mandal, L. Li, V. Chandrasekhar, and J. H. Lim, “Whole space
subclass discriminant analysis for face recognition,” in IEEE Inter-
national Conference on Image Processing, 2015, pp. 329–333.

[43] D. E. King, “Dlib-ml: A machine learning toolkit,” Journal of
Machine Learning Research, vol. 10, no. Jul, pp. 1755–1758, 2009.

[44] B. Amos, B. Ludwiczuk, J. Harkes, P. Pillai, K. Elgazzar, and
M. Satyanarayanan, “Openface: Face recognition with deep neural
networks,” in IEEE Winter Conference on Applications of Computer
Vision, 2016.

[45] Y. Liu, H. Li, and X. Wang, “Rethinking feature discrimination and
polymerization for large-scale recognition,” in Advances in Neural
Information Processing Systems, 2017.

[46] H. C. Law, P. Zhao, L. S. Chan, J. Huang, and D. Sejdinovic,
“Hyperparameter learning via distributional transfer,” in Advances
in Neural Information Processing Systems, 2019, pp. 6801–6812.

[47] I. Ilievski, T. Akhtar, J. Feng, and C. A. Shoemaker, “Efficient
hyperparameter optimization for deep learning algorithms using
deterministic rbf surrogates,” in Thirty-First AAAI Conference on
Artificial Intelligence, 2017.

[48] X. Dong, J. Shen, W. Wang, L. Shao, H. Ling, and F. Porikli,
“Dynamical hyperparameter optimization via deep reinforcement
learning in tracking,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, 2019.

[49] T. Akiba, S. Sano, T. Yanase, T. Ohta, and M. Koyama, “Optuna:
A next-generation hyperparameter optimization framework,” in
Proceedings of the 25th ACM SIGKDD International Conference on
Knowledge Discovery & Data Mining, 2019, pp. 2623–2631.

[50] Y. Yoo, “Hyperparameter optimization of deep neural network
using univariate dynamic encoding algorithm for searches,”
Knowledge-Based Systems, vol. 178, pp. 74–83, 2019.

[51] M. Parsa, J. P. Mitchell, C. D. Schuman, R. M. Patton, T. E. Potok,
and K. Roy, “Bayesian-based hyperparameter optimization for
spiking neuromorphic systems,” in IEEE International Conference
on Big Data, 2019, pp. 4472–4478.

[52] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
“An empirical evaluation of deep architectures on problems with
many factors of variation,” in International Conference on Machine
Learning, 2007, pp. 473–480.

Puspita Majumdar received the Master of Tech-
nology degree in Computer Science from the
National Institute of Technology - Delhi, India,
in 2017 where she was awarded the President
Gold Medal for her academic performance. She
is currently pursuing her Ph.D. with the Image
Analysis and Biometrics (IAB) Lab at IIIT-Delhi,
India. She is a recipient of the DST INSPIRE
Fellowship for pursuing her Doctoral Program.
Her research interests are machine learning and
deep learning with applications in face recogni-

tion. She received the Best Student Paper Award at IEEE BTAS 2019.

Saheb Chhabra received the Bachelor of Tech-
nology degree in Electronics & Communication
from the Lovely Professional University - Pun-
jab, India, in 2013. Currently, he is pursuing his
Ph.D. degree in Computer Science from IIIT-
Delhi, India. His research interests include ma-
chine learning and deep learning with applica-
tions in privacy preservation. He has received
the Best Student Paper Award at IEEE BTAS
2019. He has also served as the Program Com-
mittee member of AAAI 2021.

Richa Singh is currently a Professor at IIT Jodh-
pur, India. She is a Fellow of IAPR and a Se-
nior Member of ACM. She was a recipient of
the Kusum and Mohandas Pai Faculty Research
Fellowship at the IIIT-Delhi, the FAST Award
by the Department of Science and Technology,
India, and several best paper and best poster
awards in international conferences. She has
also served as the Program Co-Chair of IJCB
2020, FG2019, and BTAS 2016, and a General
Co-Chair of ISBA 2017. She is currently serving

as the General Co-Chair of FG2021. She is also the Vice President
(Publications) of the IEEE Biometrics Council. She is an Associate
Editor-in-Chief of Pattern Recognition, and Area/Associate Editor of
several journals.

Mayank Vatsa is a Professor at IIT Jodhpur,
India, and an Adjunct Professor with IIIT-Delhi
and West Virginia University, USA. His areas of
interest are biometrics, machine learning, com-
puter vision, and information fusion. He is the
recipient of the prestigious Swarnajayanti Fel-
lowship award from Government of India, A. R.
Krishnaswamy Faculty Research Fellowship at
the IIIT-Delhi, the FAST Award Project by DST,
India, and several Best Paper and Best Poster
Awards at international conferences. He is an

Area/Associate Editor of Information Fusion and Pattern Recognition
Journals, General Co-Chair of IJCB 2020, and the PC Co-Chair of
the ICB 2013 and IJCB 2014. He has served as the Vice President
(Publications) of the IEEE Biometrics Council where he started the IEEE
Trans. on BIOM.

Authorized licensed use limited to: Indian Institute of Technology - Jodhpur. Downloaded on January 29,2021 at 08:08:04 UTC from IEEE Xplore.  Restrictions apply. 


