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Abstract—One of the most challenging scenarios of face recognition is matching images in presence of multiple covariates such as
cross-spectral and cross-resolution. Law enforcement agencies across the world face this arduous task for which the existing face
recognition algorithms do not yield the desired level of performance. In this paper, we propose a Subclass Heterogeneity Aware Loss
(SHEAL) to train a deep convolutional neural network model such that it produces embeddings suitable for heterogeneous face
recognition. The performance of the proposed SHEAL function is evaluated on four databases in terms of the recognition performance
as well as convergence in time and epochs. We observe that SHEAL not only yields state-of-the-art results for the most challenging
case of Cross-Spectral Cross-Resolution face recognition, it also achieves excellent performance on homogeneous face recognition.
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1 INTRODUCTION

The increasing effectiveness of Deep Convolutional Neural
Networks (Deep-CNNs) has led to the emergence of very efficient
face recognition algorithms [1], [2], [3], [4]. With this devel-
opment, various applications ranging from unlocking of mobile
phones and laptops to monitoring of public places are now using
face recognition technology. These images are usually captured
in controlled scenarios and constrained settings. However, the
query images may be captured in unconstrained environment by
any kind of camera; for instance, surveillance cameras. These
cameras are generally placed at a high standoff distance from the
subjects and have a large field-of-view [5], [6]. As a result, the
effective resolution and quality of the captured face image may
be low. In addition to that, when sufficient visible illumination is
not available, these cameras operate in the Near-Infrared (NIR)
mode and the probe images are captured in NIR spectrum. This
results in a heterogeneous image/face matching (recognition)
problem between the high resolution visible spectrum gallery and
low resolution NIR spectrum probes (Fig. 1). The combination
of the acquisition environment and the position of the user in
relation to the camera location leads to three possible scenarios of
heterogeneous face matching.

• Cross-Spectral matching where the visible spectrum face
image (gallery) is matched with the NIR spectrum images
(probes).

• Cross-Resolution matching where the high resolution face
images (gallery) is matched with the low resolution images
(probes) obtained from surveillance cameras.

• Cross-Spectral Cross-Resolution matching where low res-
olution NIR images (probe) are matched with high resolu-
tion visible spectrum mugshot images (gallery).
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Fig. 1: Visual abstract of the proposed Subclass Heterogeneity
Aware Loss (SHEAL). The intraclass distance between the dif-
ferent subclasses, each represented by a particular covariate such
as high resolution (HR), low resolution (LR) and NIR images
is minimized, while pushing other impostor classes away, in the
embedding space of the model. (best viewed in color)
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Fig. 2: Illustrating the effect of training with the proposed loss function. The proposed loss function attempts to minimize the distance
between the intra-class embeddings compared to the distance between the embeddings of the images belonging to different classes.

Several researchers have proposed solutions for heterogeneous
face recognition. At the core of many of these solutions lies the
most fundamental concept of training a face recognition model,
which is, train the model such that the intra-class is minimized
and the inter-class distance is maximized, both for with intra-view
(homogeneous) and inter-view (heterogeneous) data variations [7],
[8], [9]. However, most of the existing algorithms focus on
only one covariate at a time, either cross-resolution or cross-
spectral variations, not both together. Given the increasing use of
surveillance cameras for security, it is important to address both
the covariates together.

In this research, we propose a unified Subclass Heterogeneity
Aware Loss (SHEAL) to train a discriminative model which pro-
duces face embeddings for accurate classification in the presence
of multiple face recognition covariates. A novel subclass based
optimization approach is presented, which optimizes the clusters
based on different subclasses in the data. As shown in Fig. 2, the
proposed model learns discriminative embeddings for both high
resolution and visible spectrum gallery images and low resolution,
NIR spectrum probe images. These learnt embeddings are then
matched using Euclidean distance. Experiments on four challeng-
ing databases, namely SCface [10], FaceSurv [11], CASIA NIR-
VIS 2.0 [12], and Labeled Faces in the Wild [13], demonstrate the
efficacy of the proposed approach, not only in the identification
performance but also with respect to convergence in terms of
training time and epochs.

2 RELATED WORK

This paper addresses the problem of cross-spectral cross-
resolution face recognition with a novel deep metric learning algo-
rithm. Therefore, the review section first outlines the related work
performed on cross-spectral and cross resolution face recognition
especially using deep learning methods, followed by the literature
on deep metric learning methods for face recognition.

Prior to the emergence of deep learning based face recognition
algorithms, several discriminative learning and transfer learning
based approaches were proposed for cross-spectral [7], [9], [12],

[14], [15], [16], [17] and cross-resolution [18], [19], [20], [21]
face recognition. Deep learning based algorithms have also been
proposed for these tasks. Lu et al. [22] learned binary descriptors
for heterogeneous face recognition. Yi et al. [23] used a shared
representation learning based approach using Restricted Boltzman
Machines for cross-spectral face recognition. Saxena et al. [24]
used a metric learning based algorithm to learn a Mahalanobis
distance based embedding space for the same. Lezama et al. [25]
used a low rank embedding based approach for hallucination of
NIR to visible spectrum face images for cross-spectral face match-
ing. He et al. [26] proposed an algorithm to learn a deep-CNN
model where the high level layer is divided into two orthogonal
subspaces that learn modality-invariant representation for cross-
spectral face recognition. Wu et al. [27] used an approximate
variational formulation in a coupled deep learning framework for
matching NIR face images to a gallery of visible-spectrum face
images. Song et al. [28] proposed an adversarial discriminative
learning algorithm for the same, using an integration of cross-
spectral face hallucination and discriminative feature learning.
Pereira et al. [29] proposed a deep learning approach using a
framework that learns domain specific feature detectors for cross-
spectral face recognition. Recently, Peng et al. [30] proposed
a locally linear re-ranking (LLRe-Rank) approach for the same
problem. He et al. [31] performed face completion by texture
inpainting and pose correction using generative modelling for
translating NIR face images for efficient matching with visible
spectrum images.

Singh et al. [32] proposed a Synthesis via Hierarchical
Sparse Representation for generating a high resolution face image
from a low resolution one, for cross-resolution face recognition.
Lu et al. [1] utilized a deep coupled end to end CNN consisting of
a trunk network and two branch networks for cross-resolution face
matching. Lu et al. [33] utilized a discriminative multidimensional
scaling approach for face recognition from low resolution images.
Ge et al. [34] proposed an approach using a two-stream CNN for
low resolution face recognition. Li et al. [35] used a supervised
discriminative learning approach for low resolution face recogni-
tion. Zangeneh et al. [36] proposed a novel nonlinear coupled
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Fig. 3: Representation of the proposed method: (a) Overall motivation of the problem, (b) Illustration of the proposed loss metric
which minimizes the intra-class distance and maximizes the inter-class distance (including intra-view and inter-view variations) and (c)
Subclass based cluster optimization.

mapping architecture for face recognition from low resolution
images. Abdollahi et al. [37] proposed a modified finetuning
approach using different variations of the training data for low
resolution face recognition. Recently Singh et al. [38] utilized
a dual directed capsule network for very low resolution face
recognition.

The popularity of deep metric learning methods has led to
the development of several loss functions [39], [40], [41], [42],
[43], [44], [45], [46], [47], [48] to train deep neural network
models for face recognition. Schroff et al. [49] introduced the
triplet loss based training method for face verification. Quadruplet
loss [50], an extension of triplet loss, adds an extra negative
sample to the loss function. This loss function enforces a stricter
inter-class distance on the output embedding space of the model
being trained. However, both these techniques do not consider
any heterogeneity in the data during training. They also require
extensive hard-sample mining for effective training. In order to
account for heterogeneity in data, Liu et al. [51] have proposed a
heterogeneous variant of triplet loss. This loss function can take at
most one heterogeneity (e.g. cross-resolution) at a time and is not
suitable for handling more than one covariate (e.g. cross-resolution
and cross-spectral both). In addition, it required exhaustive hard
mining prior to the training process. Several modifications [44],
[50], [52] to the triplet loss have been proposed for a diverse range
of applications such as person-re-identification, matching images
of cars, object recognition, patch matching and so on. However,
none of these methods addressed scenarios where matching of
images with multiple heterogeneity is involved.

3 PROPOSED ALGORITHM

In this section, we illustrate the proposed algorithm which is
utilized to learn a model for face recognition invariant to both
spectrum and resolution. First, the framework for a heteroge-
neous matching problem is illustrated with only one covari-
ate/heterogeneity (resolution and spectrum) across probes and
gallery images. The formulation is then extended to include
invariance to two covariates, namely resolution and spectrum. It is
important to note that while the proposed loss function SHEAL,
LSHEAL, optimizes for heterogeneous matching with one or two

covariates, it also optimizes for homogeneous matching (no co-
variates). The first subsection presents the formulation of SHEAL
followed by the sub-class based cluster optimization. Finally,
the heterogeneous face recognition algorithm is presented which
learns a model with a highly discriminative output embedding
space for cross-spectral cross-resolution face recognition. Fig. 3
illustrates the concept of the proposed Subclass Heterogeneity
Aware Loss (SHEAL).

3.1 SHEAL: Subclass Heterogeneity Aware Loss
For a heterogeneous face matching problem, the gallery contains
images with high resolution visible spectrum while the probe
images are captured with different covariates present (for instance
low resolution and/or NIR). For simplicity, let us assume only one
kind of heterogeneity, e.g. resolution, is available in the data (i.e.
gallery of high resolution images and probes are low resolution
images). In order to learn a discriminative model for such a task,
the loss metric needs to perform two tasks, minimizing (pulling
together) and maximizing (pushing away) the intra-class and
inter-class distances, respectively in intra-view1 (homogeneous)
settings, and performing the same in inter-view2 (heterogeneous)
settings. The proposed heterogeneous loss function is expressed
as,

L = [||g(XH
i )− g(X ′Hi )||22 − ||g(XH

i )− g(XH
j )||22 + α1]+

+ [||g(XH
i )− g(XL

i )||22 − ||g(XH
i )− g(XL

k )||22 + α2]+ (1)

∀(XH
i , X

H
j , X

L
i , X

L
k ) ∈ τ

where, H and L signify high and low resolution, respectively.
XH

i is the high resolution anchor image of subject i, X ′Hi is
another high resolution image of the same subject i, XL

i is a low
resolution image of the subject i, XH

j is the high resolution image
of subject j, XL

k is a low resolution image of another subject k
where, i 6= j 6= k and [·]+ = max(·, 0).

1. Intra-view settings refer to the scenario when the gallery and probe are
homogeneous in nature, for example, same resolution and spectrum.

2. Inter-view settings refer to the scenario when both gallery and probe
images are heterogeneous in nature, for example, different resolution or
spectrum.
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In a complex (more realistic) scenario, the heterogeneity may
be due to two different views, namely resolution and spectrum.
For example, the gallery images are in visible spectrum and high
resolution, while the probes are in NIR and low resolution. Let
the visible spectrum and NIR spectrum be denoted as V and N ,
respectively, and subscripts i, j, k, l,m represent different sub-
jects/classes. Let the high resolution visible spectrum image of the
ith subject (class) be XH,V

i . Another image of the same subject
in the same setting is denoted as X ′H,V

i . Similarly, XH,N
i , XL,V

i

and XL,N
i represent the high resolution NIR spectrum image,

low resolution visible spectrum image, and low resolution NIR
spectrum image of the ith subject, respectively. To accommodate
both cross-resolution cross-spectral variations, the proposed loss
function is formulated with two cross-views, hence require four
separate terms. The first term takes care of the homogeneous
matching scenario, the next two terms accommodates for cross-
resolution and cross-spectral matching respectively, followed by
the last term for cross-spectral cross-resolution matching.

The homogeneous loss term (LHo) is computed as,

LHo = [||g(XH,V
i )− g(X ′H,V

i )||22−
||g(XH,V

i )− g(XH,V
j )||22 + α1]+ (2)

This loss expression is composed of two parts, the former
‖g(XH,V

i ) − g(X ′
H,V
i )‖22 minimizes the intra-class distance

between the embedding of the anchor image g(XH,V
i ) and

g(X ′
H,V
i ), which is another image of the same subject cap-

tured in the same condition. The later part of the expression,
‖g(XH,V

i ) − g(XH,V
j )‖22 maximizes the inter-class distance be-

tween g(XH,V
i ) and g(XH,V

j ). However, in order to calculate the
intra-class loss, we can replace the embedding of the anchor image
g(XH,V

i ) by the center embedding of the ith class (subject) given
by gc(X

H,V
i ). In addition to that, the inter-class distances are also

computed from gc(X
H,V
i ) instead of g(XH,V

i ). Therefore, for
SHEAL, the loss function for the homogeneous component (Lc

Ho)
can be written as:

Lc
Ho = [||gc(XH,V

i )− g(X ′H,V
i )||22−

||gc(XH,V
i ))− g(XH,V

j )||22 + α1]+ (3)

Next, the cross-resolution loss term is expressed as:

Lc
CR = [||gc(XH,V

i )− g(XL,V
i )||22−

||gc(XH,V
i )− g(XL,V

k )||22 + α2]+ (4)

This loss expression contains two parts, the former
‖gc(XH,V

i ) − g(XL,V
i )‖22 pertains to the distance between the

center embedding of the images of the same subject i in visi-
ble spectrum and low resolution. The later term ‖gc(XH,V

i ) −
g(XL,V

k )‖22 focuses on maximizing the inter-class distance be-
tween the center embedding of another subject k in visible
spectrum and low resolution. Similarly, the cross-spectral loss is
expressed as,

Lc
CS = [||gc(XH,V

i )− g(XH,N
i )||22−

||gc(XH,V
i )− g(XH,N

l )||22 + α3]+ (5)

Along the same lines, the cross-spectral cross-resolution loss is
computed as,

Lc
CS−CR = [||gc(XH,V

i )− g(XL,N
i )||22−

||gc(XH,V
i )− g(XL,N

m )||22 + α4]+ (6)

Equation 6 models the most challenging scenario where the intra-
class and inter-class distances are evaluated between the high
resolution visible spectrum images and images captured in low
resolution and NIR. Such probe images differ from the gallery
images with respect to both resolution and spectrum. The final loss
function combines the homogeneous and heterogeneous losses as
follows:

LSHEAL = λ1.L
c
Ho + λ2.L

c
CR + λ3.L

c
CS + λ4.L

c
CS−CR (7)

∀(X ′H,V
i , XH,V

j , XL,V
i , XL,V

k ,

XH,N
i , XH,N

l , XL,N
i , XL,N

m ) ∈ τ

where, τ is the set of 8-tuples. Each such 8-tuple is considered
as a training sample and the coefficients {λ1, λ2, λ3, λ4} may be
used to adjust the weights of each component of the loss function.
The gradient of this loss can be utilized to train the parameters of
a model using representation learning (e.g. CNN model).

The traditional triplet loss works by pulling the embeddings of
all samples of the same class towards the anchor and pushing the
same for the impostor classes away from the anchor. However, this
loss is unable to handle a heterogeneous matching problem where
a pair of images of different views/modalities are to be matched
during testing. In order to approach this problem we are required
to train a discriminative model which can generate heterogeneity
aware embeddings. To train such a model, the loss function should
incorporate different matching scenarios, i.e. both homogeneous
and heterogeneous. The proposed loss function (Equation 7) has
been formulated by combining multiple heterogeneous variations
for face matching. To summarize, the salient contributions/novelty
of this work are as follows:

• We propose a method to train a discriminative model
which can be utilized to match images belonging to more
than one covariate. Equation 7 has four loss terms, viz
Lc
Ho, Lc

CR, Lc
CS and Lc

CS−CR. Each of them contributes
a gradient which is used to update the weights of the model
g(.) being trained.

• In Equation 7, different terms are weighed by adjustable
λ parameters. If we want the model to be more often
used for cross-spectral-cross-resolution matching then the
coefficient of Lc

CS−CR can be given a higher value. This
allows the model to be tuned for a specific application
scenario as well.

The model g(.) is trained using Equation 7 which results in
disjoint clusters for each class in the output embedding space of
the model. These clusters are further optimized using subclass
based cluster optimization as illustrated in the next subsection.

3.2 Subclass based Cluster Optimization
We optimize the clusters (learned using LSHEAL) in the embed-
ding space of the model using a subclass based loss formulation.
As shown in Fig. 3(c), in each cluster which contains embeddings
of the images of a particular subject, the embeddings of the good
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quality images (high resolution visible spectrum) of the respective
subject are expected to be very close to each other. On the other
hand, the images different from the good quality ones (i.e. low
resolution and NIR) are expected to be farther away in the same
cluster. Using this as a hypothesis, each cluster is expected to
contain two subclasses, one representing the good quality images
(homogeneous) and the other for the heterogeneous images. An
optimization stage is utilized to create a more compact cluster
by bringing these two subclasses closer to each other. The loss
function for the cluster optimization stage is expressed as,

LPP = β1.[||gc1(X
H,V
i )− g(X ′H,V

i )||22
− ||gc1(X

H,V
i )− g(XH,V

j )||22 + α1]++

β2.[||gc2(X
L,N
i )− g(XL,N

i )||22−
||gc2(X

L,N
i )− g(XL,N

k )||22 + α2]+

+ β3.[||gc1(X
H,V
i )− gc2(X

L,N
i )||22]+ (8)

∀(XH,V
i , XL,N

i , XH,V
j , XL,N

k ) ∈ τ

where, gc1(X
H,V
i ) and gc2(X

L,N
i ) are the centers of the sub-

classes pertaining to the homogeneous (good quality) and the
heterogeneous (low resolution and NIR) images, respectively.
β1, β2, β3 are weights for each component. The first term in
Equation 8 is similar to the first term of Equation 3, which brings
the embedding of the good quality (homogeneous) images closer
in the output embedding space of the model. The second term
brings the embedding of the heterogeneous images closer thus
making the subclass of the heterogeneous images (low resolution
and NIR) more compact. The third term brings the centers of the
two subclasses of the cluster closer to each other. The coefficients
{β1, β2, β3} are used to adjust the strength of each component of
the loss function. At the end of this cluster optimization phase, it
is expected that all the images (heterogeneous and homogeneous)
of each class must make a compact cluster, thereby enhancing
heterogeneous matching performance of the trained model.

3.3 Heterogeneous Face Recognition using SHEAL
In order to train a heterogeneity aware model for face recognition,
Equation 7 followed by Equation 8 is utilized. Once the model is
trained, the test data is partitioned into probe and gallery according
to the protocol of the testing database. For cross-spectral cross-
resolution face recognition, the probes are NIR images of low res-
olution and the gallery images are high resolution visible spectrum
images. A probe is given as input to the trained discriminative
model to extract the embeddings, and the same is performed to
generate the embeddings of the gallery images. The Euclidean
distance is used to calculate match scores between the probe and
gallery embeddings, which is finally used for face recognition.

3.4 Implementation Details
In this section, we outline the implementation details required to
reproduce the results.

3.4.1 CNN Model
The proposed SHEAL is utilized to train a deep-CNN model
for heterogeneous face recognition. The CNN model used is
Light-CNN-29 [3] which is one of the popular models for face
recognition with 29 convolutional layers and 4 pooling layers.
After every convolutional layer a Max-Feature-Map operation is

performed. The network is built using 6 blocks and each block
contains convolution and Max-Feature-Map layers. The final layer
is a Max-Feature-Map layer which gives an embedding of size
256.

3.4.2 Preparing Data for Training
In order to prepare training data for the SHEAL metric, each
training sample is represented by an 8-tuple. Unlike existing ap-
proaches [49], [50], [52] we do not perform any hard mining on the
set of 8-tuples, rather, we randomly prepare 500 8-tuples for every
epoch. In order to prepare each 8-tuple, the images of a randomly
selected subject/class (high resolution and visible spectrum) are
used to calculate the center embedding. Other images for the
8-tuples are then chosen randomly from the training set of the
database accordingly. We train only one epoch on each set of 500
8-tuples that are created in every iteration. We also performed
experiments by running multiple epochs on each set of 8-tuples,
but there is a tendency of the model to overfit on the samples that
are generated. Thus, each epoch constitutes generating the set of
500 8-tuples and running one iteration of training on it. This keeps
the pace of learning stable and effective.

3.4.3 Loss Function Parameters
The deep-CNN model is trained by back-propagating the gradient
of the proposed SHEAL. The optimization is performed using
Adam with a batch size of 20. The learning rate is initially kept
at 10−3 which is then gradually decreased to 10−7. The criteria
for decreasing the learning rate was non-increment of validation
accuracy for 20 epochs. The learning rate was decreased in steps
of 0.05. The values of the margin variables α1, α2, α3, α4 are set
differently for different databases during training. For the SCface
database, we keep α1 = 0.2, α2 = 0.4, α3 = 0.4, and α4 =
0.6. For the FaceSurv database, we keep α1 = 0.2, α2 = 0.4,
α3 = 0.4, and α4 = 0.8. For the CASIA NIR-VIS 2.0 database,
we keep α1 = 0.3, α2 = 0.4, α3 = 0.4, and α4 = 0.8.

The parameters for the loss function coefficients λ1, λ2, λ3, λ4
for training are set as follows. For the SCface database, λ1 = 0.1,
λ2 = 0.2, λ3 = 0.4, and λ4 = 0.7. For the FaceSurv database,
λ1 = 0.4, λ2 = 0.5, λ3 = 0.5, and λ4 = 0.9. For the CASIA
NIR-VIS 2.0 database, λ1 = 0.1, λ2 = 0.4, λ3 = 0.6 and
λ4 = 0.6. Experiments are performed on a machine with Intel
Core i7 CPU, with 32GB of RAM and NVIDIA GTX 1080Ti
GPU with a PyTorch implementation.

3.4.4 Weights (β) for Subclass Cluster Optimization
The β parameters are used to assign weight of different compo-
nents (Equation 8) in the subclass optimization step of SHEAL.
Although these parameters are chosen empirically, we have fol-
lowed a strategy while selecting the β parameters. As illustrated
in Section 3.2, β1 and β2 are the weights of the subclasses for
the visible spectrum high resolution images and the NIR low
resolution images, respectively. On the other hand β3 are weights
for bringing the two subclasses closer into a single compact
cluster. Since the later is the main motive of this step, β3 is given
a higher value than β1 and β2. Using this guideline and some
empirical observations, the best β parameters are obtained for the
subclass based cluster optimization.

4 EXPERIMENTS AND ANALYSIS

To show the efficacy of the proposed approach, we have performed
three different heterogeneous experiments on four challenging face
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TABLE 1: Experimental details to evaluate the performance of the proposed SHEAL.

Experiment Databases Spectrum Resolution
Gallery Probe Gallery Probe

Cross-Resolution
Face Recognition (CR-FR)

SCface Visible Visible 128 x 128 24 x 24, 32 x 32, 48 x 48
FaceSurv Visible Visible 128 x 128 48 x 48, 64 x 64

LFW Visible Visible 128 x 128 32 x 32, 48 x 48
Cross-Spectral

Face Recognition (CS-FR)
SCface Visible NIR 128 x 128 128 x 128

CASIA NIR-VIS 2.0 Visible NIR 128 x 128 128 x 128

Cross-Spectral Cross-Resolution
Face Recognition (CSCR-FR)

SCface Visible NIR 128 x 128 24 x 24, 32 x 32, 48 x 48
FaceSurv Visible NIR 128 x 128 48 x 48, 64 x 64

CASIA NIR-VIS 2.0 Visible NIR 128 x 128 48 x 48, 64 x 64
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Fig. 4: Three different cases of heterogeneous face recognition
considered in this work, including the most challenging case of
cross-spectral cross-resolution matching. Images are taken from
the SCface [10] and FaceSurv [11] databases.

databases. Very few papers in the literature have analyzed all three
heterogeneous scenarios (a typical scenario of face recognition for
video surveillance) using a single algorithm.

4.1 Databases and Protocol
As shown in Fig. 4 three experiments are performed, namely
Cross-Resolution Face Recognition (CR-FR), Cross-Spectral Face
Recognition (CS-FR), and Cross-Spectral Cross-Resolution Face
Recognition (CSCR-FR). Details of experimental protocol are
illustrated in Table 1. The details of the databases used for the
experiments are as follows.

SCface Database [10] is one of the most popular face datasets
that contains real world surveillance quality images. It contains
4160 images of 130 subjects captured using 8 surveillance cameras
from three standoff distances namely 1 mt, 2.6 mts and 4.2 mts.
The effective resolution of the face images detected from these
surveillance images are 24×24, 32×32 and 48×48 for these three

distances, respectively. Out of the 8 cameras, 5 operate in the vis-
ible spectrum and the remaining capture images in the NIR mode.
The gallery images are captured using high resolution cameras and
are sub-sampled to a resolution of 128×128. For CSCR-FR, NIR
probe images pertaining to the three different resolutions have
been matched with the high resolution visible spectrum gallery.
For CR-FR, the same matching has been performed with low
resolution visible spectrum probe images.

CASIA NIR-VIS 2.0 Database [12] is the largest publicly
available dataset for CS-FR. It contains a total of 17,415 vis-
ible spectrum and NIR images pertaining to 725 subjects. The
images in the training and testing sets are fixed and contain non-
overlapping subjects. The database is divided into two views,
namely view 1 and 2. The former is a development set and the
later is for reporting the results. The gallery set contains one high
resolution visible spectrum image for each subject. In order to
train the deep CNN model using the proposed loss metric, we
need low resolution visible and NIR images, in addition to the high
resolution (128 × 128) visible and NIR images that are already
present in the database. The images (both visible and NIR) are
subsampled to a resolution of 32× 32 to synthetically create low
resolution versions of the same. To perform testing for CSCR-FR,
the probe images are subsampled to a resolution of 48 × 48 and
64×64. For CS-FR, the usual protocol of the database (128×128
NIR probes) is utilized.

FaceSurv Database [11] contains videos captured under surveil-
lance conditions in both day-time (in visible spectrum) and night-
time (in NIR). The videos contain subjects walking at a standoff
distance of 1-10 mts from the camera. The night-time videos
have been captured in a completely dark environment using NIR
illumination, while the day-time videos have been captured in
outdoor settings. Both day-time and night-time videos are captured
under uncontrolled illumination, pose and expression variations.
The gallery images contain three high resolution (subsampled to
128 × 128) visible spectrum images for every subject. Images
pertaining to 30 subjects are used for training and images of the
remaining subjects are used for testing. In terms of the number
of images, the training and testing sets have 13,617 and 109,131
video frames (of non-overlapping subjects), respectively. In order
to perform CSCR-FR, night-time (NIR) probe videos have been
divided into two subsets, video frames that are captured at a
distance to 5-10 mts (48 × 48 resolution) and frames that are
captured at a distance to 1-5 mts (64 × 64 resolution) from the
camera. For CR-FR, the same matching has been performed with
day-time video frames.

Labeled Faces in the Wild (LFW) Database [13] contains
13,233 images of 5,749 subjects, out of which 1,680 subjects have
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TABLE 2: Rank 1 identification accuracies on the SCface database.

Algorithm Cross-Spectral Cross-Resolution Cross-Resolution
24 x 24 32 x 32 48 x 48 24 x 24 32 x 32 48 x 48

Biswas et al. (2013) (Multi-Dimensional Scaling) [18] - - - 64.8 70.4 76.1
Bhatt et al. (2014) (Co-Transfer Learning) [20] - - - 70.1 76.2 83.4
Wu et al. (2015) (LightCNN29) [3] 8.4 23.7 69.0 33.1 85.5 97.8
COTS (2016) (FaceVacs) [53] 1.7 2.9 6.5 10.3 18.5 35.7
Ghosh et al. (2016) (Autoencoder+SIFT) [53] - 37.0 53.8 - - -
Schroff et al. (2015) (Triplet loss) [49] 11.1 37.9 67.8 35.3 87.5 97.4
Chen et al. (2017) (Quadruplet Loss) [50] 10.6 25.6 70.7 33.0 86.0 97.7
Hermans et al. (2017) (Hard Triplet Loss) [54] 11.2 28.9 71.7 35.6 87.7 97.2
He et al. (2018) (Triplet Center Loss) [55] 14.8 29.4 72.0 34.6 89.1 97.9
Yang et al. (2018) (DMDS) [33] - - - 61.5 67.2 62.9
Yang et al. (2018) (LDMDS) [33] - - - 62.7 70.7 65.5
Talreja et al. (2019) [56] - - - 44.8 49.6 54.3
Li et al. (2019) [35] - - - 20.4 20.8 31.7
Proposed SHEAL 43.9 73.0 87.6 72.8 97.6 99.1

TABLE 3: Rank 1 identification accuracies on the CASIA NIR-VIS 2.0 database.

Algorithm Cross-Spectral Cross-Resolution Cross-Spectral
48 x 48 64 x 64 128 x 128

Wu et al. (2015) (LightCNN29) [3] 62.9 77.4 79.1
Schroff et al. (2015) (Triplet loss) [49] 67.3 81.2 82.5
Liu et al. (2016) (Transferable Triplet Loss) [51] - - 95.7
Lezama et al. (2017) (Face Hallucination) [25] - - 96.4
He et al. (2017) (Invariant Deep Representation) [26] - - 97.3
Chen et al. (2017) (Quadruplet Loss) [50] 68.5 81.7 83.1
Hermans et al. (2017) (Hard Triplet Loss) [54] 70.4 83.8 86.0
Lu et al. (2018) (C-SLBFLE) [57] - - 86.9
Huo et al. (2018) (K-MCMML) [2] - - 96.5
Proposed SHEAL 93.8 97.5 97.6

more than 2 images. The database is divided into views 1 and 2,
where view 1 is the development set. View 2, which is the set on
which results are reported has 10 folds, each of which contains
300 genuine and 300 impostor pairs. In order to perform cross-
resolution face recognition experiments, low resolution images
(32 × 32 and 48 × 48) are synthetically prepared (similar to the
experiment on the CASIA NIR-VIS 2.0 database) for both training
and testing.

4.2 Experimental Results and Analysis
The proposed method is evaluated on four datasets and the results
are outlined in Tables 2, 3, 4, and 53 and Figures 5 to 8. The
experiments are performed to analyze the accuracies along with
convergence analysis, ablation study, and visual inspection of
results. The results are also compared with without pretraining
and comparison with recent state-of-the-art algorithms.

4.2.1 Comparison with State-of-the-Art Methods
For the SCface [10], CASIA NIR-VIS 2.0 [12] and FaceSurv [11]
databases, extensive comparisons have been performed with recent
deep metric learning methods and state-of-the-art heterogeneous
face recognition methods. For the SCface [10] database, CS-FR,
CR-FR, and CSCR-FR experiments are performed on three reso-
lution variations of the probes, 24×24, 32×32, and 48×48. As
shown in Table 2, the proposed method achieves state-of-the-art
results and outperforms popular deep metric learning and recent

3. For CR-FR or CS-FR, wherever applicable, published results are reported.
On the other hand, for CSCR-FR, we have performed the comparisons with
existing algorithms using publicly available codes.

heterogeneous face recognition methods on all the resolutions. It
can be observed that SHEAL yields larger improvement with low
resolution probe images. As shown in Table 3, on the CASIA
NIR-VIS 2.0 [12] database as well, the proposed SHEAL metric
outperforms popular deep metric learning and recent cross-spectral
face recognition methods on both CS-FR and CSCR-FR. On the
FaceSurv [11] database we have performed CSCR-FR and CR-FR
on two different probe resolutions, namely 48× 48 and 64× 64.
As shown in Table 4, the proposed algorithm outperforms both
Triplet [49] and Quadruplet loss [50] based methods (along with
their variants), and achieves state-of-the-art results on both CSCR-
FR and CR-FR experiments. As outlined in Tables 2, 3, and 4,
the proposed SHEAL is among the top performing algorithms
on all the probe resolutions. It should be noted that for lower
resolutions, such as 24 × 24 in Table 2, the accuracy of SHEAL
is much higher compared to existing algorithms. The CMC curves
showcasing the identification accuracies are shown in Fig. 5. In
addition, homogeneous face recognition experiment is performed
on the SCface database using the same model (that is trained using
the SHEAL metric). The proposed model achieves rank 1 accuracy
of 97.29% on CR-FR for 32× 32 probes on the SCFace database.

Finally, on the LFW face database [13], CR-FR experiment is
performed and the results are documented in Table 5. The results
show that with gallery images of size 128×128 and probe images
of 32 × 32 or 48 × 48, the proposed algorithm is at least 1.5%
better than other deep metric learning algorithms. On the LFW
database, comparisons have been performed with popular deep
metric learning methods, and the proposed method outperform
them for CR-FR scenario on this database on two different probe
resolutions. Note that due to image size variations to conduct CR-
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(c) CSCR-FR on FaceSurv (48× 48 probes)

1 2 3 4 5 6 7 8 9 10

Rank

55

60

65

70

75

80

85

A
cc

ur
ac

y 
(%

)

SHEAL
Triplet Center Loss
Hard Triplet Loss
Triplet Loss
Quadruplet Loss
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(e) CSCR-FR on CASIA (48× 48 probes)
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Fig. 5: CMC curves for Cross-Resolution Face Recognition (CR-FR), Cross-Spectral Face Recognition (CS-FR) and Cross-Spectral
Cross-Resolution Face Recognition (CSCR-FR) on the SCface [10], FaceSurv [11] and CASIA NIR-VIS 2.0 [12] databases.

TABLE 4: Rank 1 identification accuracies on the FaceSurv database.

Algorithm Cross-Spectral Cross-Resolution Cross-Resolution
48 x 48 64 x 64 48 x 48 64 x 64

Wu et al. (2015) (LightCNN29) [3] 14.0 62.3 62.6 90.4
Schroff et al. (2015) (Triplet loss) [49] 13.2 62.5 59.1 90.1
Chen et al. (2017) (Quadruplet Loss) [50] 12.5 59.0 60.3 90.2
Hermans et al. (2017) (Hard Triplet Loss) [54] 14.1 61.7 62.9 90.0
He et al. (2018) (Triplet Center loss) [55] 14.2 59.8 62.4 90.5
Proposed SHEAL 33.9 74.8 68.8 90.7

TABLE 5: Verification accuracies at 1% False accept rate (FAR)
for cross-resolution face recognition on the LFW database, with
unrestricted no-outside labeled data protocol.

Algorithm Cross-Resolution
32 x 32 48 x 48

Schroff et al. (2015) (Triplet Loss) [49] 58.2 87.6
Chen et al. (2017) (Quadruplet Loss) [50] 60.5 91.1
Hermans et al. (2017) (Hard Triplet Loss) [54] 62.9 92.4
He et al. (2018) (Triplet Center Loss) [55] 61.7 90.3
Proposed SHEAL 64.4 94.2

FR experiments, we cannot directly compare with reported results
on the LFW database.

4.2.2 Convergence Analysis
Figure 6 shows the rate of convergence of SHEAL, triplet loss,
and quadruplet loss on the SCface dataset. It can be observed that
the convergence of SHEAL is significantly fast and effective. The
validation accuracy of the model trained using SHEAL reaches
to 83.23% from 69.03% (on 48 × 48 probes) in just 10 epochs

(Fig. 6(a)). Compared to SHEAL, the quadruplet and triplet losses
converge slowly. Figures 7(a) and (b) show the time taken and the
number of epochs required to converge, respectively. The number
of epochs required by SHEAL to converge is only 48 compared to
95 and 118 epochs required by triplet and quadruplet loss for the
same. In terms of total time, SHEAL takes 115.3 seconds against
158.2, 171.3, 140.4 and 122.3 seconds required by triplet loss,
quadruplet loss, hard triplet loss and triplet center loss respectively
for convergence. These results suggest that the proposed SHEAL
converges rapidly, takes lesser time, and exhibits significantly
higher face recognition accuracies in heterogeneous settings.

4.2.3 Ablation Study
We have performed two separate ablation studies for a thorough
understanding of the effect of the loss functions (Equations 7 and
8) on the trained model’s performance on CR-FR and CSCR-FR
scenarios. As illustrated in Section 3.1, Equation 7 is composed
of four separate terms: Lc

Ho, Lc
CR, Lc

CS and Lc
CS−CR. We

have performed an ablation study on Equation 7, where we have
utilized these specific terms for training the models separately.
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Fig. 6: Convergence analysis of the proposed method on different probe resolutions of the SCface database [10]. It can be observed that
the convergence of the proposed method is significantly better than the triplet [49] and the quadruplet loss [50] methods.
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Fig. 7: Performance analysis of the proposed method: (a) Time
taken to converge (training) and (b) Number of epochs for con-
vergence. It can be observed that the proposed algorithm not only
converges rapidly, but also takes much lesser time and epochs for
the same. Training is performed on the SCface database.

Each of these terms have a disjoint effect on the trained model
which is evident in the results obtained on the SCface database
(Table 6). The model, when trained only with the Lc

Ho loss term
yields the worst performance. However, when Lc

CR and Lc
CS loss

terms are used separately for training, the corresponding testing
performance (eg. when Lc

CR term is used for training the cross-
resolution performance is improved during testing) is improved. It
can be observed that when training is performed with Lc

CS−CR,
the results, during testing, are improved considerably for both CS-
CR and CR face recognition.

In addition to the above, we have also performed an ablation
study on Equation 8 (subclass based cluster optimization). As
illustrated in Section 3.2, Equation 8 is composed of three terms.
The first term is a homogeneous matching term, the second term
makes subclass containing the low resolution and NIR images
more compact, and the third terms brings the subclasses closer into
one compact cluster. As shown in Table 6, we observe that the third
term is the major contributing factor in the subclass optimization
stage. The value of β3 is also kept higher during this optimization
stage, to give more weight to the third term of Equation 8.

4.2.4 Loss Function Coefficients
For training using SHEAL and the cluster optimization phase
(Equations 7 and 8), we have the loss function coefficients (λ1,
λ2, λ3 and λ4), which can be used to adjust the weight of each

TABLE 6: Rank 1 identification accuracies (%) for the ablation
study on Equations 7 and 8 performed on the SCface database.

Loss Term CS-CR CR
24 x 24 32 x 32 48 x 48 24 x 24 32 x 32 48 x 48

Eq. 7

Lc
Ho 9.5 29.4 65.1 37.0 58.9 63.4

Lc
CR 18.6 39.4 80.4 70.9 96.4 98.7

Lc
CR 12.5 31.2 69.0 40.5 51.2 64.3

Lc
CS−CR 41.3 72.6 85.9 68.7 94.3 99.0

Lc
Ho + Lc

CR + Lc
CR 38.4 68.4 83.9 64.2 92.6 98.2

Eq. 8 1stterm+ 2ndterm 37.2 67.1 78.9 64.3 92.1 85.4
1stterm+ 3rdterm 42.1 72.5 87.3 70.2 96.4 98.4
Proposed 43.9 73.0 87.6 72.8 97.6 99.1

component of the loss function. Since homogeneous matching is
a less challenging problem compared to CSCR-FR, CS-FR and
CR-FR, we kept a considerably lower value for λ1 than the other
weight terms. For the SCface [10] database, we kept a much higher
value for λ4 since CSCR-FR matching is an extremely challenging
problem.

4.2.5 Without Pretraining

In order to make a fair comparison, the other deep metric learning
methods with which we have compared in the paper ( [50], [49]
and their variants) have been trained on the same data using
the weights of the same pretrained model. In addition to this,
we trained our method from scratch (on a randomly initialized
model), and achieved 90.71% accuracy wheras those obtained by
Chen et al. [50] and Schroff et al. [49] are 82.13% and 80.34%
respectively, on 64 × 64 probes of the CASIA NIR-VIS 2.0
database. It shows that even without pretraining, the proposed
method outperforms the most popular deep metric learning al-
gorithms.

4.2.6 Visual Inspection of the Results

We also performed visual inspection of the results and some cases
are presented in Fig. 8. It can be observed that images of the
SCface database which have extremely low resolution and quality
(Fig. 8(a)) are correctly classified by the proposed algorithm. On
the other hand, the images in the FaceSurv database, which in
addition to low resolution suffer from heavy motion blur and
poor illumination, are also correctly classified by the proposed
algorithm. These results showcase the potential applicability of
the proposed algorithm to real world surveillance scenarios.
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(a)

(b)

Fig. 8: Sample images of some extremely noisy and poor quality
images of (a) SCface [10] and (b) FaceSurv [11] databases that are
correctly classified by the model trained with SHEAL, but were
incorrectly classified using triplet [49], quadruplet [50] and triplet
center loss [55] based methods.

5 CONCLUSION

The problem of heterogeneous face recognition is compounded
when test data shows multiple heterogeneity. Current deep metric
learning approaches generally do not handle such heterogeneous
problems and yield poor recognition accuracies. This paper in-
troduces a subclass heterogeneity aware loss function which is
utilized to train a discriminative model to generate heterogeneity
invariant embeddings. This helps to project a pair of face images of
different covariates into an embedding space where matching can
be performed efficiently irrespective of the images being captured
in very different scenarios. This can be applied in a surveillance
application where the data may encompass multiple covariates. In
future, we plan to extend the proposed algorithm to include other
covariates of face recognition such as disguise and aging along
with multiple heterogeneous variations.
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