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Abstract—Presentation attacks are posing major challenges
to most of the biometric modalities. Iris recognition, which is
considered as one of the most accurate biometric modality for
person identification, has also been shown to be vulnerable to
advanced presentation attacks such as 3D contact lenses and
textured lens. While in the literature, several presentation attack
detection (PAD) algorithms are presented; a significant limitation
is the generalizability against an unseen database, unseen sensor,
and different imaging environment. To address this challenge,
we propose a generalized deep learning-based PAD network,
MVANet, which utilizes multiple representation layers. It is in-
spired by the simplicity and success of hybrid algorithm or fusion
of multiple detection networks. The computational complexity is
an essential factor in training deep neural networks; therefore,
to reduce the computational complexity while learning multiple
feature representation layers, a fixed base model has been used.
The performance of the proposed network is demonstrated on
multiple databases such as IIITD-WVU MUIPA and IIITD-CLI
databases under cross-database training-testing settings, to assess
the generalizability of the proposed algorithm.

I. INTRODUCTION

Iris is considered one of the most accurate biometric
modality for person recognition. The false accept rate of iris
matching is considered to be the lowest among all other
popular modalities, such as face and fingerprint [30]. After
the successful implementation of iris recognition for controlled
applications including smartphone unlocking, researchers have
been developing the technology to be implemented for semi-
controlled and uncontrolled applications such as automatic
access through airports1 and securing the online wallets2.
The usage of iris recognition is also explored in postmortem
images [49], [50]. However, person identification systems
based on biometric recognition, including iris recognition, are
vulnerable to presentation attacks.

The effectiveness of attacks on iris recognition systems
were highlighted when attackers successfully demonstrated the
vulnerability of iris recognition systems on one of the popular
mobile system3. The images acquired with presentation attacks
can serve two purpose: (i) identity evasion and (ii) identity
impersonation. In the first case, the attacker can successfully
hide his/her identity using presentation attack instruments
(PAIs). In the second case, an attacker can assume the identity
of someone else through different kinds of presentation attack
instruments. The popular PAIs on iris recognition systems

1https://tinyurl.com/t9b4qfx
2https://tinyurl.com/v8pz6dp
3https://tinyurl.com/wssberz
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Fig. 1. Real and contact lens iris images from different databases. These
examples showcase the variations due to illumination, contact lens type, and
sensors used in the acquisition. Each row represents the images of one iris
database.

include 3D contact lens, iris image printouts, prosthetic eyes,
and cadaver eyes. Printout based PAIs are generally of low
image quality, contain texture artifacts such as Moiré pattern
and reflection, and lack 3D structure. Due to these limitations,
printout based attacks are easy to detect. Fake iris images
based on contact lenses are rich in texture, have a 3D struc-
ture, and can quickly move with the real irises. Therefore,
detection of these attacked images needs to be addressed more
enthusiastically as compared to other PAIs. Researchers have
also shown that contact lens-based iris images can degrade the
iris recognition accuracy significantly [6], [32], [53]. In the
literature, numerous presentation attack detection (PAD) algo-
rithms are presented which are either based on the extraction
of texture features or motion features or deep learning features.
However, recent iris PAD competition [56] have demonstrated
limited generalizability against unseen databases and sensors.
For instance, the best performing algorithm is not able to detect
at least 38% of PAIs in such settings.

Motivated by the need of an efficient and robust algorithm,
we present the proposed MVANet which utilizes the deep con-
volutional neural network architecture for presentation attack
detection. In the traditional CNN models, a fully connected
(FC) layer is bound with the last convolutional/pooling layer.
Then several (optional) FC layers are connected sequentially
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with that FC layer. In the proposed algorithm, we have
joined several FC layers parallelly with the last convolutional
layer to learn multiple feature representations of an image.
These layers are further combined with the softmax layer to
train the model end-to-end through gradient accumulation and
bifurcation. To evaluate the generalizability of the proposed al-
gorithm, we have performed experiments using unseen training
and testing scenarios. Three challenging presentation attack
databases are used to conduct the experiments in three folds. In
each fold, images from only one database are used for training,
and images from the remaining two databases are used for
testing. The performance of MVANet is also compared with
three state-of-the-art (SOTA) CNN models including DenseNet
[28], ResNet18 [23], and VGG16 [46], which are fine-tuned
for iris PAD.

A. Related Work

The majority of iris presentation attack detection algo-
rithms utilize hand-crafted features to encode the textural
or morphological features of an iris image. One of the first
iris PAD algorithms was proposed by Daugman utilizing the
Fourier information from images. After that, several image-
features based PAD algorithms are developed which yield high
accuracy in constrained experimental settings. Gupta et al.
[22] have used several texture-based features such as local
binary pattern (LBP), histogram of oriented gradients (HOG),
and GIST. Raghavendra and Busch [43] have computed mul-
tiple features utilizing the multi-scale binarized statistical
image features (BSIF) for presentation attack detection. Other
popular images features used are DAISY [48], variants of
LBP [33], [38], scale-invariant descriptors (SID) [17]. Several
researchers, [19], [21], [27], have conducted studies using
multiple image features and have shown interesting results.
The quality and dimension of the features also depend on the
region of the image used for its extraction. Some researchers
have extracted the features from the full image while others
have divided the image into multiple local patches and ex-
tracted the features. Gragnaniello et al. [20] used both the iris
region and the sclera region for the detection of contact lens-
based presentation attacks. Bag of feature method is utilized
on the features extracted from both the regions and linear
support vector machine (SVM) classifier is trained for binary
class classification. Furthermore, several researchers have also
explored the motion features of iris and pupil regions for
the identification of attacks [12], [34], [35], [44]. However,
a significant limitation of the work is the degradation of
pupillary light with time and with consumption of alcohol
and drugs [5]. Another limitation is that these methods can
be circumvented using 3D attacks, which can move with real
iris and pupil regions.

Utilizing the effectiveness of the convolutional neural net-
work (CNN) in handling various image classification and
detection tasks, researchers have started exploring it for iris
PAD tasks as well. Menotti et al. [37] have proposed the CNN
model for various biometrics presentation attack detection in-
cluding the face, fingerprint, and iris. Hoffman et al. [25], [26]

have extracted the features from the patches of the iris region
and corresponding segmentation task. The information learned
over multiple patches is fused for improved performance. Pala
et al. [40] have used a five-layer CNN model and trained on
three tuple information using the triplet loss. Chen and Ross
[8] have used a similar concept while training the CNN model
for the joint task of iris segmentation and PAD. He et al. [24]
trained the CNN models on 28 iris patches, and decision level
fusion is performed for final classification. The significant
limitation is the training complexity because of training the
CNN individually over each patch. Choudhary et al. [10],
Singh et al. [47], and Yadav et al. [54] have used the ResNet
and DenseNet models for contact lens detection. McGrath et
al. [36] have developed an open-source iris presentation attack
detection module utilizing publicly available machine learning
feature extraction and classification algorithms.

Fang et al. [18] have used both 2D and 3D iris information
for the detection of presentation attacks. The 2D information
is learned using the ensemble of multiple textural features,
and 3D shape features are learned using photometric stereo.
Yadav et al. [52] and Choudhary et al. [11] have combined
the hand-crafted features computed over wavelet domain and
CNN features for enhanced PAD. Czajka and Bowyer [13] and
Chen and Zhang [9] have presented a comprehensive survey of
most of the existing PAD algorithms. Due to the popularity of
iris recognition and its sensitivity against presentation attacks
several liveness detection competitions have been conducted.
The first international competition was held in 2013 [14]
and later two more competitions are conducted in 2015 [15]
and in 2017 [56]. The recently presented survey papers and
conducted competitions show that the effectiveness of the PAD
algorithms has increased significantly in a constrained setting,
including seen databases and seen sensors scenarios. The new
algorithms need to be adapted to an unseen database, unseen
sensor conditions, and demand that the future PAD algorithms
must be tested against such generalized conditions [57].

II. PROPOSED ALGORITHM FOR IRIS PRESENTATION
ATTACK DETECTION

In this section, we describe the proposed deep learning
based algorithm which can classify iris images as real or
attack. It can be observed from the literature [2]–[4], [13],
[26], [42], [45], [52] that hybrid algorithms which utilize
multiple features or classifiers are highly successful and gen-
eralizable as compared to single classifier or feature-based
algorithm. However, a significant drawback of the existing
hybrid algorithms is that they either learn the separate CNN
classifiers, hand-crafted features, or a combination of both,
which is time-consuming. Therefore, to overcome such lim-
itations of learning separate descriptors or classifiers from
different algorithms, we have used the same base network
while learning different representations.

A. Proposed CNN Architecture: MVANet

The traditional CNN architecture either utilizes single or
multiple fully connected layers to learn the features for classi-
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Fig. 2. Proposed MVANet for iris presentation attack detection in generalized settings.

fication. However, these layers are connected sequentially, i.e.,
only one layer is connected to base non-linear convolutional
or pooling feature maps. Let us suppose if the CNN model
consists of two fully connected (FC) layers: the transition
of the layers in traditional CNN is represented as follows:
x1 = H0(·), where x1 is the first FC layer and H0 represents
one of the following layers: convolution (conv), pooling,
ReLU, or Batch Normalization. The second FC layer (x2) is
connected to the first FC layer as follows: x2 = Fx1

(·), where
F (·) is the mapping function from one layer to another. In the
deeper architecture (with multiple FC layers), due to vanishing
gradient, it might be possible that the conv feature maps
are not updated as desired for the classification task. In this
research, we apply the FC layers in a parallel fashion compared
to the traditional sequential fashion to reduce the vanishing
gradient impact and ensure a smooth flow of information.
The parallel connection of FC layers also helps in learning
multiple representations of an image. The multiple FC layer
representations can be written as: x1...N = H0(·), where 1...N
represents the number of FC layer branches. In the proposed
network, the value of N is set to 3, and H0 is the average
pooling layer. The detailed architecture is described below.

1) Base Network: The base network has five convolutional
layers, with the first layer having filters of size 11 × 11,
whereas the remaining layers use filters of size 3×3. Each of
these convolutional blocks comprise convolution followed by
Rectified Linear Unit (ReLU) and then a Batch Normalization
(BN). Three Max Pool layers of 3× 3 kernel size are present
in between these convolutional layers. An average pooling
follows all these layers, with the patch size being 6× 6. The
small base network makes the architecture time-efficient.

2) Classifier Network: The second part of the architecture
is a multi-branch classifier network. It is based on the concept
of multi-sample dropouts [29], where each branch has a
different set of weights. The output of the average pooling
layer from the base network is fed into the three different
classification branches, each of which is preceded by a dropout
layer. The mask for the dropout layer in each branch is
different but with same dropout rate of 0.5. Because of this
dropout layer in each classifier, we now have multiple dropout
samples for each image instead of just one as is the case in a
traditional dropout. All three classification layers contain three
fully connected (FC) layers.

• The first classifier branch has a fully connected layer with
2048 nodes, followed by a dropout layer. This is further

TABLE I
CHARACTERISTICS OF THE DATABASES USED.

Database Real Spoof Sensors Environment
IIITD-CLI 2163 2165 2 Controlled
MUIPAD 1719 1713 1 Uncontrolled
UnMIPA 9319 9387 3 Uncontrolled

connected to an FC layer with 1024 nodes and finally to
another fully connected layer with 2 nodes.

• The second classifier branch has a similar structure hav-
ing fully connected layers with 1024, 512, and 2 nodes.

• Similarly, the third classifier branch has fully connected
layers with 256, 128, and 2 nodes.

The size of these layers is different for each classifier. This is
performed so that each layer captures different features which
can then be combined to predict the final result. The results of
the three classifiers are concatenated to get a vector of length
6 and passed as input to the final fully connected layer with
2 nodes. The output of this final FC layer is the result of the
network.

B. Training and Implementation Details

The base network and the classifier network are trained
together from scratch. The weights in each layer are initialized
randomly. The loss function used to train the network is
Cross Entropy Loss. The error is backpropagated across all
the classifier branches with equal weight and then combined
at the base architecture by taking an equally weighted sum.
The batch size and initial learning rate while training the model
is set to 32 and 1e−5, respectively. The Adam optimizer [31]
is used for training with a weight decay of 0.01.

III. DATABASE, EVALUATION CRITERIA AND BASELINE

A. Databases

For testing the proposed MVANet under cross-database,
cross-sensor, and cross-environment settings, we perform
three-fold cross-validation. For every single fold, the network
is trained on one of the three databases and tested on the other
two databases. The cross-database testing protocol ensures
that a network’s performance across unknown sensors and
environments can be evaluated. The performance of different
networks is compared using total error, APCER, and BPCER.
The characteristics of each database are defined below:

• IIITD-CLI [53]: The IIITD Contact Lens Iris (CLI)
database contains 6, 570 iris images, which includes the



real iris, the textured contact lens, and the transparent
(soft) contact lens images. There are 101 subjects, and
since for each of them, both eyes are captured, there
are 202 iris classes. Two different scanners/sensors have
been used to capture the iris images, (1) Cogent CIS 202
dual iris sensor and (2) VistaFA2E single iris sensor. This
dataset also addresses the possibility of a particular color
being more effective in fooling Iris PAD algorithms by
using textured contact lenses of a diverse set of colors like
blue, grey, green, and hazel. Since this research focuses
on detecting textured contact lenses, we have not used
soft lens images during both training and testing.

• IIITD-WVU MUIPAD [55]: In CLI, all the images are
captured in an indoor setting, i.e., a controlled envi-
ronment. Mobile Uncontrolled Iris Presentation Attack
Dataset (MUIPAD) is the first publicly available dataset
that has images in both indoor as well as outdoor settings.
The images are captured during different times of the day
and varying weather conditions to achieve diversity in the
dataset. It has 3, 432 real and 3D contact lens iris images
corresponding to 70 iris classes. The IriShield MK2120U
mobile sensor is used to capture the images. The dataset
has subjects with different ethnicities to increase diver-
sity. To verify whether a particular manufacturer makes
lenses that can fool the Iris PAD algorithms, the authors
have used lenses by manufacturers like Freshlook, Color-
blends, Bausch + Lomb, while still keeping in mind the
possible effect of color.

• IIITD-WVU UnMIPA [54]: The Unconstrained Multi-
sensor Iris Presentation Attack (UnMIPA) Database has
162 iris classes which are captured using mobile sensors
to ensure portability of sensors. This dataset also contains
images captured in uncontrolled environment, during dif-
ferent times of the day, which results in different levels of
illumination in the same dataset. The authors maintained
a mix of colors and manufacturers. In addition to that,
three different sensors are used to capture the iris images:
(1) EMX-30, (2) BK 2121U, and (3) MK 2120U. In total,
the dataset has 18, 706 real and contact lens iris images.

B. Evaluation Criteria

We use three performance metrics as defined by the ISO
standards [1] to measure the performance of the proposed
IPAD algorithm:-

• Attack Presentation Classification Error Rate (APCER):
it is defined as the misclassification rate of attack images
being classified into real class.

• Bonafide Presentation Classification Error Rate
(BPCER): it is defined as the misclassification rate
of real images being classified into attack class.

• Average Classification Error Rate (ACER): it is the
average of APCER and BPCER.

C. Baseline

As a baseline approach, the final classification layers of
DenseNet [28], ResNet18 [23], and VGG16 [46] are fine-

TABLE II
IRIS PRESENTATION ATTACK DETECTION PERFORMANCE (%) USING

PROPOSED MVANET UNDER UNSEEN DATABASE TRAINING AND TESTING
CONDITIONS. THE LARGE-SCALE DATABASE, I.E., UNMIPA YIELDS THE

BEST DETECTION RESULTS. THE BEST RESULTS ON EACH TESTING
DATABASE ARE HIGHLIGHTED.

Train On Test On APCER BPCER ACER Accuracy

IIITD-CLI MUIPA 06.30 50.70 28.50 71.47
UnMIPA 08.13 41.94 25.03 75.03

MUIPA IIITD-CLI 18.68 10.60 14.64 85.36
UnMIPA 26.11 06.50 16.31 83.66

UnMIPA IIITD-CLI 15.44 01.38 08.41 91.58
MUIPA 03.33 08.91 06.12 93.88

tuned using the training set of each database. The PyTorch
[41] implementations of these networks are used for iris PAD.
For our particular use case of binary classification, the final
classification layers of all the networks are modified to have
only two output nodes. The pre-trained models trained on the
ImageNet [16] dataset are used. To use them for iris PAD, the
feature extraction layers of these pre-trained models are frozen
while the final classification layer is fine-tuned. The models
are trained with an Adam optimizer with a learning rate of
0.0001 and a weight decay of 0.00001. We use cross-entropy
loss criteria to evaluate the training process.

IV. EXPERIMENTAL RESULTS

In this section, the experimental results corresponding to
the three-fold training-testing splits are reported using the
proposed MVANet and baseline models. When the networks
are trained on MUIPAD and tested on UnMIPA and IIIT-CLI,
it is observed that the proposed network performs significantly
better than VGG16, ResNet and DenseNet, which are fine-
tuned for the task of iris PAD. Fig. 3(a) helps in visualizing the
difference between the performance of the proposed network
and baseline approaches. The proposed network yields a
significantly lower average ACER on the testing databases
as shown in Table III. The challenge of overcoming cross-
sensor and cross-environment testing is evident in this case.
We observe that all the baseline approaches perform well
on only one of the databases. The performance on the other
database is significantly inferior. This is where the proposed
network performs uniformly across the databases and provides
higher accuracy than the other networks. This result is more
impressive when we consider the fact that MUIPA consists of
samples from only one sensor. At the same time, the other
two databases comprise samples from multiple sensors. This
result showcases the ability of the network to work well across
different sensors.

A similar trend in performance is observed when the net-
works are trained on the UnMIPA database and tested on
MUIPA and IIIT-CLI. In this case, however, the performance
of all the networks is decent. Fig. 3(b) shows that the proposed
network performs significantly better than all the baseline
networks with cross-sensor and cross-environment scenarios.
The reason for all the networks performing well when trained
on UnMIPA can be explained by the training size, the high



Train on: MUIPA, Test on: UnMIPA and IIIT-D

Train on: IIIT-D, Test on: UnMIPA and MUIPA

Train on: UnMIPA, Test on: MUIPA and IIIT-D

Fig. 3. Comparing the performance of the proposed iris presentation attack
detection algorithm (MVANet) with CNN models under cross database
settings. The results are compared using ACER.

variation in the environment, and the use of multiple sensors.

Training the networks on the IIITD-CLI database yields a
significant result for our problem. The samples in this database
are all collected in a controlled environment, i.e., all the images

TABLE III
COMPARISON OF THE PROPOSED MVANET WITH THREE CNN

ARCHITECTURES IN TERMS OF AVERAGE ACER SCORES WHEN A
PARTICULAR DATABASE IS USED FOR TRAINING AND REMAINING ARE

USED FOR TESTING. FOR EXAMPLE, WHEN MVANET IS TRAINED USING
UNMIPA, IT YIELDS AN ACER VALUE OF 8.41% ON IIITD-CLI AND
6.12% ON MUIPA. THEREFORE, THE AVERAGE OF THE TWO IS 7.26%.

BOLD REPRESENTS THE BEST RESULTS.

Training Database DenseNet ResNet VGG16 MVANet
IIITD-CLI 28.95 28.91 29.19 26.76
MUIPAD 24.19 26.93 19.34 15.47
UnMIPA 16.09 16.65 10.65 07.26

are captured indoors. This case highlights the difficulties faced
in cross-environment testing where a network trained in a
controlled environment fails to perform well on samples from
an uncontrolled environment. The proposed network, however,
still outperforms all the baseline approaches, as shown in Fig.
3(c). The consistent and better performance of the proposed
network, paired with its much lesser training time, makes it
an ideal network for the task of iris-PAD for multi-sensor and
multi-environment tasks.

A. Analysis

In this section, we analyze the cases where the proposed
MVANet architecture performs better in comparison to other
deep learning based architectures. Fig. 6 shows examples
of real and presentation attack cases which are incorrectly
classified by DenseNet [28] but correctly classified by the
proposed architecture. These cases show the variations due
to illumination, lens colors, and eye colors, and highlight the
importance of learning different kinds of features specific to
the task of iris PAD. In cross-sensor and cross-environment
testing, the APCER for DenseNet, is 7.47%, and the BPCER is
16.01%. Using the same protocol, the proposed network yields
APCER of 3.33% and BPCER of 8.91%. This significant
drop in both the error rates can be attributed to the proposed
network’s ability to learn different kinds of features.

Fig. 4 shows the filter maps of real and spoofed iris images
obtained from MVANet (at layer 2). The difference between
these filters is clear from the maps. For real iris images, the
filters capture more edge information. For spoof iris images,
maps are concentrated mostly around the center shown by
the black and white circles at the center of the maps. Fig.
5 highlights the advantage of using three different classifiers
after feature extraction. As observed in the plots, different
branches can capture different information in the images,
which helps the proposed network to perform significantly
better in cross-database settings.

Fig. 7 shows some of the images misclassified by the
proposed MVANet. As shown in Fig. 7(a), in some cases, since
the eye is not properly open, the proposed algorithm makes
an incorrect decision. In such cases, we observe that the entire
iris is not exposed to the camera, thus, making it difficult to
classify the image as real or spoof. As shown in Fig. 7(b),
another covariate for the proposed network is handling out-
of-focus samples. Fig. 7(c) captures an unusual case leading



MVANet Filter Maps on Real Iris Image MVANet Filter Maps on Spoof Iris Image

Fig. 4. Depicting the difference in the CNN filter maps at layer 2 learned over real and spoof iris images.

Fig. 5. TSNE plots for different branches of classifier on 100 iris images, depicting the differences between each branch.

Real Iris Images Contact Lens Iris Images

Fig. 6. Real and contact lens iris images misclassified by baseline networks
but correctly classified by MVANet. Figure depicts that MVANet is effective
in handling the variations present in the iris images corresponding to different
databases and sensors.

a) Semi-open eye 
(spoof) from UnMIPA

b) Blurry image (spoof) 
from CLI

c) Unique iris (real) from 
UnMIPA

Fig. 7. Samples of real and contact lens iris images misclassified by MVANet.

to misclassification, where the real iris of the person is very
different from the common eye. It is because of such a drastic
difference that the proposed network classifies this image as
a spoof image. Handling such cases would require a larger
variety of iris types to train the network.
Computational Complexity: All the experiments are per-
formed using Google’s Colab platform. The system is powered
by Intel’s Xeon processors and Nvidia’s K80 GPUs. We train
all the networks on the GPUs for faster training. For comparing
the training time, we train the networks on the UnMIPA
database, which contains 18, 706 images. It is essential to
state that MVANet is trained from scratch while the baseline
networks are just fine-tuned. The proposed algorithm required
an average of 6 minutes and 47 seconds per epoch. VGG16
and DenseNet required 7 minutes and 41 seconds per epoch,
and 7 minutes and 52 seconds per epoch, respectively. The
proposed network takes lesser time to train entirely than the
baseline networks’ fine-tuning. This lower training time, paired
with better cross-database results, makes the proposed network
an ideal choice for real-time iris PAD implementation.

B. Intra-Database Experimental Results

As mentioned in the literature review section, most of the
existing work has followed the intra-database training-testing
experimental protocol. Therefore, we have also performed the



TABLE IV
IRIS PRESENTATION ATTACK DETECTION ACCURACY (%) OF THE

PROPOSED MVANET, CNNS, AND EXISTING ALGORITHMS IN
INTRA-DATABASE TRAINING-TESTING. BOLD REPRESENTS THE BEST

RESULTS.

Algorithm Cogent Vista
Textural Features [51] 55.53 87.06
Weighted LBP 65.40 66.91
LBP + SVM 77.46 76.01
LBP + PHOG + SVM 75.80 74.45
mLBP [53] 80.87 83.91
ResNet18 85.15 80.97
DenseNet 84.32 91.83
VGG 90.40 94.82
Proposed MVANet 94.90 95.11

experiments using the intra-database protocol defined by Ya-
dav et al. [53] on IIITD-CLI. The experiments are performed
on individual sensors images. The results of the proposed
MVANet along with existing hand-crafted and CNN based al-
gorithms are summarized in Table IV. The proposed algorithm
outperforms existing algorithms based on hand-crafted features
along with three CNN models used for IPAD. The hand-crafted
features used for comparison are: mLBP [53], Textural features
[51], LBP [39] with SVM, weighted LBP [58], and fusion
of LBP and PHOG [7]. The results demonstrate that the the
proposed algorithm yields significantly high detection accu-
racy compared to existing algorithms. For instance, MVANet
yields 4.50% and 0.29% higher accuracy than the second-
best algorithm, i.e., VGG for cogent and vista sensor images
detection, respectively. In comparison to hand-crafted features,
the performance of the proposed MVANet is at-least 14.03%
(MVANet vs. mLBP [53]) and 8.05% (MVANet vs. textural
features [51]) better on cogent and vista images, respectively.
Overall, it is observed that iris images captured using cogent
senors are challenging to detect compared to the vista sensor.

V. CONCLUSION

Textured contact lenses have been known to affect the
performance of iris recognition systems. Existing attack de-
tection algorithms have been demonstrated to be effective in
seen environments; however, in new/unseen environments for
instance unseen sensors or attacks, the error rates are signif-
icantly higher which makes the deployment of these systems
unreliable. In this paper, we present a deep learning based
architecture termed as MVANet which is agnostic to database,
acquisition sensors, and imaging environments. Experiments
conducted on the IIIT-WVU UnMIPA, IIITD-WVU MUIPA,
and IIITD CLI databases show that the proposed network is
not only effective in intra-database and cross-database settings
but it is also computationally efficient. In the future, the aim
is to further improve the detection performance even with
limited number of training images. We also plan to extend
the proposed algorithm to work under adverse conditions
including presence of medical disorders or under the influence
of alcohol and drugs [5].

ACKNOWLEDGMENT

A. Agarwal is partly supported by the Visvesvaraya PhD
Fellowship. R. Singh and M. Vatsa are partially supported
through a research grant from MeitY, India. M. Vatsa is also
partially supported through the Swarnajayanti Fellowship by
the Government of India.

REFERENCES

[1] ISO PAD. https://www.iso.org/standard/67381.html.
[2] Akshay Agarwal, Rohit Keshari, Manya Wadhwa, Mansi Vijh, Chandani

Parmar, Richa Singh, and Mayank Vatsa. Iris sensor identification in
multi-camera environment. Information Fusion, 45:333–345, 2019.

[3] Akshay Agarwal, Richa Singh, and Mayank Vatsa. Face anti-spoofing
using haralick features. In IEEE BTAS, pages 1–6, 2016.

[4] Akshay Agarwal, Richa Singh, and Mayank Vatsa. Fingerprint sensor
classification via mélange of handcrafted features. In IEEE ICPR, pages
3001–3006, 2016.

[5] Sunpreet S. Arora, Mayank Vatsa, Richa Singh, and Anil Jain. Iris
recognition under alcohol influence: A preliminary study. In IAPR ICB,
pages 336–341, 2012.

[6] Sarah E Baker, Amanda Hentz, Kevin W Bowyer, and Patrick J
Flynn. Degradation of iris recognition performance due to non-cosmetic
prescription contact lenses. Elsevier CVIU, 114(9):1030–1044, 2010.

[7] Anna Bosch, Andrew Zisserman, and Xavier Munoz. Representing shape
with a spatial pyramid kernel. In ACM ICIVR, pages 401–408, 2007.

[8] Cunjian Chen and Arun Ross. A multi-task convolutional neural network
for joint iris detection and presentation attack detection. In IEEE
WACVW, pages 44–51, 2018.

[9] Yangyu Chen and Weigang Zhang. Iris liveness detection: A survey. In
IEEE BigMM, pages 1–7, 2018.

[10] Meenakshi Choudhary, Vivek Tiwari, and U Venkanna. An approach
for iris contact lens detection and classification using ensemble of
customized densenet and svm. Future Generation Computer Systems,
101:1259–1270, 2019.

[11] Meenakshi Choudhary, Vivek Tiwari, and U Venkanna. Biometric spoof-
ing: Iris presentation attack detection and contact lens discrimination
through score-level fusion. Applied Soft Computing, page 106206, 2020.

[12] Adam Czajka. Pupil dynamics for iris liveness detection. IEEE TIFS,
10(4):726–735, 2015.

[13] Adam Czajka and Kevin W Bowyer. Presentation attack detection for
iris recognition: An assessment of the state-of-the-art. ACM Computing
Surveys, 51(4):1–35, 2018.

[14] Yambay David, James S Doyle, Kevin W Bowyer, Adam Czajka, and
Stephanie Schuckers. Livdet-iris 2013-iris liveness detection competition
2013. In IEEE IJCB, pages 1–8, 2014.

[15] Yambay David, James S Doyle, Kevin W Bowyer, Adam Czajka, and
Stephanie Schuckers. Livdet-iris 2015-iris liveness detection competition
2015. In IEEE ISBA, pages 1–6, 2017.

[16] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei.
Imagenet: A large-scale hierarchical image database. In IEEE CVPR,
pages 248–255, 2009.

[17] James S Doyle and Kevin W Bowyer. Robust detection of textured
contact lenses in iris recognition using bsif. IEEE Access, 3:1672–1683,
2015.

[18] Zhaoyuan Fang, Adam Czajka, and Kevin W Bowyer. Robust iris
presentation attack detection fusing 2d and 3d information. IEEE TIFS,
2020.

[19] Diego Gragnaniello, Giovanni Poggi, Carlo Sansone, and Luisa Ver-
doliva. An investigation of local descriptors for biometric spoofing
detection. IEEE TIFS, 10(4):849–863, 2015.

[20] Diego Gragnaniello, Giovanni Poggi, Carlo Sansone, and Luisa Verdo-
liva. Using iris and sclera for detection and classification of contact
lenses. PRL, 82:251–257, 2016.

[21] Diego Gragnaniello, Carlo Sansone, and Luisa Verdoliva. Iris liveness
detection for mobile devices based on local descriptors. PRL, 57:81–87,
2015.

[22] Priyanshu Gupta, Shipra Behera, Mayank Vatsa, and Richa Singh. On
iris spoofing using print attack. In IEEE ICPR, pages 1681–1686, 2014.

[23] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep
residual learning for image recognition. In IEEE CVPR, pages 770–
778, 2016.

[24] Lingxiao He, Haiqing Li, Fei Liu, Nianfeng Liu, Zhenan Sun, and
Zhaofeng He. Multi-patch convolution neural network for iris liveness
detection. In IEEE BTAS, pages 1–7, 2016.

https://www.iso.org/standard/67381.html


[25] Steven Hoffman, Renu Sharma, and Arun Ross. Convolutional neural
networks for iris presentation attack detection: Toward cross-dataset and
cross-sensor generalization. In IEEE CVPRW, pages 1620–1628, 2018.

[26] Steven Hoffman, Renu Sharma, and Arun Ross. Iris+ ocular: General-
ized iris presentation attack detection using multiple convolutional neural
networks. In IEEE ICB, pages 1–8, 2019.

[27] Yang Hu, Konstantinos Sirlantzis, and Gareth Howells. Iris liveness
detection using regional features. PRL, 82:242–250, 2016.

[28] Gao Huang, Zhuang Liu, Laurens Van Der Maaten, and Kilian Q
Weinberger. Densely connected convolutional networks. In IEEE CVPR,
pages 4700–4708, 2017.

[29] Hiroshi Inoue. Multi-sample dropout for accelerated training and better
generalization. arXiv preprint arXiv:1905.09788, 2019.

[30] Anil K Jain, Patrick Flynn, and Arun A Ross. Handbook of biometrics.
Springer Science & Business Media, 2007.

[31] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

[32] Naman Kohli, Daksha Yadav, Mayank Vatsa, and Richa Singh. Revis-
iting iris recognition with color cosmetic contact lenses. In IEEE ICB,
pages 1–7, 2013.

[33] Naman Kohli, Daksha Yadav, Mayank Vatsa, Richa Singh, and Afzel
Noore. Detecting medley of iris spoofing attacks using desist. In IEEE
BTAS, pages 1–6, 2016.

[34] Oleg V Komogortsev, Alexey Karpov, and Corey D Holland. Attack
of mechanical replicas: Liveness detection with eye movements. IEEE
TIFS, 10(4):716–725, 2015.

[35] Swati P Madhe, Bhushan D Patil, and Raghunath S Holambe. De-
sign of a frequency spectrum-based versatile two-dimensional arbitrary
shape filter bank: application to contact lens detection. Springer PAA,
23(1):45–58, 2020.

[36] Joseph McGrath, Kevin W Bowyer, and Adam Czajka. Open source
presentation attack detection baseline for iris recognition. arXiv preprint
arXiv:1809.10172, 2018.

[37] David Menotti, Giovani Chiachia, Allan Pinto, William Robson
Schwartz, Helio Pedrini, Alexandre Xavier Falcao, and Anderson Rocha.
Deep representations for iris, face, and fingerprint spoofing detection.
IEEE TIFS, 10(4):864–879, 2015.

[38] Ryusuke Nosaka, Yasuhiro Ohkawa, and Kazuhiro Fukui. Feature
extraction based on co-occurrence of adjacent local binary patterns. In
PSIVT, pages 82–91. Springer, 2011.
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