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Abstract— Adversarial perturbations have demonstrated the
vulnerabilities of deep learning algorithms to adversarial attacks.
Existing adversary detection algorithms attempt to detect the
singularities; however, they are in general, loss-function, data-
base, or model dependent. To mitigate this limitation, we propose
DAMAD—a generalized perturbation detection algorithm which
is agnostic to model architecture, training data set, and loss func-
tion used during training. The proposed adversarial perturbation
detection algorithm is based on the fusion of autoencoder embed-
ding and statistical texture features extracted from convolutional
neural networks. The performance of DAMAD is evaluated on
the challenging scenarios of cross-database, cross-attack, and
cross-architecture training and testing along with traditional
evaluation of testing on the same database with known attack and
model. Comparison with state-of-the-art perturbation detection
algorithms showcase the effectiveness of the proposed algorithm
on six databases: ImageNet, CIFAR-10, Multi-PIE, MEDS, point
and shoot challenge (PaSC), and MNIST. Performance evaluation
with nearly a quarter of a million adversarial and original images
and comparison with recent algorithms show the effectiveness of
the proposed algorithm.

Index Terms— Adversarial examples, adversarial perturbation,
attack agnostic, cross-attack, cross-database, cross-model, data-
base agnostic, model agnostic.

I. INTRODUCTION

H IGH accuracies of deep learning networks have moti-
vated the development of automated solutions for a

variety of tasks ranging from information retrieval to dis-
ease prediction, and surveillance. However, recent research
efforts [11], [65] have demonstrated that the singularities of
deep networks can be exploited to design attacks for cor-
responding networks. The widespread popularity of deep
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learning algorithms and their vulnerability to adversarial exam-
ples has motivated research towards detecting such attacks.
Detection can act as the first crucial stage of defense against
adversarial attack and the detected examples can be discarded
or processed further to remove the adversarial effects for
correct classification.

Perturbation detection algorithms generally assume that
the model, attack, and data characteristics are known and
focus on intradatabase, intraattack, and intramodel training-
testing. However, in real-world settings, an attacker may be
using unseen model trained on unknown database to generate
perturbed samples. As shown in Fig. 1(a), this introduces three
main challenges in adversarial perturbation detection that may
affect the performance of perturbation detection algorithms.

1) Cross-Database Variations: It refers to the scenario
when the perturbation detection model is trained on
one database and tested on a different database. For
instance, when training is performed using the CMU
MultiPIE [28] database and testing is performed on the
point and shoot challenge (PaSC) [7] face database.

2) Cross-Model Variations: It refers to the scenario when
the perturbation detection model is trained on adversarial
images generated from one DNN architecture while
the test cases are generated from another attack DNN
model. For instance, perturbed images for training are
generated using VGG-16 [58] model but the test images
are generated using ResNet-152 model [32].

3) Cross-Attack Variations: It refers to the scenario where
the perturbation detection algorithm is trained on one
attack and tested on another. For instance, perturbation
detection is trained with l1 loss and tested with l2

loss-based attack.
In this research, we have developed a generalized defense

algorithm termed as DAMAD: Database, Attack, and Model
Agnostic Detector. In order to achieve generalizability, the pro-
posed approach follows “ensemble of experts” or fusion
approach and combines different features from multiple
“experts” (algorithms) [as shown in Fig. 1(b)]. The key high-
lights of this research are as follows.

1) A novel adversarial perturbation detection algorithm
is proposed which is an amalgamation of a nonlinear
embedding obtained from an autoencoder (AE) and
statistical texture attributes obtained from DenseNet
feature-maps.
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Fig. 1. (a) Three challenges in adversarial perturbation detection:
1) cross-database; 2) cross-architecture; and 3) cross-attack (i.e., cross DNN
Loss). (b) Motivation toward generalized adversarial detection approach.

2) The proposed detection algorithm is evaluated on object,
face, and digit recognition problems. Extensive exper-
iments with multiple publicly available databases and
deep networks demonstrate the efficacy of the algorithm
in detecting different kinds of attacks.

3) Experiments pertaining to cross-database, cross-model,
and cross-attack (DNN loss) scenarios demonstrate the
effectiveness of DAMAD; and the strength of DAMAD
is also evaluated against a white-box attack1 and the
proposed fusion approach shows resiliency against these
attacks. The proposed algorithm also outperforms recent
detection algorithms such as adaptive noise reduction
(ANR) [42], Bayesian Uncertainty (BU) [18], CNN
response approach [26], local intrinsic dimensionality
(LID) [45], Base-OOD [33], ODIN [43], ESRM [44],
and Mahalanobis [40] based algorithms.

To the best of our knowledge this is the first work where
adversarial detection algorithm is proposed which is agnostic
to multiple attack algorithms, CNN models, and databases.
Based on the generalizability analysis across various unseen
conditions, it is our assertion that the proposed DAMAD
algorithm can be effectively used against any adversarial
attacks.

II. LITERATURE REVIEW

Since the finding of singularities of deep learning networks,
research efforts are ongoing in the direction of adversarial
attack generation, and detection of adversarial examples [5].
In order to promote research in this area, several toolboxes
have been developed to generate the adversarial examples
using these generation algorithms and also to evaluate the
effectiveness of perturbation detection algorithms [23], [51].
Recently, a detailed review paper of adversarial attack and
defenses is presented by Yuan et al. [72] and Singh et al. [60].

A. Generation

The effect of adversarial perturbations on a deep learn-
ing model was first demonstrated by Szegedy et al. [65].

1In adversarial attack research, white-box attack refers to the condition in
which an attacker has access to the defense/detection mechanism and classifier.
On the other hand, black-box attacks are defined where an attacker does not
have access to both classifier and defense mechanism.

Goodfellow et al. [25] proposed a gradient-based algo-
rithm for generating adversaries. The gradient is computed
while training the deep neural network concerning the input
while minimizing the network’s loss. The gradient can be
applied once or can be applied iteratively for a more robust
attack. After these seminal works, several attack algorithms
such as optimization-based [11], [15], gradient manipulation
based, single-pixel modification [63], universal approach [49],
natural filters [4], generative network-based [14], genetic
algorithm-based [12], and classification boundary-based [50]
attacks are proposed. Recently, Agarwal et al. [3] have studied
the effect of the gradient to perform the attack and defense to
the CNNs.

B. Detection

Existing adversarial detection algorithms can be classi-
fied into four different categories: statistical, classifier-based,
dimensionality reduction-based, and image processing-based.
Gong et al. [24], Grosse et al. [29], and Metzen et al. [48]
have proposed adversarial detection based on the learning of
neural network classifiers using both original and adversarial
examples. Bhagoji et al. [8], Feinman et al. [18], Hendrycks
and Gimpel [34], Agarwal et al. [2], and Li and Li [41]
have presented adversarial detection either by measuring the
statistical properties through a distribution or based on the
measurement of dimensionality reduction techniques. Network
parameter reduction based on feature squeezing is proposed
by Xu et al. [71], which in turn helps in reducing the search
space available for adversarial example generation algorithms.
Lee et al. [40] proposed the Mahalanobis distance-based
confidence score for the detection of out-of-distribution (OOD)
and adversarial images detection. They assume that the fea-
tures of CNN fit the class conditional Gaussian distribution.
Ma et al. [45] analyzed the properties of an adversarial region
using LID features and used it for the detection of adversarial
examples. Chen et al. [13] proposed the defense based on
focusing the attention on critical regions and contour of the
image objects. Goel et al. [20]–[22] have presented various
defense mechanisms based on the reconfiguration of the CNN
architectures.

Although many detection methodologies have been pro-
posed in the literature, a common and significant limitation
is the ineffectiveness [9] in detecting challenging adversarial
examples such as generated using C&W’s (l2) attack [11]. For
instance, the detection algorithm proposed by Li et al. [41]
is able to achieve perturbation detection accuracy of only
8% when used to detect adversarial samples generated using
Carlini and Wagner (C&W’s) attack (l2) on the MNIST data-
base. Similarly, on the CIFAR-10 database only 1% adversarial
examples are successfully detected [9], [11]. Other defense
algorithms based on gradient hiding [53], [56], input trans-
formations [30], [70], generative networks [62], CNN-based
classifiers [24], [29], [48], and single classifier [47] are also
proven ineffective across stronger attacks [6], [9], [10]. Recent
algorithms [54], [61] are able to provide certified defense for
small perturbations on the MNIST attack database but they
are not effective [67] against multiple attacks and databases.
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Fig. 2. Proposed DAMAD adversarial perturbation detection algorithm combines statistical texture attributes obtained from DenseNet-121 feature maps and
AE embedding.

Not directly related to adversarial attacks, Tao and Cao [66]
present the resilient learning against erroneous database labels
through noisy labels.

III. PROPOSED ALGORITHM

The adversarial image generation approaches embed an
imperceptible “adversarial noise” in the original image. Across
different attacks, we observed that the attack algorithms differ
in the kind of noise (e.g., gradient-based or magnitude), magni-
tude of noise (say single step or iterative), and the region where
it is embedded (e.g., every pixel or salient regions only). This
is similar to the watermarking and steganography literature,
where the watermark or the message is embedded in the source
image. This has been supported by Goodfellow et al. [25],
where they have mentioned that adversarial perturbations can
be treated as “accidental steganography.”

Based on the literature and limitations discussed in
Section II, we hypothesize that a single algorithm may not
be able to detect different kinds of adversarial noise. Inspired
from the multimodal biometrics research [55], [59] and gener-
alized amalgamation technique for adversarial example detec-
tion [73], we postulate that an “ensemble of experts” or
multiclassifier fusion approach, which combines complemen-
tary features obtained from distinct sources, can alleviate the

limitations of single feature classification approaches. In other
words, the multiclassifier fusion approach can better model the
variabilities in original and adversarial noise classes to provide
better generalizability. Furthermore, statistical features such
as Haralick can help in determining the differences between
“original” and “perturbed” images. Based on these assertions,
we propose DAMAD to detect the presence of adversarial
attack in an image. Fig. 2 shows the block diagram of the
proposed algorithm. In the proposed algorithm, the following
holds.

1) Statistical Haralick features from the intermediate lay-
ers of DenseNet are extracted and probability confi-
dence scores from support vector machine (SVM) are
computed.

2) Features from intermediate layers of an AE are extracted
and SVM probability confidence scores are computed.

3) The two probability scores are combined to obtain a final
decision.

A. Statistical Features From DenseNet

Goswami et al. [26], [27] have demonstrated that filter
responses of original and adversarial examples have significant
differences, i.e., CNN filters are sensitive toward adversar-
ial noise. From this observation, we propose to use inter-
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mediate layers of a deep network to learn the differences
between original and attacked samples. In place of standard
CNN, this research uses DenseNet which has stronger feature
propagation and substantially fewer parameters. Furthermore,
we extract statistical features from the intermediate feature
maps using Haralick features [31]. The Haralick features used
are: angular second moment, contrast, correlation, sum of
squares: variance, inverse difference moment, sum average,
sum variance, sum entropy, entropy, information measure
of correlation 2, difference entropy, information measure of
correlation 1, and difference variance. It encodes statistical
properties of an input signal and extracts global attributes such
as context, correlation, and entropy. Agarwal et al. [1] have
proposed a combination of wavelet and Haralick for the detec-
tion of face presentation attack. However, the generalizability
against unseen attack is a concern of the algorithm.

The proposed DAMAD utilizes three blocks of DenseNet-
121 CNN model [36] to learn the filters that can accentuate the
differences between the set of original and perturbed images.
The dense blocks are initialized from the weights of the
DenseNet-121 model trained on ILSVRC [17]. Dense block 1
consists of six dense layers, whereas, blocks 2 and 3 consist
of 12 and 24 dense layers, respectively. Each dense layer
has two convolution layers with filter size 1 × 1 and 3 × 3.
The convolution block contains batch normalization, ReLU
nonlinearity followed by a convolution operation. The feature
maps at any layer are the concatenation of all feature maps
computed before that layer. After each dense block pooling,
the transition layer is used to reduce the size of the feature
maps which also helps in equating the size of each feature
map. These new connectivities between the layers help in
better encoding the patterns present in the input data and
therefore motivated this research to compute the statistical
features over the maps computed from DenseNet.

As shown in Fig. 2, in the first convolution layer,
a three-channel RGB image is convolved with 12 filters
followed by the first block of DenseNet model. Before passing
the output to the next DenseNet block, ReLU activation and
2×2 spatial pooling are applied to the feature maps. A similar
process is repeated for the next two blocks of DenseNet and
filters are learned by using a fully connected (FC) layer (with
two class classification). Once the network is trained, FC layer
is removed and the filtered outputs at-the-end of each ReLU
+ Pooling is used to compute the Haralick features, i.e., 13
Haralick feature vector is computed for each filtered output
in ReLU + Pooling layer. If the number of filtered output
in any ReLU + Pooling layer is n, then the size of the
Haralick feature vector is 13×n. To reduce the dimensionality,
principal component analysis (PCA) is applied [68] and 99%
Eigen energy is preserved. The reduced dimensional feature
is then combined and classified into 2-classes (original and
perturbed) using a linear SVM classifier (SVM1 in Fig. 2).

B. AE Model for Perturbation Detection

As the second classifier, a denoising AE model is trained
which can help discriminate between perturbed and original
images. An AE captures the intrinsic properties of data and

Fig. 3. Hidden layer visualization of AE. The embeddings learned on
adversarial examples are more noisy as compared to clean images which
might help in detecting the attack.

learns to abstract image properties by learning the latent
space representation. Visualization of hidden layer encod-
ing of an AE (original and adversarial images), as shown
in Fig. 3, shows different spatial distribution of both classes
in a nonlinear space. This property is explored for detecting
adversarial noise in the input images. An unsupervised AE has
a reconstruction loss function as

argminW,W � ||X − W �φ(W X)||22 + λR (1)

where W and W � are the encoding and decoding weights, φ
is the nonlinear activation (e.g., ReLU), λ is the regularization
constant, and R is the regularizer (e.g., ||.|| norm and dropout).
The stacked AE extends (1) to

argminW1,...,Wn ,W �
1,...,W

�
n

||X−g ◦ f (X)||22 + λR

g = W �
1φ(W �

2 . . . φ(W �
n f (X)))

f = φ(Wn · · · φ(W1(X))). (2)

With two encoding layers, the feature can be represented as
Hx = φ(W2φ(W1 X)). Given an input original image X and
a perturbed image Y , the features Hx and Hy are fed into
a 2-class SVM [16] with Radial Basis Function kernel to
distinguish between original and perturbed classes (SVM2

in Fig. 2).

C. Multiclassifier Fusion

The two feature networks, Haralick features from DenseNet
and AE, are combined using a late fusion approach. The classi-
fication probability scores obtained from two SVM classifiers
(PAE and PHCNN) are combined using sum rule, i.e., Pfusion =
((PAE + PHCNN)/2) and the fused score is used to classify an
input image as original or perturbed.

D. Implementation Details

The DAMAD algorithm is implemented in Theano environ-
ment with K40 GPU and Adam optimizer. For the AE model,
given an input image of size N , two hidden layers are of
size [(N/2), (N/2)]. For the CNN model, 12 filters of size
3 × 3 are used in the first convolutional layer followed by
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three DenseNet blocks along with 2 × 2 maxpooling layer.
Furthermore, for both the models, the learning rate is 0.0001,
the dropout rate is set to 0.5, and the number of epochs is
500. Geometric transformation (1◦–3◦ rotation) and reflection
of the image is used for data augmentation.

IV. DATABASES AND EVALUATION PROTOCOL

This section summarizes the databases and attacks consid-
ered for evaluation along with the experimental protocol and
existing algorithms for comparison.

A. Attacks

To evaluate the performance and generalizability of
the proposed DAMAD algorithm, we have performed
the experiments with different attacks: optimization based
[elastic net (EN)] [15], C&W [11]), universal perturba-
tions [49], PGD [46], gradient-based algorithms [25], [38], and
DeepFool [50]. Table I provides the number of images gener-
ated for each of the databases and the adversarial model used
for image generation.

B. Universal Attack or Image Agnostic Attacks [49]

We have used three different deep neural network mod-
els to generate the universal perturbed images. The DNN
models used are: VGG-16 [58], ResNet-152 [32], and
GoogLeNet [64]. Since these are among the best performing
networks for tasks such as object recognition and face recogni-
tion, we have selected these networks to generate the universal
adversary on the face and ImageNet databases.

C. DNN Loss-Based Adversarial Perturbations

Nine different types of DNN loss-based attacks are
selected to generate the adversarial images from the MNIST
and CIFAR-10 databases. The selected attack generation
algorithms are among the most challenging attacks [9].
Gradient-based adversarial example generation algorithms are
the most common in the literature and hence they are also uti-
lized to generate adversarial images. In this research, we have
used a basic version of a gradient-based algorithm known
as the fast gradient sign method (FGSM) and an iterative
version of FGSM (IFGSM). PGD is another stronger variant
of FGSM attack which iteratively computes the adversarial
noise. It is also considered the universal adversary among
first-order adversaries. Other than the basic version, l1, l2, and
EN norm minimization-based variants are also used to generate
the adversarial examples.

D. DeepFool

The minimal norm perturbation is computed iteratively. The
algorithms start with a clean image that resides in the decision
boundary defined by the classifier. At each iteration subtle
noise vector is added to the input image with the aim to take
the image outside the decision boundary.

E. Attack Parameters

For C&W and EN attacks, regularization parameter (initially
c = 0.001) is searched over nine binary steps where each
step runs for 1000 iterations. The initial learning rate is set to
0.01. ADAM optimizer, and projected FISTA with square-root
decaying rate are used for C&W and EN, respectively. Sim-
ilarly, for IFGSM and its variants, CleaverHans2 package
is used. The best distortion parameter is selected using the
fine-grained search. Ten FGM iterations are implemented with
distortion parameter �/10 in each iteration. All other settings
are kept as default for all the attacks. The experimental para-
meters used for adversarial examples generation are reported
in Tables II and III. The original codes provided by the
authors of Universal, DeepFool, and PGD attacks are used
with quasi-imperceptible adversarial noise. The adversarial
examples selected contain the lowest distortion.

F. Databases

The results are demonstrated with six popularly used face,
object, and digit recognition databases. The face databases are:
PaSC [7], CMU Multi-PIE [28], and the Multiple Encounters
Data Set (MEDS) [19]. From these three databases, more than
9500 frontal or nearly frontal images are randomly selected.
The object recognition databases used are CIFAR-10 [37]
and ImageNet (i.e., ILSVRC-2012) [17]. We have selected
5000 images from the ImageNet database and 9000 images
from the CIFAR-10 database. MNIST database [39] contains
images of handwritten digits from 0 to 9. Utilizing the code
provided by Chen et al. [15], we have selected 9000 images
from the MNIST database. In total, we have more than
32 500 original images pertaining to more 2150 classes, across
these six databases.

We next created adversarially perturbed images correspond-
ing to the adversarial attacks discussed above. In total, there
are more than 29 000 perturbed face images and 177 000 per-
turbed images from the other three databases. It is to be noted
that the codes and models for adversarial generation are taken
from original papers in order to avoid any bias.

G. Protocol

The evaluation protocol includes both positive and neg-
ative attack detection (i.e., original and perturbed images).
The experiments are segregated according to intravariations
and cross-variations (architecture/attack/database). For all the
scenarios related to intradatabase (such as training and testing
on MEDS) and intraattack (such as l1-l1) experiments, 50%
of the data from both classes is randomly selected for training
and the remaining 50% for testing. In cross-database (such
as MEDS-PaSC) and cross-attack (such as l1-l2) scenarios,
original/adversarial images of one database/attack are used
for training while original/adversarial images of another data-
base/attack are used for evaluation. Similarly, in the case
of “cross DNN architecture,” adversarial images generated
using one DNN model (such as VGG-16) are used to train
the classifier, while at the time of testing, adversarial images

2https://github.com/tensorflow/cleverhans

Authorized licensed use limited to: Indian Institute of Technology - Jodhpur. Downloaded on June 27,2021 at 10:42:56 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS

TABLE I

NUMBER OF ORIGINAL IMAGES AND ADVERSARIAL (PERTURBED) IMAGES GENERATED FOR EACH DATABASE

TABLE II

RANGE AND RESOLUTION OF DISTORTION PARAMETERS TO

GENERATE IFGSM ADVERSARIAL SAMPLES

TABLE III

EXPERIMENTAL SETUP OF C&W, EN, AND L1 ATTACKS

generated using another model (such as GoogLeNet) are
used. We have performed evaluations with twofold unseen
training-testing as well. For instance, “cross DNN architecture
and cross-database,” where not only DNN architecture from
which universal adversarial images are generated is different
but the testing database is also different. It is to be noted that
this is the first work to report results on “cross” training-testing
conditions in three areas: cross-database, different DNN archi-
tectures, and different loss functions (l1/l2/l1 + l2/GSM).

H. Evaluation Metric

The results are reported using the average detection accu-
racy of real and adversarial examples. The detection accuracy
is the average of true positive rate (TPR) and true negative
rate (TNR). TPR is defined as the rate of real examples being
classified as real and TNR is defined as the rate of adversarial
examples being classified as adversarial. In order to maintain
the class balance, in each experiment, we have used an equal
number of real and adversarial examples.

I. Algorithms for Comparison

The performance of DAMAD is compared with three
recently proposed detection algorithms: ANR [42], BU [18],
Base-OOD [33], ODIN [43], ESRM [44], and CNN
response [26]. The Base-OOD and ODIN use the softmax
probabilities of the DNN model to identify OOD samples.
The ODIN, an enhanced version of Base-OOD, uses the
temperature scaling to softmax probabilities [35] and input

Fig. 4. Detection performance of DAMAD and existing adversary detection
algorithms on the ImageNet database with universal adversarial perturbation.
(Best viewed in zoom and color.)

perturbation to enlarge the softmax score gap between in-
and-out distribution samples. ESRM uses the concept of
steganalysis for the detection of adversarial attacks. It models
the dependence between the adjacent pixels using a hidden
Markov model. Other than the existing adversarial detection
algorithms, DAMAD is compared with two deep learning
models: VGG-16 [58] and DenseNet [36]. The VGG-16 and
DenseNet model (pretrained on Imagenet) are fine-tuned using
the adversarial and original images for perturbation detection.
Along with these, detailed analysis is performed with indi-
vidual components of DAMAD, redundant discrete wavelet
transform (RDWT) + Haralick, and local binary pattern (LBP)
features. The SVM classifier is trained on the training set cor-
responding to each protocol and detection results are reported
using features computed on the testing set. A comparison with
recently proposed LID [45] and Mahalanobis [40] algorithms
on complex l2 attack on CIFAR10 database is also reported.

V. RESULTS AND ANALYSIS

The results are divided into three parts. First, the results are
analyzed with respect to the intravariations in database, model,
and attack, followed by intervariations. Finally, the general
observations made across the intravariations and intervaria-
tions experiments are discussed.

A. Results With Intravariations

Figs. 4 and 5 summarize the results on the ImageNet
and the face databases in the intravariations setting. On the
ImageNet and face databases with Universal attack, the pro-
posed DAMAD correctly classifies more than 98% samples,
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TABLE IV

ADVERSARIAL DETECTION PERFORMANCE OF THE PROPOSED DAMAD AND EXISTING ALGORITHMS ON THE CIFAR-10 AND MNIST DATABASES

Fig. 5. Detection performance of DAMAD and existing adversary detection
algorithms on face databases with universal adversarial perturbation. (Best
viewed in zoom and color.)

irrespective of the models used (VGG-16, GoogLeNet, and
ResNet-152). The comparative results documented in Fig. 4
show that the detection results of existing algorithms yield
significantly lower performance. The performance of the
detection algorithm proposed by Goswami et al. [26], which
utilizes the intermediate filter response of VGG, is 13.2% and
16.8% lower than DAMAD on PaSC and MEDS databases,
respectively. For C&W l2 and PGD with (� = 0.03) attacks,
the proposed DAMAD yields at-least 91% and 93% detec-
tion accuracy on face databases (MEDS, PaSC, and Multi-
PIE). On the ImageNet database, in comparison to existing
algorithms, there is a difference of at least 17% for all three
models. On ImageNet, when VGG-16 fine-tuned model is
used for universal adversarial sample detection, the accuracy
is in the range of 65%–75% which is significantly lower than
DAMAD. Similarly, DenseNet only-based detection model
shows at-least 20% lower accuracy compared to the proposed
DAMAD.

Table IV summarizes the results on the MNIST and
CIFAR-10 databases with different kinds of adversarial
attacks. DAMAD yields more than 97.1% detection accuracy
on optimization and gradient-based attacks on the CIFAR-10
database. The detection performance of two existing algo-
rithms (ANR [42] and BU [18]) on gradient-based attacks
are in the range of 83.2%–88.5% on CIFAR-10 database,
which is at-least 8.6% lower than DAMAD. On the CIFAR-10
database, DAMAD is at least 39.5% higher compared to

Fig. 6. Results of DAMAD and state-of-the-art detection algorithms
(LID [45], Mahalanobis [40], ODIN [43], and ESRM [44]) with complex
l2 [11] attack on the CIFAR-10 [37] database.

existing algorithms on challenging l1, l2, and EN attacks.
Similarly, on the MNIST database, the adversarial detec-
tion accuracy of DAMAD on gradient-based attacks is in
the range of 99%–100%, whereas the performance of two
existing algorithms are in between 81.2% and 85.9%. The
DAMAD improves the C&W l2 attack detection performance
of LID from 76.5% to 98.1% when ResNet model is used
for LID [45]. Similarly, the detection performance of Maha-
lanobis [40] and ESRM [44] improves at least by 6.3% and
30.6%, respectively, when the proposed DAMAD is used for
complex optimization based adversarial examples detection.
The results are shown in Fig. 6.

The performance is also evaluated on DeepFool adver-
sary [50]. More than 9500 DeepFool adversarial images
are generated from three face databases (MEDS, Multi-PIE,
and PaSC) using the VGG-16 DNN architecture. Results
of DAMAD, both in “intra” and “cross” database scenar-
ios, are reported in Table V. The detection performance of
DAMAD algorithm is at least 4.6% and 15.6% better than
DenseNet-based classification model when trained using PaSC
and Multi-PIE databases, respectively. The proposed algorithm
outperforms the recently proposed algorithm based on CNN
filter responses [26]. The detection accuracy of DAMAD is
up to 29.8%, 39.3%, and 41.9% higher than the CNN filter
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Fig. 7. Comparison of the proposed algorithm with state-of-the-art detection algorithm (CNN filter response [26]) on Universal [49] and DeepFool [50]
attack on face databases. (Best viewed in color.) (a) Results on the PaSC database [7]. (b) Results on MEDS database [19].

Fig. 8. Comparison of the proposed algorithm with state-of-the-art detection
algorithm (CNN filter response [26]) on CIFAR-10 database. (Best viewed in
color.)

TABLE V

DETECTION PERFORMANCE OF DAMAD FOR DEEPFOOL ADVERSARY ON

FACE DATABASES WITH INTRA AND CROSS DATABASE TESTING

response algorithm on PaSC, MEDS, and CIFAR-10 data-
bases, respectively. The results are shown in Figs. 7 and 8.3

1) Ablation Study: We next perform an ablation study and
evaluate the effectiveness of individual steps of the algo-
rithm on the ImageNet database. As shown in Fig. 4, it is
observed that individual components such as (AE+SVM)
and (DenseNet+Haralick+SVM) are individually not effec-
tive. The combination of these components in the DAMAD
algorithm yields the best results. Furthermore, in place of

3CNN filter response [26] approach originally uses VGG network for
detecting adversarial perturbations. We have performed additional experiments
to understand if the performance of the CNN filter response approach is
improved when DenseNet is used in place of VGG. In our experiments,
we have observed that the CNN filter response approach yields up to 3%
higher performance when DenseNet features are used in place of VGG
features. However, it is still significantly lower compared to the proposed
DAMAD.

DenseNet, RDWT+Haralick with SVM yields lower perfor-
mance. This shows that all the components of the DAMAD
algorithm are important for providing consistently accurate
detection results across different models. Similar observa-
tions are noted for the three face databases in cross-database
experiments (Table VI). The effectiveness of DenseNet over
ResNet as discussed earlier is also demonstrated through
experiments. On the ImageNet database, the accuracy of the
DenseNet model is at-least 94.7% across all three universal
perturbation generation CNN architecture. On the other hand,
the performance of the ResNet-152 model is at-least 12%
lower than DenseNet-121.

B. Results With Intervariations

The next set of experiments are performed to test the
generalizability of the proposed algorithm with variations in
testing model, attack, and database, compared to the ones for
training. The combination of attacks and databases are selected
according to the research in literature. For instance, DNN loss
based attacks have been performed on MNIST and CIFAR,
while Universal attack with different models is demonstrated
for ImageNet and all three face databases.

1) Cross-Database Evaluation: Table VI summarizes the
results of cross-database testing of existing algorithms,
DAMAD, and components of DAMAD. The detection per-
formance of BU and ANR is in the range of 62.8%–79.3%
across different combinations of training and testing, whereas
DAMAD lies in between 97.4% and 100%, thus demonstrating
the generalization capability of the algorithm. On univer-
sal adversarial images generated using the VGG-16 model,
the CNN response [26] algorithm yields 53.4% and 63.2%
detection accuracies on the PaSC and MEDS databases,
respectively, which are 36.8% and 45.0% lower than the
DAMAD, respectively. We have also used the DenseNet [36] as
an adversarial model and generated the adversarial examples
using face databases. We have generated the universal noise
vector with different fooling rates (40%, 60%, and 80%) with
input variation set to 0.03. When the DenseNet adversarial
model is used, the proposed defense performed similarly to
other models such as VGG-16 and GoogLeNet. The accuracy
ranges from 96.8% to 100% under cross-database scenarios
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TABLE VI

DETECTION PERFORMANCE ON FACE DATABASES WITH CROSS DATABASE TRAINING-TESTING FOR THE UNIVERSAL ATTACK. - REPRESENTS
THE INTRA DATABASE CONDITIONS AND CORRESPONDING RESULTS ARE REPORTED IN FIG. 5

which is similar to VGG-16, GoogLeNet, and ResNet-152
model reported in Table VI. Analyzing the performance
of individual components (ablation study) of the algorithm
shows that each component of the algorithm is important
for high detection performance, and removing any compo-
nent significantly reduces the performance on some cross
train-test pairs.

2) Cross-Attack Evaluation: In the cross-attack experiment,
the training and testing adversarial images are generated using
different attack types. Fig. 9 shows the findings related to
the cross-attack situation. The average (± standard deviation)
adversary detection performances on cross attack scenario are
99.2 ± 0.6%, 64.2 ± 4.1%, 62.3 ± 4.3%, 70.3 ± 3.3%, 75.4 ±
2.8%, and 68.7 ± 2.7 on the MNIST database using DAMAD,
ANR, BU, Base-OOD [33], ODIN [43], and ESRM [44]
algorithms, respectively. Similarly, on the CIFAR-10 data-
base DAMAD, ANR, BU, Base-OOD [33], ODIN [43], and
ESRM [44] algorithms yield an average detection accuracy
of 93.7 ± 1.2%, 46.7 ± 3.1%, 47.5 ± 3.2%, 56.8 ± 2.2%,
58.9 ± 1.5%, and 59.1 ± 1.9, respectively. These results
show the generalizability and transferability properties of the
proposed algorithm.

3) Cross-Databases and Cross-DNN-Architectures: To
evaluate the generalizability in presence of more “unknown”
factors, we performed another experiment as ‘cross-database’
and “cross-architecture." This experiment is performed using
MEDS, Multi-PIE, and PaSC databases with VGG-16,
GoogLeNet, and ResNet-152 architectures, where one data-

Fig. 9. Attack detection results when the model is trained on one attack and
tested with other attacks. Tenfold experiments are performed, each using only
one attack for training and the remaining nine attacks for testing. The average
detection accuracy is reported. The comparison with BU [18], ANR [42],
Base-OOD [33], ODIN [43], ESRM [44], and RDWT+Haralick [1] algorithms
is also reported.

base and one architecture is used for training while the
other databases and architectures are used for testing. The
proposed DAMAD achieves at least 99.97% accuracy which
is significantly higher than the existing algorithms (less than
50% accurate). This experiment showcases that DAMAD is
generalizable even in the case of both cross-database and
cross-architecture scenarios.
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C. Discussion

We have made the following observations across different
experiments.

Without PCA: The proposed algorithm computes the
Haralick features over each feature map which leads to high-
dimensional feature vector which is reduced using PCA. With-
out PCA, there is no significant difference in the classification
performance; however, the computational load increases by
multiple folds.

Universal Perturbation: It can be detected easily in com-
parison to DNN loss-based attacks. This observation is also
made in [2] where PCA + SVM classification yields at
least 93% detection accuracy on universal adversarial samples
from multiple face databases. Testing universal adversarial
perturbation with different parameter values (e.g., δ = 0.4
and 0.2, � = 0.5, 1.0, and 10) on the CIFAR and MNIST
databases yields over 98% detection accuracy. Similarly, when
C&W attack is tested on high-resolution face images, over
95% detection accuracy is observed. Experiments with other
CNN architectures (VGG and ResNet) are also performed and
the results show that, on the ImageNet database, the detection
accuracy of VGG-16 is 5%–25% less than DenseNet in both
intra and cross-variations testings.

Haralick Features on DenseNet: While the aim of an
adversarial example is visual imperceptibility, they still modify
the local pixel structure which can be detected using Haralick
based statistical features. We hypothesize that if we detect
these changes via statistical features, we should be able to
detect the presence of adversarial noise. Haralick features
measure the statistical characteristics such as homogeneity,
entropy, contrast, correlation, and energy of the pixel dis-
tribution. From the experiments, it is evident that the sta-
tistical features computed over DenseNet maps outperform
the DenseNet-only detection method. Furthermore, the DNN
loss-based attacks are generated using nonlinear CNN mod-
els, which may explain why the adversary detection learned
over the DenseNet maps show higher performance than an
AE-based model.

Combination of Classifiers: We observe that DenseNet tries
to learn feature maps which focus on low-level discrimina-
tive information. The statistical characteristics of Haralick
features obtained from DenseNet maps and nonlinear feature
encoding using AE improve the strength of the proposed
detector. The performance of the AE module suffers under
the cross-database (Table VI) scenario in comparison to seen
database performance. The accuracy of the AE module ranges
from 68.4% to 79.1% under the cross-database scenario.
A combination of statistical features and nonlinear embedding
shows the generalizability and transferability across databases,
DNN loss functions, and DNN architectures. The high detec-
tion accuracy of the proposed adversarial detector can help
make DNNs more robust in practical use by rejecting the
adversarial examples.

Other Classifiers and Features: Fig. 10 illustrates the scatter
plots and SVM score distribution of real and adversarial
face images. It is also found that the adversarial perturbation
detection using SVM classification shows consistently higher
performance as compared to other classifiers such as a neural

Fig. 10. Haralick feature and classification score distribution of real and
adversarial class images. Both feature and classification score distribution
shows the high discriminability of original and adversarial images in statistical
feature space.

network (NNet). The accuracy of NNet on the face and Ima-
geNet databases for “intradatabase” scenarios are in the range
of 65%–70%, which drops significantly for “cross-database”
(50%–55%). We have also evaluated other traditional texture
features such as LBPs [52] in place of Haralick features and
the performance on MNIST and CIFAR-10 databases is at
least 3% lower than the Haralick texture features.

DAMAD algorithm is challenging to break because the
algorithm is primarily utilizing the “ensemble of detectors” by
combining DenseNet+Haralick+PCA+SVM and AE+SVM.
It is our understanding that the proposed algorithm will
be fooled in cases when the perturbation leads to minimal
difference in features; however, we assert that in such cases,
the object/face classification results will already be correct and
will not require an attack detection algorithm.

D. Resilience of Detection Algorithm via White-Box Attack

In real-world settings, it might be possible that if the
attacker has access to the detection algorithm, they might
attack the detection algorithm itself. To evaluate the resiliency
of the DAMAD algorithm towards adversarial attacks, exper-
iments with white-box attack scenarios are performed. Since
the attacker has access to the loss function of the network
concerning its input and target labels, it can attempt to
compute the perturbation to fool the network. Similar to
Defense-GAN [57], FGSM (with � = 0.3) and C&W-l2

(with c = 2) attacks are performed using projected gradi-
ent descent [46] for 100 iterations. DAMAD achieves more
than 98% and 96% detection accuracy on the MNIST and
CIFAR-10 databases, respectively. It is our assertion that one
primary reason that DAMAD demonstrates resiliency against
white-box attacks is that the decision is taken from multiple
independent embeddings, AE, and DenseNet features. Another
important reason for its resiliency is that shuffling of image
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Fig. 11. Attack detection results of the proposed DAMAD and ESRM [44]
on the Fashion-MNIST database.

parts or changes in pixel structure due to adversarial noise
changes the texture encoding (i.e., spatial relation) and it
effectively gets captured by a combination of DenseNet and
Haralick features.

The resiliency of the proposed algorithm is also evaluated
based on the findings of recent work by Liu et al. [44].
We have performed the secondary adversarial attack [9] which
is defined as the removal of 10% nontargeted adversarial per-
turbations. The experiments are performed on the CIFAR-10
database using the VGG-16 attack generation network. The
secondary attack is able to reduce the detection performance
of the proposed DAMAD by only 3%; however, its attacking
strength to the target network is reduced from 99% to 45%.

VI. CONCLUSION AND FUTURE WORK

This article presents an adversarial attack detection
algorithm that utilizes the nature of modifications made by
adversarial attack algorithms to successfully detect such per-
turbations. The proposed methodology, namely DAMAD, com-
bines nonlinear AE embedding with statistical Haralick texture
attributes computed on DenseNet feature maps. Experimental
results demonstrate that DAMAD achieves superlative detec-
tion performance on multiple databases even when the attack
type to be detected and the target database is unseen whereas,
other existing algorithms perform poorly in such conditions.
As shown in the experiments, the proposed algorithm is also
resilient to white box attacks. To the best of our knowledge,
this is the first work addressing mismatched conditions in
train and test databases, loss functions, as well as the DNN
architecture. Our next step in this area would be to focus on
how to mitigate the attack after it is detected and provide
the “real” base image. In addition, domain generalization
capability can be incorporated into the DAMAD—such as
detectors trained on object images are tested on face images.

APPENDIX

We have also performed additional experiments with
Fashion-MNIST database [69]. For every image of the test
set, three standard adversarial attack images are generated
using FGSM (� = 0.3), DeepFool, and PGD (� = 0.3)
adversarial attacks. The performance of the proposed DAMAD

is also compared with one recent adversarial example detection
algorithm, i.e., ESRM [44]. The algorithms are trained on
the database’s train set containing both real and adversarial
images, and the testing is performed on the test set of the
database. The results reported in Fig. 11 show that the pro-
posed DAMAD significantly outperforms the ESRM algorithm
and yields almost perfect detection accuracy on the adversarial
examples.
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