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Pushing Boundaries of Face Recognition: Adversary, Heterogeneity, and

Scale

by

Tejas Indulal Dhamecha

Abstract

Due to the unconstrained nature of data capture and non-cooperative subjects, automatic face
recognition is still a research challenge for application scenarios such as law enforcement. We ob-
serve that challenges of face recognition are broadly rooted into two facets: (1) the non-ideal and
possibly adversarial face image samples and (2) the large size and incremental/streaming avail-
ability of data. The first facet encompasses various challenges such as intentional or unintentional
obfuscation of identity, attempts for spoofing system, user non-cooperation, and large intra-subject
variations for heterogeneous face recognition. The second facet caters to challenges arising due to
application scenarios such as repeat offender identification and surveillance where the data is ei-
ther large scale or available incrementally. Along with advancing the face recognition research by
addressing the challenges arising from both the aforementioned facets, this dissertation also con-
tributes to the pattern classification research by abstracting the research problems at the classifier
level and proposing feature independent solutions to some of the problems.

The first contribution addresses the challenge of face obfuscation due to usage of disguise ac-
cessories. We collect and benchmark IIIT In and Beyond Visible Spectrum Face Dataset (I2BVSD)
pertaining to 75 subjects, which has various types of disguises applied on different individuals. It
has become one of the most used disguise face dataset in the research community. Since disguised
facial regions can lead to erroneous identity prediction, a texture based algorithm is designed to
differentiate between biometric and non-biometric facial patches. The proposed approach is em-
bedded with local face recognition algorithm to address the challenge of disguise variations. The
approach is further enhanced with the use of thermal spectrum imaging. As the second contribu-
tion, the dissertation addresses the challenge of heterogeneous face matching scenarios, such as
matching a sketch against a mugshot dataset of digital photographs, cross-spectrum, and cross-
resolution matching, that arise in a wide range of law enforcement scenarios. Heterogeneous
Discriminant Analysis (HDA) is designed to encode multi-view heterogeneity in the classifier to
obtain a projection space more suitable for matching. Further, to extend the proposed technique
for nonlinear projections, formulation of kernel HDA is proposed. Focusing on application such as
identification of repeat offenders, as the third contribution, we develop an approach to efficiently
update the face recognition engine to incorporate incremental training data. The proposed In-
cremental Semi-Supervised Discriminant Analysis (ISSDA) provides mechanism to efficiently, in
terms of accuracy and training time, update the discriminatory projection directions. The proposed
approach capitalizes on offline unlabeled face image data, which is inexpensive to obtain and gen-
erally available in abundance. The fourth contribution of this dissertation is focused on designing
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a face recognition classifier that can be efficiently learned from very large batches of training data.
The proposed approach, termed as Subclass Reduced Set Support Vector Machine (SRS-SVM),
utilizes the subclass structure of training data to effectively estimate the candidate support vector
set. This candidate support vector set facilitates learning of nonlinear Support Vector Machine
from large-scale face data in less computation time.
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Chapter 1

Introduction

Biometrics is the field of study that deals with identifying humans based on their physiological

and behavioural traits [1]. The various traits/modalities that are explored for biometric authenti-

cation include physiological traits such as face [2], fingerprint [3], iris [4], retina [5], palmprint

[6], knuckle print [7], hand geometry [6], and ear [8] and behavioural traits such as gait [9], signa-

ture [10], and keystroke dynamics [11]. Among these, face, fingerprint, and iris are, arguably, the

most prominent, popular, and widely implemented modalities. Figure 1-1 illustrates procedures

for collecting face, fingerprint, and iris samples. Fingerprint and iris modalities require special-

ized hardware and expect relatively higher degree of user cooperation, whereas, a face image can

be collected by placing a commercially available imaging device within a distance of up to few

meters of the subject. Further, it is possible to capture face images without restricting or causing

discomfort to the user, by utilizing devices such as CCTV camera, as shown Figure 1-2. This non-

intrusiveness is an important characteristic in various application scenarios such as law enforce-

ment and surveillance where the user may be freely moving and is not necessarily cooperative.

Thus, for certain application scenarios, we find face to be a relatively more suitable modality.

The biometrics research community has actively focused on investigating automatic methods

to recognize faces1 for several decades [2], [12]. Some important face recognition approaches,

in chronological order, are Geometric approach [13], EigenFaces [14], Local Feature Analysis

[15], FisherFaces [16], Elastic Bunch Graph Matching (EBGM) [17], Gabor features [18], [19],

Bayesian learning based approach [20], Local Binary Patterns (LBP) [21], Scale Invariant Feature

1In this dissertation the term machine and computer are interchangeably used.
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(a) Face

(b) Fingerprint

(c) Iris

Figure 1-1: Illustrating the procedure for acquiring face, fingerprint, and iris samples. (a) Face
image is acquired using front facing camera of a handheld mobile device. (b) Optical sensor based
fingerprint acquisition device used as part of US-VISIT (Visitor and Immigrant Status Indicator
Technology) program. (c) Iris image is captured using a specialized handheld device.
Image Sources: goo.gl/htrLxZ, https://goo.gl/tmH5vE, https://goo.gl/
7riXQC
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Figure 1-2: CCTV cameras can be installed for the purpose of surveillance. The images show
CCTV cameras installed at entrance of a premise to keep record of the visitors.

Transform (SIFT) [22], [23], Dictionary-learning based approaches [24]–[26], Sparse Represen-

tation Classifier (SRC) [27], Joint Bayesian learning [28], Fisher vector faces [29], and Deep

Learning based algorithms [30]–[33].

State-of-the-art on various benchmark datasets is reported by deep learning based approaches.

These approaches are widely based on Convolutional Neural Networks (CNN). Although the core

idea of utilizing CNNs for face recognition existed for about two decade [34], the major imped-

iments to leverage it fully were mostly rooted in limited data and computation power. With the

advancements in the parallel processing hardwares, e.g. general purpose graphics processing units,

and neural networks training algorithms, it has become possible to achieve impressive results using

CNN based approaches. Invariably, almost all the deep learning based approach involves learn-

ing about hundred million parameters of the underlying neural network architecture. Some of the

top performing approaches include DeepFace [35], FaceNet [36], DeepID [30], [31]. It should

be noted that these approaches also involve state-of-the-art pre-processing techniques and met-

ric/classifier learning. Broadly, the CNN learns primitive to complex features in the subsequent

layers. It is observed that in the first few layers, CNN learns features similar to edges and hand-

crafted filters (e.g. Gabor). The availability of large labelled data, massive computing power,

advances in learning algorithms have brought machine face recognition on some benchmarks on

par with humans.
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The earlier research majorly focused on addressing each covariate, such as pose, illumination,

and expression (PIE), individually. The research succeeded in demonstrating the potential of face

recognition for various well-controlled scenarios. In due course of time, researcher have been

broadening the scope of face recognition to increasingly uncontrolled scenarios. For example, law

enforcement related application scenarios such as surveillance, assume very limited control over

user or environment. A broad view of the various challenges of using face recognition in differ-

ent application scenarios is illustrated in Figure 1-3. Face recognition algorithms have achieved

impressive accuracy in controlled environments [37], [38], i.e. frontal pose, moderate expression,

and controlled illumination.

The advancements have led to adoption of face recognition in various e-governance and com-

mercial scenarios such as e-passport, access control, and attendance systems. These application

scenarios provide a significant control over the imaging environment and the users. Some exam-

ples of face recognition technology in real-world scenarios include Australia’s automated border

processing system2, face recognition based user authentication on mobile phones (FaceLock) and

laptops (Windows 10) [39], face clustering and tagging in Picasa and iPhoto, and face-tag rec-

ommendation functionality in Facebook. Similarly, UIDAI (Unique Identification Authority of

India)3 and US-VISIT (Visitor and Immigrant Status Indicator Technology)4 programs also collect

face image along with other biometric samples. However, in all these cases it is likely that the face

images are captured with user cooperation in controlled environment. Thus, it is broadly accepted

that state-of-the-art face recognition systems have matured to be useful at least within the con-

straints of controlled environment and user cooperation [37], [38]. In recent years, unconstrained

face recognition, has also attained significant advances especially by utilizing deep learning based

approaches [30]–[33].

As illustrated in Figure. 1-3, we believe that various challenges of face recognition can be

brought under a broad categorization of unconstrained environment and scale. These challenges

can be abstracted and the proposed solutions can have broader applicability. While these challenges

can be addressed at various stages of face recognition, addressing some of these challenges at clas-

sifier level is more suitable and/or effective. Therefore, in this dissertation, we focus on devising

2https://goo.gl/EcLJxJ, last retrieved: 15 Jun 2017
3https://uidai.gov.in/beta/, last retrieved: 15 Jan 2017
4https://www.dhs.gov/obim, last retrieved: 15 Jan 2017
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Large-scale	and		Incremental	data

Scale

- Controlled	Pose,	
Illumination,	
Expression

- Cooperative	user

- Uncontrolled	Pose,	
Illumination,	
Expression

- Adversarial	user
- Disguise
- Makeup
- Plastic	surgery

- Non	ideal	imaging	
- Resolution
- Spectrum
- Composite	
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Surveillance
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Linear Solutions for Learning 
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Figure 1-3: Broad overview of various challenge of face recognition in different use-cases. Tradi-
tionally, the focus has been on the covariates of pose, illumination, and expression. For pushing
face recognition research further, issues pertaining to adversarial user behaviour, imaging hetero-
geneity needs to be addressed to mitigate the effects of unconstrained environments. Efficient
training from large-scale and incremental sources is important to address the effects of increased
operational scope. This dissertation focuses on addressing challenges associated with adversary,
heterogeneity, and scale for face recognition.

classifier level solutions for addressing challenges associated with unconstrained environment and

scale. Further details regarding challenges and the nature of their solution are discussed in the

following sections.

1.1 Unconstrained Environments and Scale: Two Challenges

of Face Recognition

As illustrated in Figure 1-3, application scenarios such as law enforcement and surveillance present

novel challenges. The roots of important challenges can be broadly traced to two aspects: 1)

unconstrained environment and 2) scale of data.
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(a) Controlled Photo (b) Unconstrained Photo

(c) Variations in face appearance due to usage of accessories. An adversarial
subject can elude from automatic recognition systems by using such facial ac-
cessories.

(d) Image of a crowd captured at a distance resulting in low resolution of individual faces

Figure 1-4: Illustrating some of the challenges of face recognition in unconstrained environment.
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(a) Visible and Near-IR (b) 72×72 and 16×16 (c) Photo and Sketch

Figure 1-5: Examples of heterogeneous face recognition scenarios. Images in (a) show hetero-
geneity due to spectrum difference, (b) illustrate heterogeneity due to resolution differences, (c)
show sample digital photos and their corresponding composite sketches respectively.

1.1.1 Unconstrained Environment: Adversary and Heterogeneity

Face images captured under different environmental conditions can vary significantly. For exam-

ple, in law enforcement scenarios, the users/subjects are often the suspects which may or may not

be cooperative in allowing face image acquisition. Further, the imaging environment (e.g. public

places, outdoors, nighttime) itself is often uncontrolled. Thus, a significant portion of variations

is rooted in degree of user/subject cooperation and imaging environment. In scenarios where user

cooperation can be expected (e.g. visa application, attendance systems), the variations due to pose,

illumination, and expression can be avoided. Similarly, ability to control the imaging environment

(e.g. studio) can also reduce the effects of these covariates. However, in application scenarios, such

as law enforcement, the control over user cooperation and imaging environment is limited. Table

1.1 briefly summarizes the expected operating settings for law enforcement application scenarios,

i.e. imaging environment may be controlled or uncontrolled and the user is not necessarily coopera-

tive. The images in Figure 1-4, although not captured in actual law enforcement scenario, illustrate

the variations in face images of the same subject depending on acquisition settings. Perceivably,

the images captured with limited-or-no user cooperation can be challenging to recognize. Notice

the difference between the passport photo (Figure 1-4a) acquired under controlled environment

and the so-called wild photo (Figure 1-4b) captured without control over PIE (pose, illumination,

and expression) and user cooperation. As shown in Figure 1-4c, there is a significant difference

in the appearance among images due to utilization of facial accessories. Such attempts to appear

different or to appear similar to other subjects can be categorized into adversarial user behaviour.

Figure 1-4d shows an example of non-ideal image acquisition that results into low resolution and
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occlusion along with illumination and expression variations.

The query face images in the application scenario of law enforcement are likely to be acquired

in unconstrained environment without user cooperation. For example, in case of surveillance in

public places, such as metro stations, people may be moving, parts of some faces may be occluded,

and there can be non-uniform illumination and various imaging artifacts present in the acquired

sample. Such challenges are likely to be present in real-world unconstrained face recognition sce-

narios. Unconstrained nature also leads to non-ideal image acquisition; because of which faces

may be captured at low resolution, at long distance stand-off, and using sensors operating in dif-

ferent spectrums of light. Further, in suspect identification scenario, the input/query face may

be a hand-drawn sketch or a computer generated composite sketch. These scenarios stem chal-

lenges such as sensor interoperability, cross-spectrum, photo-to-sketch, cross-resolution, and long

stand-off face recognition. Figure 1-5 shows such examples of heterogeneity introduced due to

non-idea imaging scenarios. Further, the subjects may even exhibit adversarial behavior with the

help of masks, facial accessories, and surgical modifications [40]–[43]. Thus, face recognition in

unconstrained environments involves challenges which are not encountered in typical controlled

environment scenarios.

Various face recognition challenges and NIST (National Institute of Standards and Technology)

evaluations have quantitatively emphasized that performance of state-of-the-art systems have been

significantly higher for matching face images acquired in controlled environment (e.g. mugshot)

compared to other scenarios (e.g. poor quality webcam images) [37], [38], [44]. These evaluations

also provide insights into how much the face recognition approaches have evolved in addressing

various challenges. Following is the summary of some important benchmark evaluations to provide

insights into the need for uncontrolled face recognition.

• MBE 2010: Visa Application vs Law Enforcement Mugshot Images: Multi-Biometric

Evaluation, 2010 [37] reports that, overall, face verification performance has improved for

good quality images such as the ones captured during visa processing. Between 2002 and

2010, the improvements in face recognition engines have led to reduction in FRR from 20%

to 0.3% at 0.1% FAR on good quality images. In identification scenario, the accuracy of

the best matcher on law enforcement mugshots dataset is 3% lower than that on the Visa

Application dataset. Further, the effect of scale (population size) on the accuracy is also

8



Table 1.1: Application scenarios as function of user behaviour and environment settings.

Environment
Controlled Uncontrolled

User
Cooperative VA, LE -

May not be cooperative
LE

Adversarial

VA = Visa Application, LE = Law Enforcement

observed. The report suggests that there is an approximate dependence of accuracy on log

of the population size. Quantitatively, for the populations sizes of N=10K, 80K, 320K, and

1.6M, the rank-1 accuracy is observed as 96.9%, 95.3%, 93.6%, and 92.3% respectively.

• GBU 2011: Quantitative Effects of Covariates: Good, Bad, and Ugly face recognition

challenge [45] studies the recognition performance under fixed settings of pose, aging, and

image acquisition. It shows that due to the way faces are represented in the image there can

be sets of image-pairs with very high, moderate, or poor classification accuracy. These three

kinds of sets are termed as good, bad, and ugly. It reports that at FAR of 0.1%, the baseline

algorithm achieves FRR of 2%, 20%, and 85% on good, bad, and ugly sets, respectively.

Since the protocol controls the pose, aging, and sensor variations, the performance difference

is largely attributed to the variations in environments (studio settings, hallways, atria, or

outdoors), illuminations, and expressions.

• FRVT 2014: The Face Recognition Vendor Test 2014 [38] further provides insights into

the challenges of face recognition in law enforcement applications. One of the exper-

iments evaluates the performance of matching mugshot images against webcam images

which are acquired in relatively uncontrolled environment. As the webcam based image ac-

quisition imposes relatively less constraints on the subject, the webcam-to-webcam (93.4%)

image matching yields poorer performance than mugshot-to-mugshot (97.5%). Further, the

cross-sensor interoperability challenge is evident in the observation that mugshot-to-webcam

matching achieves only 89.6% accurate face recognition.

Recently, NIST has launched three major challenges focused around unconstrained face recogni-
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tion; namely IJB-A [46], IJB-B [47], and Face Recognition Prize Challenge5. These challenges

have provided platforms and testbeds for evaluating face recognition performances in uncon-

strained environments.

It should be noted that deep learning based approaches claim the state-of-the-art results for un-

constrained face recognition [30]–[32]. Such approaches have significantly improved face recogni-

tion in the wild [48]. Overall, in the presence of traditional covariates the recognition performance

has matured, however, face recognition in fully uncontrolled environments and with emerging co-

variates warrants a significant research attention [49], [50].

1.1.2 Scale of Data: Incremental and Large Scale Training

As adoption of face recognition systems in real world applications increases, so does the operating

scale of such systems. The practical drivers for the challenge of scale include national identity

projects, advances in surveillance systems, detailed biometric recording of suspects/offenders, and

biometrics based transactional authentications. Further, need of incorporating various representa-

tions of face (multi-spectrum, multi-resolution, hand-drawn and composite sketches) also eventu-

ally contribute to broadening the operational scale of face recognition systems. On one hand, large

scale data opens possibilities to learn better models, whereas on other had, it adversely affects the

training and query processing time.

It is well observed that more accurate models may be obtained by leveraging large training sets.

Unfortunately, most of the efficient learning algorithms, such as Support Vector Machine (SVM),

have super-linear time and space complexity with respect to training set sizes and feature dimen-

sionality. Due to this property, most of the learning algorithms scale poorly with massive training

sets. In terms of run-time query processing time, identification (1:N matching) and de-duplication

tasks have time complexity directly proportional to the enrollment set size. For example, in Aad-

haar project6 the de-duplication needs to be performed for the population size of whole nation

(approximately 1.2 billion people for India). Similar challenge of 1:N matching is also posed in

surveillance scenarios. Considering these challenges, the academic community has kept on creat-

5https://www.nist.gov/programs-projects/face-recognition-prize-challenge, last
retrieved: 9 July 2017

6https://uidai.gov.in/beta/
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Table 1.2: Summary of various public face datasets. Notice the increase in the size (number of
subjects and samples) of the datasets in recent years.

Dataset Year Number of Subjects Number of Samples
AT&T [51] 1994 40 400
Color FERET [53][54] 2001 994 11,338
PIE [55] 2002 68 41,368
ND-Collection B [56] 2003 487 33,287
FRGC 2.0 [57] 2005 568 44,278
MORPH-II [58] 2006 13,673 55,608
LFW [59] 2007 5,749 13,233
PubFig [60] 2009 200 58,797
CMU-MultiPIE [61] 2010 337 755,370
YTF [62] 2011 1,595 3,425 videos
WDRef [28] 2012 2,995 99,773
MSRA-CFW [63] 2012 1,583 202,792
PaSC [64], [65] 2013 293 9,376 images, 2,802 videos
FaceScrub [66] 2014 530 107,818
CASIA-WebFace [67] 2014 10,575 494,414
Celeb-Faces+ [30] 2014 10,177 202,599
MegaFace [52] 2015 690,572 1,027,060
VGG-Face Dataset [68] 2015 2,622 982,803
IJB-A [46] 2015 500 5,712 images, 2,085 videos
IJB-B [47] 2017 1,845 21,798 images, 7,011 videos
CrowdFaceDB [69] 2017 257 384 videos

ing larger datasets over the years. Some of the important face datasets are listed in Table 1.2 along

with their sizes. Notice that in 20 years, research community has moved forward from dataset of

40 subjects [51] to 0.7 million subjects [52]. The increase in dataset sizes is indicative of the need

for practical scalable face recognition systems.

Additionally, in many scenarios the data may not even be available in one batch, e.g. when a

repeat offender is caught/booked after a long time, the identification system has to be updated with

the new incremental face samples acquired from him/her. To illustrate it further, Figure 1-6 shows

images of the same subject acquired between years 2010 and 2017. Assume that the suspect is first

caught in 2010, he is enrolled into the recognition system with two images, and is later released.

In 2011, his face samples are acquired again as part of a routine observation and reporting. In

2012, a face is captured in a CCTV feed and we need to establish the person’s identity. Notice that

the suspect’s face appears more similar to the sample acquired in 2010 than 2011. Therefore, the
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(a) 2010 (b) 2011

(c) 2012 (d) 2013

(e) 2014 (f) 2015

(g) 2016 (h) 2017

Figure 1-6: Illustrating the need to update the recognition engine with incrementally available
face samples as the appearance may change. The image shows face images of a subject acquired
over several years. Updating such (intra- and inter-) class characteristics in the classifier models is
necessary.
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chances of correctly identifying the suspect’s face is likely to increase if the recognition system

has been updated with the 2011 sample. The paradigm of learning in which the samples are not

available in one batch and are required to be incorporated into the model in successive batches, is

called as incremental learning.

Incremental learning can also be useful in dividing large scale learning problem into subprob-

lems. In the sample images shown in Figure 1-6, the variations in person’s face can be attributed

to various factors including, aging, weight gain/loss, growth/removal of facial hair, and usage of

facial accessories. However, with focus on scale and incremental learning, the goal is to develop

scalable face recognition approaches independent of the covariates.

1.2 Role of Classifiers in Face Recognition Pipeline

ImageInput	Image
Visible	spectrum
IR/NIR	spectrum

Sketch
Composite	Sketch
RGB-D	image

Face	Detection
Haar face	
detector,
Manual	

Annotation

Pre-processing
(Histogram	
equalization,	
contrast	

enhancement,	
smoothing,	etc.)

Feature	
Extraction
(Local	binary	
patterns,	

Histogram	of	
orientation	

gradients,	etc.)

Classification
(Subspace	
projections,	

Support	 vector	
machines,	metric	
learning,	etc.)

Prediction

Verification:	
Match/Non-match

Identification:	Id

Figure 1-7: A typical face recognition pipeline.

As illustrated in Figure 1-7, a face recognition system, generally, contains face and landmark

detection [70]–[72], pre-processing [73], feature extraction, and classification modules. Face re-

gion is first detected from the input image. The detected face is pre-processed to make it more

suitable for further processing. Pre-processing stage typically involves geometric normalization to

fit a detected face to a canonical face frame and image enhancement such as histogram equaliza-

tion, masking, and smoothing. The pre-processed face image is provided as input to the feature

13



extraction module. Features are extracted to obtain holistic and/or local representation of face

characteristics. In literature, various texture, gradient and learning-based features are widely ex-

plored in feature extraction module. The output of feature extraction module is, generally, a vector

representation of the input face image. In the training phase, the classifier module utilizes these

feature vectors corresponding to training set images to learn a classification model. In Figure 1-7,

the functionality of classifier is illustrated as learning the classification decision boundary. During

the testing phase, the feature vector representation of the query face image (or pair of face images)

is fed into the classifier to obtain a predicted class label. For an identification system, the output is

the predicted identity label. For a verification system the output is match or non-match.

The effectiveness of a face recognition system depends on how well the features encode the

identity information and how well the classifier is trained. Usually, it is a trade-off between the

complexity of feature extractor and the classifier. Utilizing features that are robust to the covari-

ates can help in reducing the complexity of classifier design. Vice versa, a complex classifier

many not heavily rely on invariant feature representation. Nonetheless, the overall best perfor-

mances are generally reported with sophisticated features in conjunction with accurate classifiers.

For example, a lot of deep learning related research efforts are focused on learning effective fea-

tures/representations. However, these approaches tend to employ sophisticated classifiers along

with deep features. Designing invariant features is heavily domain dependent, whereas designing

variation-aware classifiers is largely domain independent as the later addresses the abstract/generic

problem of underlying covariates. Thus, it allows to develop generic approaches which may be

adapted for other classification tasks too.

In the chosen scope of face recognition in law enforcement, the unconstrained environment re-

lated challenges may be addressed at feature extraction and/or at classification modules. However,

the challenges pertaining to the scale of data usually originate at the classifier level as the time

and memory requirements are super-linear. Therefore, this dissertation addresses the challenges

by improving existing classifiers and designing new ones for specific tasks.
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1.3 Research Objectives and Contributions

The aim of this dissertation is to advance the face recognition research for law enforcement applica-

tions. As discussed earlier, the challenges in the given scope of problem are in two broader facets:

uncontrolled environment and scale of data. The dissertation makes four major contributions with

respect to uncontrolled environments and scale of data. Specifically, the research objectives and

the contributions made towards them are:

1. To develop algorithm for recognizing disguised faces aided by human evaluation study.

Traditionally face recognition research has seldom focused on mitigating the challenges of

adversarial user behavior. This research focuses on one such adversarial behaviour of dis-

guise. The aim is to understand and improve the performance of identifying disguised faces.

We investigate human and machine performance for recognizing/verifying disguised faces.

The performance is evaluated under factors of familiarity and match/mismatch with the eth-

nicity of observers. The findings of this study are used to develop an automated algorithm

to verify the faces presented under disguise variations. We use localized feature descriptors

which can identify disguised face patches and account for this information to achieve im-

proved matching accuracy. In the proposed approach, the classification module involves dis-

guised patch detection and feature comparison. The performance of the proposed algorithm

is evaluated on the IIIT-Delhi Disguise database that contains images pertaining to 75 sub-

jects with different kinds of disguise variations. The experiments suggest that the proposed

algorithm can outperform a popular commercial system and equates to human performance

for matching disguised face images.

2. To develop algorithm for cross-view face recognition: cross-spectrum, cross-resolution,

and photo-to-sketch

In law enforcement applications, it is important to mitigate the challenges posed by het-

erogeneity of face representations such as spectrum and resolution variations. The hetero-

geneity of spectrum and resolution are observed in surveillance application. Similarly, sus-

pect identification scenario involves heterogeneity due to the need of comparing sketches

against photographs. The objective is to improve the face recognition under influence of
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such heterogeneity. In this research, we present two heterogeneity-aware subspace tech-

niques, Heterogeneous Discriminant Analysis (HDA) and its kernel version (KHDA) that

encode heterogeneity in the objective function and yield a suitable projection space for im-

proved performance. We next propose the face recognition framework that uses existing

facial features along with HDA/KHDA for matching. The effectiveness of HDA and KHDA

is demonstrated using handcrafted and learned representations, on three challenging het-

erogeneous cross-view face recognition scenarios: (i) visible to near-infrared matching, (ii)

cross-resolution matching, and (iii) digital photo to composite sketch matching. Comparison

with state-of-the-art heterogeneous matching algorithms shows that HDA and KHDA based

matching yield state-of-the-art results on all three case studies.

3. To develop algorithm for efficient incremental updating of subspace learning based face

recognition model.

It is possible that not all the training face images are available in one single batch for learning

the classification model, or it may not be possible to learn from the entire large-scale training

data due to hardware and/or algorithmic limitations. This presents the challenge of learning

classifiers or matchers from batches of training data available incrementally. The challenge is

particularly severe if the recognition pipeline involves subspace based approaches. Thus, the

objective is to learn accurate models from such incremental data in a time efficient manner.

The research focuses on developing a subspace approach that can incrementally update the

model. A computationally effective incremental update procedure is devised that can lever-

age unlabeled data. In the proposed approach, total scatter matrix is estimated offline using

unlabeled data whereas only the between-class scatter matrix is updated using incremental

data. The effectiveness of the proposed algorithm, termed as Incremental Semi-Supervised

Discriminant Analysis (ISSDA), is evaluated for face recognition application. The perfor-

mance is evaluated, using CMU-PIE, CMU-MultiPIE, and NIR-VIS-2.0 face datasets, by

comparing the accuracy, time and consistency of the proposed incremental algorithm with

the corresponding batch learning models. Evaluations to understand the effects of the man-

ifold regularizer and unlabeled data size are also performed. Further, the effect of updating

the model with incremental batch consisting of samples of new classes is also studied.
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4. To develop computationally efficient algorithm to learn support vector machine for

large-scale face recognition

SVM is considered amongst one of the best performing classifiers for a variety of tasks.

However, its time complexity hinders learning from large scale training data. This limitation

is also an impediment for employing and learning SVM based face recognition systems

in conjunction with large scale training. Thus the objective is to improve SVM learning

procedure/solver to enable faster and efficient, yet accurate learning.

We propose an approach for learning kernel Support Vector Machines from large-scale data

with improved computation time. The proposed approach, termed as Subclass Reduced Set

SVM (SRS-SVM), utilizes the subclass structure of training data to effectively estimate the

candidate support vector set. As the candidate support vector set cardinality is only a fraction

of the training set cardinality, learning SVM from the former requires less time; without sig-

nificantly changing the decision boundary. Further, we also propose the hierarchical exten-

sion of SRS-SVM. The effectiveness of the proposed approach is evaluated on five synthetic

and six real world datasets. The qualitative analysis of the decision boundary, as well as

extensive quantitative analysis of computation time, classification accuracy, precision-recall

of the candidate set estimation, and effect of parameters is presented. On various datasets the

SRS-SVM yields similar classification accuracy while requiring few folds reduced compu-

tation time as compared to traditional solver (LibSVM) and state-of-the-art approaches such

as divide-and-conquer SVM, FastFood, and LLSVM.
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Chapter 2

Recognizing Disguised Faces

Intra-class

variation

Inter-class

variation

Marilyn Monroe

Figure 2-1: Illustrating the effect of disguise accessories on inter-class and intra-class variations.

Disguise is an interesting and a challenging covariate of face recognition. It involves both

intentional and unintentional changes on a face through which one can either obfuscate his/her

identity and/or impersonate someone else’s identity. In either case, facial disguise falls under the

broader category of biometric obfuscation [74]. Figure 2-1 shows an example of face obfuscation

where the appearance of a subject can vary by using different disguise accessories. (Note that the

images in Figure 2-1 may be affected by covariates other than disguise, e.g. aging; however, in

this work we are concentrating on disguise only). As shown in Figure 2-1, disguise increases the

intra-class variation (when it is used to hide one’s identity) and reduces the inter-class variation

(when it is used to impersonate someone else). Even though the problem of face recognition
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under disguise is prevalent in real world applications, it has not been studied extensively. To make

automatic face recognition more usable and secure, it is necessary to address the problem of (at

least unintentional) disguise.

In recent years, recognition of disguised faces by humans has been an interesting area of re-

search for cognitive scientists. Righi et al. [75] studied the effect of adding or removing the dis-

guise accessories such as wigs and eyeglasses. They also evaluated the switch/no switch scenario

where the accessories present during training phase were removed (switch) or kept unaltered (no

switch). The study revealed that increasing the alterations to facial attributes of the probe image

decreased the recognition performance. Further, the change in the rather stable facial features such

as eyes had comparatively higher impact in decreasing the performance. A more detailed analysis

regarding the effect of disguise on eye region was presented in [76], [77]. Sinha et al. [76] stud-

ied the importance of eye brows stating “Of the different facial features, eyebrows are among the

most important for recognition". Douma et al. [77] found that removing glasses during testing had

more damaging effect than adding; this is also called as the Clark-Kent effect [78]. A significant

recognition performance difference was observed with variation in degree of familiarity, i.e. famil-

iarizing the participant nine times did show significant performance difference than familiarizing

three times. At a level of abstraction, Sinha et al. [76] and Douma et al. [77] provided insights

about the effect of disguise on stable features. Complimentarily, the effect of hair – rather unstable

features – was studied by Toseeb et al. [79]. The authors observed no significant performance

difference when the participants were shown faces with and without hair. The phenomenon was

attributed to the internal face features, which remained constant in both the scenarios. Similarly,

the effect of internal features was also studied in [80], [81]. Overall, it appears that the effect of

disguise on stable facial parts has more impact than on the unstable facial parts. However, to the

best of our knowledge, a comprehensive research on the effect of disguising individual facial parts

and their combinations is not performed.

Since disguise can be viewed as alteration to visual face information, the research related to

recognition of altered/degraded facial images can potentially provide some insights. In presence

of image degradation by blurring, Sinha et al. [76] have shown that familiarity of the stimuli

subjects is advantageous for face recognition. Complimentarily, Hancock et al. [82] reported that

unfamiliar faces are difficult to recognize in a low-quality surveillance video. Combining their
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results [76], [82] point to a possibility that the representation of familiar faces might be more

robust to certain image degradations than that of unfamiliar faces. Therefore, understanding the

effect of familiarity on disguised face recognition can potentially provide insights into the robust

facial representation and recognition by humans. It has been also observed in literature that face

recognition by humans is subjective to familiarity [83] and race [84].

A brief overview of literature related to automated face recognition under disguise variations is

presented in Table 2.1. Note that most of the research has been performed using the AR [40] and

Yale [90] face databases which contain very limited disguise (sunglasses and scarves only). How-

ever, to be confident about the performance of automated approaches, it is required that evaluation

is performed on a dataset with more exhaustive disguise variations. Regarding the effect of eth-

nicity, Phillips et al. [100] evaluated the performance of algorithms on east Asian and Caucasian

faces. The study showed that the fusion of the algorithms developed in east Asia performed better

on east Asian faces than on Caucasian faces. Similarly, fusion of the algorithm developed in West

countries performed better on Caucasian faces than east Asian faces.

In the last decade, some studies compared the performance of automated face recognition al-

gorithms and humans. O’Toole et al. [101] compared human performances with academic and

commercial systems. They observed that on the easy pairs, all the automated algorithms, except

one, exhibited better performance than humans; while for the difficult pairs, some algorithms out-

performed humans. This study focused on understanding the effects of the illumination variation

and, interestingly, the image pairs that were difficult for PCA based algorithms were also found to

be difficult for humans. Moreover, the evidences of algorithms surpassing humans for face veri-

fication task were also observed. Similar comparison was presented in [102] for face recognition

under uncontrolled illumination, indoor and outdoor settings, and day-to-day appearance varia-

tion. In [102], algorithms were shown to have superior performance than humans for good and

moderate image pairs, whereas humans and algorithms were comparable for the poor accuracy

group. These good, moderate, and poor accuracy groups were created based on scores given by

algorithms. Though not for face recognition, but for face detection, Marius’t [103] reported the

similar-error phenomena by humans and automated algorithm (AdaBoost cascade classifier [70]).

Further, O’Toole et al. [104] fused the humans and algorithms for face verification task using par-

tial least square regression. The fusion resulted in significant performance improvement. To the
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best of our knowledge, neither 1) a study focusing on covariate of disguise has been carried out,

nor 2) any attempt to enhance machine performance by encoding human strategy for recognizing

disguised faces has been made.

In this research we evaluate the effect of familiarity and ethnicity on disguised face recogni-

tion, and attempt to encode learnings from human evaluations into an automated algorithm. Since

humans are considerably efficient at face recognition [101], comparison of humans and automated

algorithms is also performed. The main contributions from this research can be summarized as

follows:

• evaluating human face recognition performance under face disguise along with familiarity

and ethnicity/race effect;

• determining the effect of individual facial parts on the overall human face recognition per-

formance;

• proposing an automated face recognition algorithm based on the learnings from human eval-

uation and comparing the performance with Sparse Representation Classifier (SRC) [27] and

a commercial off-the-shelf (COTS) system; and

• comparison of human performance with automated algorithms (including the proposed al-

gorithm) for addressing disguise variations.

2.1 Material and Methods

2.1.1 Ethics

To undertake this research the first step was to create a database. At the time of database creation all

the 75 subjects in the database were of age 18+ years. The subjects were provided with accessories,

and were asked to use the accessories at their will in order to get disguised. All the subjects

provided written informed consent for using their face images for research purpose. The consent,

for sharing their face images with research community and publish their face images in research

papers, was also taken from the subjects. Images pertaining to only those subjects who gave their

consent for sharing their face images, will be made available to the research community.
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Figure 2-2: Sample questionnaire.
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In order to analyze human capability of recognizing disguised faces, we collected the responses

from various participants. All the responses collected from survey participants are anonymous and

are used only for research purposes. Their willingness to participate in the survey was also asked.

A sample survey collection form is shown in Figure 2-2. The database collection and survey

response collection procedures for this study were approved by the IIIT-Delhi Ethics Board.

2.1.2 Disguise Face Database

Figure 2-3: Sample images from the ID V1 database.

The databases generally used for disguise related research (AR [40] and Yale [90] face databases)

contain very limited disguise variations, such as scarves and/or sun-glasses. Therefore, to evaluate

the effectiveness of automated algorithms and to evaluate human performance, we have collected

the IIIT-Delhi Disguise Version 1 face database (ID V1) of disguised/obfuscated face images. The

ID V1 database contains 681 visible spectrum images of 75 participants (all above the age of 18

years) with disguise variations. The number of images per person varies from 6 to 10. For every

subject, there is at least one frontal neutral. Here, face image without any disguise is referred as

neutral face image. face image and at least five frontal disguised face images. All the face images

are captured under (almost) constant illumination with neutral expression and frontal pose. The

disguise variations included in the database are categorized into the following categories.
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• Without disguise: neutral image,

• Variations in hair style: different styles and colors of wigs,

• Variations due to beard and mustache: different styles of beards and mustaches,

• Variations due to glasses: sunglasses and spectacles,

• Variations due to cap and hat: different kinds of caps, turbans, veil (also known as hijab

which covers hair), and bandanas,

• Variation due to mask: disposable doctor’s mask, and

• Multiple variations: a combination of multiple disguise accessories.

Figure 2-3 shows sample images from the database. The disguises are chosen in such a way that

they result in more realistic appearances and (almost) every part of the face is hidden at least once.

The subjects are asked to disguise themselves using the given accessories. This allows different

subjects to have different types of disguises thus providing more variations across individuals in

the database. The database is publicly available for research purpose 1. The images from the

dataset are preprocessed in the same way as in [41] i.e. preprocessing is done using the CSU Face

Identification Evaluation System [105] to obtain normalized images.

2.1.3 Participants for Human Evaluation

Since this study examines the effect of ethnicity and familiarity factors on face recognition with

disguise variations, the participants were divided into the following four sets.

Set 1: familiar to the subjects in Stimuli and of the same ethnicity as subjects (Set FS-I),

Set 2: familiar to the subjects in Stimuli and of the same ethnicity as subjects (Set FS-II) (redun-

dant set of Set 1),

Set 3: unfamiliar to the subjects in Stimuli and of the same ethnicity as subjects (Set US), and

1IIIT-Delhi Disguise Version 1 face database is available at https://research.iiitd.edu.in/groups/
iab/resources.html
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Set 4: unfamiliar to the subjects in Stimuli and of different ethnicity than subjects (Set UD).

Note that, one more combination, i.e. familiar to the subjects in Stimuli and of different ethnicity,

is possible. However, due to the lack of participants satisfying this criteria, we have not been able

to show study related to such a set.

2.1.4 Stimuli, Design and Procedure

Each of the four sets consisted of 100 unique participants and the stimuli consisted of subjects of ID

V1 dataset collected at IIIT-Delhi. Since the participants in Sets FS-I & FS-II and stimuli belonged

to the same department in IIIT-Delhi, it ensured familiarity and same ethnicity factors. Set FS-I

and Set FS-II were redundant in nature, as they were similar in terms of familiarity and ethnicity.

However, having access to two groups with participants of same variable provided scope for more

analysis in terms of the consistency of outcomes. To ensure the unfamiliarity factor in Set US, it

consisted of participants from another city of a different state of India. As the two cities are far

apart and no logical connection among subjects and participants was known, it was safely assumed

that the participants in Set US were unfamiliar to the stimuli subjects. Since the participants in Set

FS and Set US were from India, they were of the same ethnicity as the stimuli. Set UD consisted

of participants of Chinese ethnicity, thus ensuring unfamiliarity and different ethnicity than that

of stimuli. Table 2.2 summarizes the details regarding the number of participants and gender

distribution in each set.

Each participant was given a questionnaire containing eight face image pairs. The participants

were supposed to mark them as “same person" or “not same person". Optionally, the participants

were also requested to write their age and gender. Each participant in a set was given a unique

questionnaire. However, there were overlapping questions among different questionnaires. There-

fore, 100 questionnaires were designed by randomly choosing genuine (same person) and impostor

(different person) image pairs with equal priors. The pairs were drawn from a split that contained

neutral and disguised face images pertaining to 40 subjects. The pairs for each questionnaire were

selected with substitution, therefore an image pair could appear in multiple questionnaires; how-

ever it was made sure that no image pair was repeated in the same questionnaire. Thus, across 100

questionnaires, 436 unique image pairs were used. Figure 2-4 shows the distribution of genuine
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Table 2.2: Age and gender distribution of participants in the four sets. The results reported are
mean values with standard deviation.

Set
Overall Male Female

Gender
Not

Specified

No.
Age

No.
Age

No.
Age

No.
𝜇± 𝜎 𝜇± 𝜎 𝜇± 𝜎

Familiar, Same
Ethnicity-1 (FS-I)

100 18.5 ± 0.8 68 18.5 ± 0.6 30 18.5 ± 0.6 2

Familiar, Same
Ethnicity-1 (FS-II)

100 20.5 ± 3.5 58 20.7 ± 3.8 38 20.2 ± 3.8 4

Unfamiliar, Same
Ethnicity (US)

100 19.5 ± 2.5 64 19.5 ± 2.5 33 19.5 ± 2.5 3

Unfamiliar,
Different Ethnicity
(UD)

100 23.6 ± 3.8 55 24.6 ± 5.6 44 22.4 ± 5.6 1

and impostor pairs in questionnaires. Note that the majority of questionnaires had an even mixture

of genuine and impostor image pairs. Further, the face images were converted to gray scale and el-

liptical mask was applied to face images to make sure that no features other than facial cues could

be used for recognition. All the face images were resized to 130 × 150 pixels which translated

to 2.8cm×3.2cm on a printed document of A4 size. One such example questionnaire is shown in

Figure 2-2. The exact same set of 100 questionnaires was used for collecting responses from the

participants of Set FS-I, Set FS-II, Set US, and Set UD.

One of the objectives of this research is to compare human evaluation with automated al-

gorithms. Automated algorithms are generally evaluated in either face matching/verification or

face identification scenarios. In face matching or verification scenario, an image pair is classified

as match or non-match, whereas in face identification scenario a query image is compared with

gallery/enrolled face images to predict the identity. For comparing the human and machine per-

formance, it is essential that the comparison metric is same for both. Simulating identification

scenario for human evaluation involves two challenges:

• First, the gallery images are to be shown to the subjects for enrolling them in their memory.

However, this process becomes challenging with increasing number of gallery images.
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Figure 2-4: Distribution of genuine and impostor pairs in questionnaires.

• Identification performance of an automatic algorithm is measured in terms of cumulative

match characteristics (CMC) curve, which requires to get ranked list of gallery images in

sorted order of matching with the query image. Therefore, if human performance is to be

compared with algorithms in identification scenario, the ranking is required to be generated

by humans too. This is practically possible if number of gallery images is small. However, it

is rather difficult, from experimental design and participants perspective, when the number

of gallery images is large.

Further, existing research in human versus algorithm comparisons focuses on verification scenario

[101], [102]; therefore this paper also focuses on the same. Apart from comparing, we also aim at

incorporating the understandings from human cognition into an automated algorithm.

A mixed-subjects design was employed in which the between-subjects variables were familiar-

ity (familiar or unfamiliar), ethnicity (same as stimuli or different from stimuli), and gender (male

or female). The participants took part in only one of the four sets/Familiarity-Ethnicity combina-

tions (Set FS-I, Set FS-II, Set US, and Set UD). The combination of Familiar-Different Ethnicity

could not be evaluated as it is challenging to find such participants. The within-subjects variable

was the amount of disguise on stimuli face images. The participants in each of the sets followed

the same procedure, i.e. they were given a questionnaire containing eight face image pairs and

they marked each pair as “same person" or “not same person".
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The evaluations are performed in terms of the False Accept Rate (FAR = 100 × FA
(FA+GR)

),

Genuine Accept Rate (GAR = 100 × GA
(GA+FR)

), and Accuracy (Acc = 100 × (GA+GR)
(GA+FA+GR+FR)

),

where GA,FA,GR and FR represent the number of genuinely accepted, falsely accepted, gen-

uinely rejected, and falsely rejected pairs respectively. False accept means that a non-match pair

is classified as a match pair and genuine accept means that a match pair is correctly classified. A

face recognition is expected to achieve high GAR at low FAR.

The results of F-test with 𝜈1 and 𝜈2 degrees of freedom are denoted as 𝐹 (𝜈1, 𝜈2), similarly,

the t-test with 𝜈 degrees of freedom is denoted as 𝑡(𝜈). All the test results are reported with the

corresponding 𝑝-value. 𝑝 < 0.05, 𝑝 < 0.01, and 𝑝 < 0.001 indicate moderately, strongly, and very

strongly significant evidences respectively. .

Table 2.3: Summary of human performance. It is reported in terms of mean FAR, GAR and
accuracy in each of the four sets.

Set FAR %(𝜇± 𝜎) GAR %(𝜇± 𝜎) Accuracy %(𝜇± 𝜎)
Set FS-I 19.62 ± 4.54 74.47 ± 4.80 75.87 ± 3.93
Set FS-II 17.79 ± 4.45 69.27 ± 5.15 75.12 ± 4.04
Set US 18.85 ± 4.34 57.88 ± 5.16 69.50 ± 4.10
Set UD 24.20 ± 4.90 57.47 ± 5.26 66.00 ± 4.17

2.1.5 Observations from Human Evaluation

The responses collected from participants of all the sets (Set FS, Set US, and Set UD) are used to

compute the false accept rate, genuine accept rate, and accuracy. The major reason for evaluating

the FAR and GAR along with accuracy is that accuracy does not provide information about GAR

and FAR individually. Therefore, evaluating the performance in terms of GAR and FAR separately

may help in understanding the efficiency of matching genuine and impostor pairs individually. The

mean and standard deviations are reported in Table 2.3.

Statistical tests are performed to further analyze these results. Three One-Way ANOVAs (Anal-

ysis of variance) are conducted to evaluate the statistical significance of FAR, GAR, and Accuracy.

The results of these tests are as follows.

1. FAR (F(3, 396) = 1.82, 𝑝 = 0.14),
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2. GAR (F(3, 396) = 10.54, 𝑝 < 0.0001), and

3. Accuracy (F(3, 396) = 8.08, 𝑝 < 0.0001).

This analysis of 𝑝-values shows that there is a significant difference in terms of GAR and accuracy

with the corresponding 𝑝 < 0.0001 for both the statistics. However, there is no significant differ-

ence for FAR, since 𝑝 = 0.14. Post-hoc analysis is carried out using paired t-test to understand the

1) effect of familiarity, 2) effect of ethnicity, 3) effect of gender, 4) consistency between Set FS-I

and Set FS-II, and 5) effect of specific disguise. The details of this analysis are provided below.

The results and inferences of the statistical tests to understand the effect of familiarity, ethnicity,

gender and consistency are summarized in Table 2.4.

Effect of Familiarity

To evaluate the effect of familiarity for each of the three statistics i.e. FAR, GAR, and Accuracy,

two paired t-tests are performed: 1) between Set FS-I and Set US and 2) between Set FS-II and Set

US. In both cases, significant accuracy improvement is observed when the participants are familiar

to the stimuli. The p-values for accuracy are reported as follows.

• Set FS-I and Set US: t(99) = 2.99, 𝑝 = 0.0035

• Set FS-II and Set US: t(99) = 2.80, 𝑝 = 0.0061

However, no significant difference is observed for FAR.

• Set FS-I and Set US: t(99) = 0.288, 𝑝 = 0.7829

• Set FS-II and Set US: t(99) = -0.4060, 𝑝 = 0.6856

Further, GAR is observed to be different for both the cases

• Set FS-I and Set US: t(99) = 4.86, 𝑝 < 0.0001

• Set FS-II and Set US: t(99) = 3.14, 𝑝 = 0.0022.

It is observed that the best performance is achieved when the participants are familiar with the

stimuli face and are of the same ethnicity. Interestingly, Sets FS-I & FS-II have the same FAR as
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Set US, but Set US has significantly lower GAR. This means that when participants are unfamiliar

to stimuli, they tend to reject more genuine matches. From the observation regarding similar FAR

in Set FS-I, FS-II, and US, one can claim that: if a pair has images of different individuals, an

unfamiliar participant will classify it as “same person" with equal likelihood as a familiar partici-

pant. Moreover, the finding that “familiar faces are easier to match even if they are disguised" is

equivalent to the similar finding for non-disguised faces [83]. Although, Douma et al. [77] did not

find the effect of familiarity significant in recognizing disguised faces, note that our experimen-

tal procedure is different from their’s. In [77], the participants were to identify the stimuli faces,

whereas in this study the participants were to classify the stimuli image pairs as “same person" or

“different persons". The former involves the face identification scenario, where the performance

is primarily a function of memory and internal representation of faces which is enhanced if the

person is familiar. However, that is not the case with our study which involves face verification

scenario as it enables us to compare human performance with algorithm. To summarize, familiar-

ity is an advantageous factor and unfamiliarity significantly degrades genuine accepts but not the

false accepts.

Effect of Ethnicity

To understand the effect of ethnicity, paired t-tests are performed between Set US (unfamiliar,

same ethnicity) and Set UD (unfamiliar, different ethnicity). The participants in both these sets

are unfamiliar to the stimuli subjects; Set US has the participants which are of same ethnicity as

stimuli, whereas Set UD participants are of different ethnicity than stimuli. Among the unfamiliar

participants, the one with different ethnicity does not result in significantly different accuracy

(t(99) = -1.7757, 𝑝 = 0.0789). From further analysis in terms of FAR and GAR it is found that

neither FAR (t(99) = 1.82, 𝑝 = 0.0715) nor GAR (t(99) = -0.1129, 𝑝 = 0.9103) is significantly

differing. This suggests that in the presence of disguise, different-ethnicity factors do not add to the

reduction in performance due to unfamiliarity factor. Therefore, the other-race effect [84] does not

significantly further deteriorate the performance of recognizing disguised faces if the participants

are unfamiliar to stimulus. However, if the participant is of the same ethnicity as the stimulus,

familiarity is an added advantage.
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Effect of Gender

No specific effect of gender is observed, except on the accuracy of Set FS-I (t(96) = -2.427,

𝑝 = 0.0171) and Set FS-II (t(94) = -15.56, 𝑝 < 0.0001) where female participants exhibit signifi-

cantly better performance than male participants. However, even for these two sets no significant

difference in FAR or GAR is observed. Similar observation regarding female superiority for face

recognition has been studied in literature [106]. However, for disguised face recognition, this effect

is observed only when the participants are familiar to stimuli faces and it disappears with absence

of familiarity and/or difference in ethnicity.

Consistency between Set FS-I and Set FS-II

As we have access to two sets with the same familiarly and same ethnicity settings, it enables us

to perform a consistency check, i.e. to evaluate similarity between the results of two sets with

same design variables. We performed paired t-tests between Set FS-I & Set FS-II to analyze if

there is any performance difference. Without much surprise, there is no significant difference in

FAR (t(99) = 0.6878, 𝑝 = 0.4932), GAR (t(99) = 1.6481, 𝑝 = 0.1025), and accuracy (t(99) =

0.3596, 𝑝 = 0.7199). For comparison, the response of both the sets are illustrated in the form of a

confusion matrix in Table 2.5. Thus, similar performance is observed in both the sets.

Table 2.5: Confusion matrix for comparing the consistency of Set FS-I and Set FS-II. Xand
× represent the genuine and impostor classified samples respectively. The numbers in every cell
represent the co-occurrence of decisions (correct/incorrect). For example, XXblock shows that
for 227 image pairs, participants in both Set FS-I and Set FS-II responded that they were genuine
pairs.

Confusion Set FS-I
Matrix X ×

Set FS-II
X 227 108
× 130 335

Effect of Specific Disguises

In this analysis, we focus on enhancing the understanding regarding the effect of specific kinds

of disguises on face recognition performance. Human performance decreases when faces are dis-
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(a) Set FS-I (b) Set FS-II

(c) Set US (d) Set UD

Figure 2-5: Effect of disguising individual facials parts and their combinations. The numbers
represent the percentage of the misclassified face image pairs belonging to the corresponding dis-
guise combination. For example, there are 31 image pairs with disguise on eye strips only, out of
which 10 are misclassified by the participants in Set FS-I (a). This leads to the aforementioned
incorrect classification fraction of 10

31
× 100 = 32.26%.

guised [75]. However, the effect of various kinds of disguises and their combinations is not yet

well explored. The presence of disguise on certain facial parts can corrupt or occlude the partial

face information thus degrading the face recognition performance. We divide the face image into

uniform 5×5 grids and label the first, second and third rows as forehead, eyes, and nose regions

respectively. The remaining two rows taken together are labeled as lips and chin region. From

manual annotation of every rectangular patch of the grid, we have information regarding which

patch contains disguise. The disguised patches are referred to as non-biometric patches. A region

is considered to contain disguise if more than half of the patches in that region are non-biometric

patches. Since the face images are divided into four non-overlapping regions, there can be (24=)16

combinations of disguised regions. These combinations can be represented in the form of a 4 set

venn diagram. Figure 2-5 represents such a venn diagram representing the percentage of incor-

rectly classified face image pairs belonging to each disguise combination. Figure 2-5(a), (b), (c),
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and (d) represent venn diagrams pertaining to Set FS-I, Set FS-II, Set US, and Set UD respectively.

Note that in the ideal case, all the numbers in the venn diagram would be zero, i.e. none of the

face image pairs belonging to any of the disguise combination is incorrectly classified. The key

observations are as follows.

• Intuitively, the accuracy of disguised face recognition should reduce with increase in the

amount of disguise. However, consistently for all four sets, considerably high errors are

reported even when only a single kind of disguise is present (see the only nose, only eyes,

only forehead, and only lips in Figure 2-5). This may be due to the fact that when an image-

pair contains only one kind of disguise, one or both the face images contain similar kind

of disguise. Also from the database section it can be noted that the number of disguise

accessories applicable to each facial part, such as eye-glasses and bandanas, are limited in

number. Therefore, variations in accessories disguising each facial part are limited. As the

disguise accessories are encoded as part of the overall presentation in human perception [75],

use of 1) same kind of disguise accessories among different users and 2) different kinds of

disguise accessories on the same user might be leading to higher error rates.

• In the other regions of the venn diagram i.e. with multiple disguises, images in the face

image pairs can have disguise accessories affecting different facial feature(s), therefore the

argument regarding the similar disguise accessories cannot be applied to them.

• Intersecting areas of venn diagrams corresponding to facial hairs and wigs i.e. forehead-nose

and forehead-nose-lips-and-chin also yield considerably high error rates, implying that the

co-occurrence of wig and mustache (and beard) makes it challenging to match two faces.

Though, the negative impact of combination of disguises is less prominent than that of

disguise in only one part, there is a steady trend of its increased impact with increase of

challenging factors, i.e. Set FS → Set US → Set UD.

2.2 Anāvr.ta: Proposed Face Recognition Approach

From the human evaluation study presented above, it is clear that use of disguise accessories de-

grades the recognition performance. This is majorly because disguise accessories get encoded as
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a part in the overall presentation [75]. Moreover, use of disguise accessories can also reduce the

uniqueness of subjects. From automated face recognition point of view, Pavlidis and Symosek [93]

have suggested that detecting disguise is necessary to efficiently recognize disguised faces. There-

fore, using learnings from the human analysis, we develop the following hypothesis for automated

face recognition:

“The facial part or patches which are under the effect of disguise (or occluded in most of the

cases), are the least useful for face recognition, and may also provide misleading details. It is this

misrepresentation that a person uses to hide his/her own identity and/or to impersonate someone

else.”

Building upon this intuition, we propose a framework, termed as Anāvr.ta, for recognizing faces

with variations in disguise. As illustrated in Figure 2-6 there are two stages in the proposed frame-

work:

1. Patch Classification: It comprises dividing face image into patches and classifying them

into biometric or non-biometric classes.

2. Patch based Face Recognition: Biometric patches are matched using local binary pattern

(LBP) based face recognition algorithm.

Biometric / Non 

�biometric  

Classification

Common  

Biometric 

Patches

Biometric / 

Non ✁biometric  
Classification

Compute LBP 

Compute LBP 

✂2-distance
Match 

score

Gallery Image

Probe Image

Patch Classification Patch Based Face Recognition

Figure 2-6: Illustrating the steps involved in the proposed face recognition framework.
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2.2.1 Patch Classification

In human cognition research, Gosselin and Schyns [107] have proposed a technique to identify

relevant facial regions for recognition which shows that certain facial parts are more important

than others for recognition. In automated algorithm literature, several researchers have proposed

patch or part-based face recognition [21], [108]–[110] and evaluated the performance of individual

parts for face recognition. De Marsicso et al. [109], [110] proposed a solution based on local

information where each facial part is used separately as input; the scores obtained by matching

each part are fused to obtain final scores. Moreover, the mechanism for self-tuning the subsystems

for matching individual parts was also proposed. To the best of our knowledge, [97], [111] are

the only works in literature which use occlusion detection to enhance the recognition performance.

In applications such as law-enforcement, analyzing the patches to determine whether they are

genuine facial regions or accessories is very important. The proposed patch classification algorithm

therefore aims to classify the patches into biometric and non-biometric classes.

• Biometric patches are those facial parts that are not disguised; and hence they are useful for

recognition.

• Non-biometric patches/artifacts are facial parts that are disguised. These patches may

reduce the performance and should be avoided as far as possible.

The patch classification algorithm has two steps: feature extraction and classification.

1. ITE Feature Extraction: It is our assertion that some of the non-biometric patches or oc-

clusions, such as hair and artificial nose, can be distinguished using texture information,

while some others, such as scarves and sunglasses, can be distinguished using their intensity

values. Therefore, the proposed algorithm uses a concatenation of texture and intensity de-

scriptors as input feature. As shown in Figure 2-6, the algorithm starts with tessellating the

face image. Input face image 𝐼 is first divided into non-overlapping rectangular patches 𝐼𝑖𝑗 ,

1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑗 ≤ 𝑛, where 𝑚 and 𝑛 are the number of horizontal and vertical patches

respectively. The intensity and texture descriptors are computed for all the patches using

the intensity histogram and Local Binary Patterns (LBP) algorithm [21] respectively. The
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proposed descriptor is termed as the Intensity and Texture Encoder (ITE). For a patch 𝑖𝑗 of

an image 𝐼 , ITE is defined as

E(𝐼𝑖𝑗) = [intensityHist(𝐼𝑖𝑗); lbpHist(𝐼𝑖𝑗)] (2.1)

where intensityHist(·) represents the histogram of an intensity image and lbpHist(·) repre-

sents the LBP histogram. We use basic LBP operator with 8 sampling points, that produces

256 dimensional feature vector for each patch. Intensity histogram consists of 256 bins,

resulting in a feature vector of the same dimension.

2. ITE Feature Classification: The ITE features can, potentially, be classified using any of

the generative or discriminative classification techniques. Our observation of biometric and

non-biometric patches shows that the set of biometric patches is well defined and can be

modeled efficiently. However, due to the variety of accessories that can be used for disguise,

non-biometric patches have an exhaustive population set which is difficult to model using

a limited training database. Therefore, in this research, we have used Support Vector Ma-

chine (SVM) [112], a discriminative classifier, for classifying biometric and non-biometric

patches.

An SVM model is learned from the ITE descriptors of all the patches from training images

(which are annotated manually). This model is used to classify the patches from the testing

data. For every patch, a score 𝑠 is computed using SVM. A patch is classified as biometric,

if the score is less than the threshold 𝑇 , i.e. 𝑠 < 𝑇 ; and if score is equal to or greater

than the threshold, i.e. 𝑠 ≥ 𝑇 , the patch is classified as non-biometric. Accordingly, a flag

variable 𝐹𝑖𝑗 is generated, which represents whether the patch is classified as biometric or

non-biometric. The flag value of every patch is then combined to generate the flag matrix,

F𝑚×𝑛 = [𝐹𝑖𝑗]1≤𝑖≤𝑚,1≤𝑗≤𝑛, using Eq. 2.2.

𝐹 (𝐼)𝑖𝑗 =

⎧⎨⎩ 1 if 𝐼𝑖𝑗 is classified as biometric

0 otherwise.
(2.2)

ITE features of images patches are classified using trained SVM model.
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2.2.2 Patch based Face Recognition

Let 𝐼𝑝 be the probe image which is to be matched with the gallery image 𝐼𝑔. The corresponding

flag matrices F(𝐼𝑝) and F(𝐼𝑔) are generated using Eq. 2.2. Here, it is possible that for some gallery

patch, 𝐼𝑔𝑥𝑦, which is classified as biometric, the corresponding probe patch, 𝐼𝑝𝑥𝑦, is classified as non-

biometric. In other words, 𝐹 (𝐼𝑔)𝑥𝑦 = 1 and 𝐹 (𝐼𝑝)𝑥𝑦 = 0, or 𝐹 (𝐼𝑔)𝑥𝑦 = 0 and 𝐹 (𝐼𝑝)𝑥𝑦 = 1. This

renders the particular patch of gallery image not useful for recognition because the corresponding

patch from the probe image is under disguise effect and matching a biometric patch with a non-

biometric patch may lead to incorrect information.

F𝑢(𝐼𝑝, 𝐼𝑔) = F(𝐼𝑝) ∧ F(𝐼𝑔) (2.3)

The patch classification algorithm explained in previous Section classifies the patches into biomet-

ric and non-biometric, and Eq. 2.3 provides information that for a given gallery-probe pair, which

patches should be used for face recognition. Note that, in order to take advantage of patch classi-

fication, the face recognition approach has to be patch-based. Therefore, we propose to use LBP

[21] which is one of the widely used patch-based descriptors for face recognition. If descIij repre-

sents the LBP descriptor of 𝑖𝑗 patch of image 𝐼 , and the 𝜒2-distance between two LBP descriptors

is represented as dist(·, ·), then the distance 𝐷𝐼𝑝,𝐼𝑔 between two images, 𝐼𝑝 and 𝐼𝑔, is calculated

as:

𝐷𝐼𝑝,𝐼𝑔 = 1
𝜂

∑︀
𝑖 𝑗

dist(desc𝐼
𝑝

𝑖𝑗 , desc𝐼
𝑔

𝑖𝑗 )F𝑢(𝐼𝑝, 𝐼𝑔)𝑖𝑗

where 𝜂 =
∑︀
𝑖 𝑗

F𝑢(𝐼𝑝, 𝐼𝑔)𝑖𝑗 (2.4)

and F𝑢(𝐼𝑝, 𝐼𝑔)𝑖𝑗 is obtained using Eq. 2.3.

2.2.3 Results of the Proposed Algorithm

This section demonstrates the results of the proposed face recognition framework which includes

the patch classification algorithm and LBP based face recognition, along with its comparison to

Sparse Representation Classifier (SRC) and a commercial off-the-shelf system (COTS). We also

compare the results of proposed algorithm with the results of human evaluation results.
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All the images in the database are divided into 5×5 non-overlapping rectangular patches of

size 26×30 pixels. Every patch is manually annotated as biometric or non-biometric to create the

ground truth for training as well as evaluation. If more than half of the patch is covered with acces-

sories, it is annotated as a non-biometric patch. Images of randomly chosen 35 subjects form the

training set and the images from the remaining 40 subjects are used for testing. The training set

thus contains 8050 patches (322 images×25 patches), out of which 6324 patches are biometric and

1726 patches are non-biometric. Similarly, the testing set comprises 8975 patches (359 images×25

patches) amongst which 6944 are biometric and 2031 are non-biometric. Depending on the dis-

guise accessories used, the number of biometric patches in every image vary. Figure 2-7 shows

the distribution of (annotated) biometric patches in the training and testing splits. The distribution

provides an overview of disguise characteristics of the train and test sets. For example, it shows

that in the training set there are about 180 images with no disguise (number of biometric patches

= 25) and both the sets contains very minute number of images that has almost whole image under

disguise ( 0 ≥ number of biometric patches ≥ 5).
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Figure 2-7: The distribution of biometric patches in the training and test sets.

Patch Classification using ITE

As explained earlier, for each patch, the ITE features are computed using Eq. 2.1; and min-max

normalization is performed to map the values in the interval [−1, 1]. The normalized descriptor

is provided as input to SVM with Radial Basis Function kernel for patch classification. The ker-
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nel parameter and misclassification cost are estimated using grid search along with 5-fold cross

validation. In grid search, parameters that provide the maximum training accuracy are considered

as optimum. Since ITE is a concatenation of LBP and intensity values, the efficacy of ITE is

compared with LBP and pixel intensity values. LBP histograms, intensity histograms, and ITE

histograms are computed and provided as input to SVM separately for classification. Receiver

Operating Characteristics (ROC) curves for patch classification representing the results of these

experiments are shown in Figure 2-8. Note that, ITE provides better results compared to either

texture or intensity information for patch classification. This supports our hypothesis that concate-

nation of texture and intensity features should yield better patch classification results.
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Figure 2-8: ROC curves for patch classification.

Performance Evaluation of Anāvr.ta

The output of patch classification yields biometric patches which are used for feature extraction and

matching. For evaluating the proposed face matching approach, the testing set is divided into two

parts: gallery and probe. For each subject, one neutral face image, and four other randomly selected

images are taken as gallery and the remaining images constitute the probe/query set. Hence, there

are total 200 gallery images and 159 probe images. We have performed experiments with five

random cross validation trials. The experiments are performed in verification mode and the results

are reported in terms of ROC curve and verification accuracy at 0.1%, 1.0% and 10% False Accept
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Rate (FAR). To understand the importance and effectiveness of performing patch classification, we

performed the following three experiments.

1. Face recognition with biometric patches is classified using ITE and SVM classifier,

2. Face recognition with manually annotated biometric patches, and

3. Face recognition with all the patches (normal LBP approach without any patch removal)
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Figure 2-9: The results of the proposed face recognition framework using LBP descriptor.

The results of face recognition are shown in Figure 2-9. For FAR>1%, using only ground truth

biometric patches results in better accuracy than using all the patches for face recognition. The

performance of the proposed framework depends significantly on the performance of the patch

classification algorithm. Intuitively, rejecting a non-biometric patch is less benefitting than the

loss incurred by wrongly rejecting a biometric patch. From the ROC curve of patch classification

shown in Figure 2-8, it can be analyzed that at equal error rate (EER), 15% of the biometric patches

are being misclassified. show that the performance of face recognition reduces when the threshold

of patch classification is chosen at EER. The ROC curves in Figure 2-9 show that the performance

of face recognition reduces when the threshold of patch classification is chosen at EER. This may

be attributed to the reduction in the number of biometric patches used for face recognition at that

threshold. However, for 95% correct biometric patch classification (Figure 2-8), even though the

number of correctly classified non-biometric patches decreases, the face recognition algorithm is
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receiving more biometric patches as input and the proposed face recognition framework yields

better performance than simple LBP based approach. This supports our hypothesis that not using

non-biometric patches for recognition can result in better accuracy.

Comparison with COTS and Sparse Representation

In this section, we present a comparison with FaceVacs commercial off-the-shelf face recognition

system (referred as COTS) and sparse representation classifier (SRC) [27]. Note that, SRC is a

recent technique in literature for addressing occlusion/disguise. In SRC, the residual is consid-

ered as the dissimilarity measure of the gallery-probe pair. For evaluating the performance of the

proposed framework, we have utilized all the gallery and probe images irrespective of the infor-

mation content or image quality. However, COTS used in this research has inbuilt algorithms for

quality assessment and enrollment. The thresholds for enrolling a gallery image are very strict

whereas for probe images, it is relaxed. Out of the 200 gallery images, COTS enrolled approxi-

mately 60% of the gallery images and the remaining images were considered as failure to enroll

whereas all the probe images were processed successfully. It is also observed that if the face image

does not contain any non-biometric patch, then the probability of getting enrolled in the COTS is

higher. However, for a fair comparison, we have overridden the COTS to include all 200 images

in the gallery. Figure 2-9 and Table 2.6 demonstrate the results of COTS and SRC along with the

proposed algorithm.

Table 2.6: Results from automated algorithms. Genuine accept rates and their standard deviations
at different false accept rates of the proposed approach along with comparison to COTS and SRC.

Approach Verification Accuracy @ FAR
0.1% 1.0% 10%

SRC 5.6 ± 1.3 15.5 ± 1.6 37.7 ± 1.8
COTS 10.9 ± 2.4 17.1 ± 1.5 22.5 ± 1.2

Proposed 7.4 ± 0.7 16.6 ± 0.5 38.1 ± 0.6

For face databases captured in constrained environment with cooperative users, face recogni-

tion algorithms yield high GAR, and it increases with increase in FAR [113]. However, this kind

of trend is not found on this dataset with any of the three algorithms, thereby, showing the chal-
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lenging nature of the database itself. It can be observed that COTS is not able to classify the faces

under disguises very well as corresponding GAR does not increase much with increase in FAR.

For lower FAR (<0.05%), all the approaches shown in comparison exhibit very poor performance.

From approximately 0.2% till 5% FAR, the verification rate of COTS improves from 16% to 20%

GAR. This may be attributed to COTS discarding many samples due to internal minimum quality

criterion. For the same range of 0.2% to 5% FAR, the proposed approach yields up to 30% GAR.

For almost whole range of FAR, the proposed approach is comparable to SRC. As shown in Table

2.6, although the performance reported by the proposed approach is not as high as it is usually

reported in face recognition literature, it outperforms one of the state-of-art commercial systems

and is comparable with a widely used technique (i.e. sparse representation).

In the evaluation of the proposed algorithm, it is observed that the performance of local (patch-

based) face recognition algorithm can be improved by rejecting the face patches that contain dis-

guise . Strict rejection of non-biometric patches leads to lower GAR at lower FAR. However,

as discussed earlier a flexible patch classification at 95% correct biometric patch classification

exhibits higher GAR even at lower FAR. Moreover, for FAR> 1% the proposed automated algo-

rithm outperforms the COTS which ends up rejecting large number of disguised face images which

do not match its minimum criteria for processing. Although, the proposed algorithm equates to

SRC [27] and outperforms COTS, the overall performance of ∼17% GAR at 1% FAR compared

90%𝐺𝐴𝑅@𝐹𝐴𝑅 = 1% with very high accuracy that is usually reported for face verification of

frontal non-disguised faces [113], suggest that significant amount of research is required to effi-

ciently mitigate the effect of disguise variations.

2.2.4 Comparison of Human Responses with Automated Algorithms

As opposed to automated algorithm where for every image pair a match score is computed and

compared with decision threshold to estimate the accuracy, human evaluation directly records their

final decision. Therefore, for the automated algorithm ROC can be drawn by varying the threshold,

whereas only a point (FAR-GAR pair) can be obtained on ROC from the human evaluation. Fig-

ure 2-10 represents the performance of all four Sets along with respective ROCs of the proposed

automated algorithm and COTS. The key observations are as follows.

45



0

10

20

30

40

50

60

70

80

90

100

FAR

G
A

R

 

 

1
0

2
0

3
0

4
0

5
0

6
0

7
0

8
0

9
0

1
0

0

Familiar,Same Ethnicity 1

Familiar,Same Ethnicity 2

Unfamiliar Different Ethnicity

Unfamiliar, Same Ethnicity

F−S−1−Male

F−S−1−Female

F−S−2−Male

F−S−2−Female

U−D−Male

U−D−Female

U−S−Male

U−S−Female

Proposed

FaceVacs

Figure 2-10: Performance of disguised face recognition by humans, with respect to familiarity and
ethnicity. Analyzing the effect of familiarity and ethnicity on the performance of disguised face
recognition by humans.

• The performance of Set FS (familiar, same ethnicity) is better than the one reported with

automated algorithms (proposed and COTS).

• The ROC curve of the proposed algorithm passes through the performance point pertaining

to Set UD. This is probably due to the fact that the automated algorithm does not encode

familiarity or ethnicity, leading to no performance bias because of these two factors. Thus,

proposed automated algorithm is comparable to humans recognizing unfamiliar subjects of

different ethnicity. O’Toole et al. [102] have also observed that difference between the

performance of humans and state-of-the-art face recognition algorithms were analogous to

differences between humans recognizing familiar versus unfamiliar subjects. Researchers

have also suggested that mental representation of familiar faces [114] helps make the fa-

miliar face recognition efficient compared to unfamiliar face recognition. If the machine

counterpart of the mental representation is not incorporated somehow, the algorithms would

face challenges similar to that of unfamiliar face recognition by humans.

• Although, FAR from human evaluations are smaller than that from automated algorithm,

human performances exhibit considerably higher FARs ranging from 10%-30%.

• The proposed approach is a local approach and does not encode the holistic facial features

whereas humans have access to both local and holistic facial information. Note that, we are
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using the local approach because the holistic features can be corrupted by local disguises.

The proposed local approach (ITE based patch classification+LBP based recognition) does

improve performance over traditional local approach (LBP based recognition). However,

the improved performance is only equivalent to the worst of human performance (Set UD)

which favorably underlines the likely use of holistic facial features by humans. Therefore,

simultaneous use of holistic and local facial features can lead to superior disguised face

recognition performance.

• Our study on human evaluation suggests that ethnicity and familiarity of faces can greatly

affect the face recognition performance. incorporating this information in face recognition

algorithms can also provide improved matching accuracy.

2.3 Summary

This research presents a study on the effect of ethnicity and familiarity on the performance of

face recognition in presence of disguise variations. The recognition accuracy of familiar-and-

same-ethnicity subjects is found to be significantly better than that of unfamiliar-and-different-

ethnicity. It is observed that if the ethnicity is same; unfamiliarity does not significantly affect

correct rejection. Our experiments do not show any evidence of decrease in cross-ethnicity face

recognition under disguise. We also observe that use of similar disguise accessories account for

considerably high error rates.

Encoding the understanding from human evaluation, we propose an automated face recognition

algorithm. The proposed algorithm consists of the ITE based patch classification (in biometric/non-

biometric classes) and LBP based face recognition applied on classified biometric patches. The

performance is evaluated on the IIIT-Delhi disguise database pertaining to 75 subjects. The pro-

posed algorithm outperforms a COTS and classical LBP based face recognition. The performance

of the proposed algorithm is comparable with SRC and the human performance of unfamiliar-and-

different-ethnicity. Though we report performance improvement with the proposed algorithm, it is

still an open research problem. The results of automatic algorithms are similar to unfamiliar face

recognition performance of humans and therefore there is a scope for extending this research in

the direction of both cognitive as well as automatic face recognition.
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Chapter 3

Heterogeneous Discriminant Analysis for

Cross-View Face Recognition

With increasing focus on security and surveillance, face biometrics has found several new applica-

tions and challenges in real world scenarios. In terms of the current practices by law enforcement

agencies, the legacy mugshot databases are captured with good quality face cameras operating in

the visible spectrum (VIS) with inter-eye distance of at least 90 pixels [115]. However, for security

and law enforcement applications, it is difficult to meet these standard requirements. For instance,

in surveillance environment, when the illumination is not sufficient, majority of the surveillance

cameras capture videos in the near infrared spectrum (NIR). Even in day-time environment, an

image captured at a distance may have only 16×16 facial region for processing. For these appli-

cations, the corresponding gallery or database image is generally a good quality mugshot image

captured in controlled environments. This leads to the challenge of heterogeneity in gallery and

probe images. Fig. 3-1 shows samples of these heterogeneous face matching cases. This figure

also showcases another interesting forensic and law enforcement application of matching compos-

ite sketch images with digital face images. In this problem, composite sketches are generated using

a software tool based on eye-witness description and this synthetic sketch image is then matched

against a database of mugshot face images. Since the information content in sketches and photos

is different, matching them can be viewed as heterogeneous face matching problem.

The challenge of heterogeneous face recognition is posed by the fact that the view1 of the

1The terms view and domain/modality are used synonymously in the heterogeneous face recognition literature.

49



(a) Visible (b) Near infrared

(c) 72×72 (d) 48×48 (e) 32×32 (f) 16×16

(g) Digital Photo (h) Composite Sketch

Figure 3-1: Examples of heterogeneous face recognition scenarios. Top row (a) & (b) shows
heterogeneity due to spectrum difference. The middle row (c)-(f) illustrates heterogeneity due to
resolution differences. (The images of different resolution are stretched to common sizes.) The
bottom row shows (g)-(h) shows photo and composite sketches of the two subjects.

query face image is not same as that of the gallery image. In a broader sense, two face images are

said to have different views if the facial information in the images is represented differently. For

example, as shown in Fig. 3-2, visible and near infrared images are two views. The difference

in views may arise due to several factors such as difference in sensors, their operating spectrum

range, and difference in the process of sample generation. Most of the traditional face recognition

research has focused on homogeneous matching [116], i.e., when both gallery and probe images

have the same views. In recent past, researchers have addressed the challenges of heterogeneous
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Same spectrum
matching

Cross-spectrum
matching

View 1
(NIR)

View 2
(VIS)

Figure 3-2: An example illustrating heterogeneous and homogeneous matching. Here, two views
pertaining to spectrums (VIS and NIR) are shown. The solid lines represent comparisons corre-
sponding to heterogeneous matching.

face recognition [117]–[122]. Compared to homogeneous face recognition, matching face images

with different views is a challenging problem as heterogeneity leads to increase in the intraclass

variability. Other widely explored covariates of pose, illumination, and expression can also cause

increased intraclass variability and heterogeneity of views. For example, comparing a profile face

image and frontal pose face image is a heterogeneous face matching problem. However, specific

techniques for addressing these traditional covariates are explored widely; therefore, we focus on

somewhat recent challenges.

The literature pertaining to heterogeneous face recognition can be grouped into two broad cat-

egories: 1) heterogeneity invariant features and 2) heterogeneity aware classifiers. Heterogeneity

invariant feature based approaches focus on extracting features which are invariant across different

views. The prominent research includes use of hand-crafted features such as variants of histogram

of oriented gradient (HOG), Gabor, Weber, and local binary patterns (LBP) [123]–[127] and var-

ious learning-based features [128]–[131]. Heterogeneity aware classifier based approaches focus

on learning a model using samples from both the views. In this research, we primarily focus

on designing a heterogeneity aware classifier. Table 3.1 summarizes some of the research direc-
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tions in emphasizing the role of classifiers to address cross-view variability of heterogeneous face

recognition.

In one of the earliest research related to visible to near infrared matching, Yi et al. [117]

proposed utilizing canonical correlation analysis (CCA) which finds the projections in an unsuper-

vised manner. It computes two projection directions, one for each view such that the correlation

between them is maximized in the projection space. Each spectrum can be considered as one view

of data and CCA requires that the number of samples in both the views should be exactly same.

Closely related to CCA, Sharma et al. [141] proposed generalized multi-view analysis (GMA)

by adding a constraint that the multi-view samples of each class are as much close as possible.

Recently, several other extensions of CCA to multi-view scenarios are also proposed [153]–[155].

Moreover, dictionary learning based multi-view extensions are also proposed [148], [156].

Lin and Tang [132] proposed common discriminant feature extractor (CDFE). The objective of

CDFE is to learn one transformation function for each view, such that the empirical separability and

the local consistency are maintained. Lie and Li [118] proposed coupled spectral regression (CSR)

which also aims at obtaining two projection directions for each view. The objective is to obtain

projection directions such that the samples from one view can be approximated by the projection

of the corresponding sample in the second view, and vice versa. The authors also proposed kernel

version of the same approach. Although the approach utilizes the correspondence between samples

from both views, it does not use the class labels explicitly. Lie et al. [119], [137] further improved

the CSR by allowing the samples from one view to contribute in finding the projection direction

for the other view.

Li et al. [134] proposed to learn projection directions such that 1) the projections of the corre-

sponding samples in both views should be similar and 2) the projections of a sample in one view

should be also similar to the projections of the local neighbours of the corresponding sample. Klare

et al. [120] proposed a prototyping based approach. It explores the intuition that across different

views the relative coordinates of samples should remain similar. Therefore, the vector of similar-

ities between the query sample and prototype samples in the corresponding view may be used as

the feature. To facilitate non-linear classification these distances are measured in a kernel space

using a discriminative learning algorithm. Biswas et al. [138], [139] proposed a multidimensional

scaling (MDS) based approach for matching low resolution face images. The algorithm learns an
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MDS transformation which maps pairwise distances in kernel space of one view to correspond-

ing pairwise distances of the other view. Siena et al. [142] proposed a maximum margin based

approach. Its objective function is to find projection directions such that distances between the

projections of samples of match pairs are minimized; and that such distance for match pair should

be smaller than the same for non-match pairs. Recently, Li et al. [143] proposed a learning based

feature descriptor in a two-level matching framework. Zhu et al. [144] proposed a transductive

learning based framework which does not require to have face images of both the views (spec-

trums) for all the subjects in training. Kang et al. [157] focused on recognizing faces with multiple

heterogeneous variations such as spectrum and distance/resolution. With advances in deep learn-

ing based approaches and their effectiveness in face recognition, researchers have explored these

approaches for heterogeneous face recognition also. Some of the important research work in this

direction include [128]–[131].

This research aims at making both theoretical and application oriented contributions for het-

erogeneous face matching. The key contributions are:

• Proposing a heterogeneity-aware classifier, termed as Heterogeneous Discriminant Analysis

(HDA), and its non-linear extension termed as kernel HDA (KHDA). These subspace based

classifiers aim at reducing the inter-view intra-class variability and increasing the inter-view

inter-class variability for heterogeneous face recognition.

• Presenting a heterogeneous face recognition algorithm designed using the proposed heterogeneity-

aware subspace classifiers.

• The effectiveness of the proposed HDA and KHDA is demonstrated using multiple features

on three challenging heterogeneous cross-view face recognition scenarios: (1) matching vis-

ible to near-infrared images, (2) matching cross-resolution face images, and (3) matching

digital photo to composite sketch.

3.1 Heterogeneous Discriminant Analysis

To address the issue of heterogeneity in face recognition we propose a discriminant analysis based

approach. In this context, the heterogeneity can arise due to factors such as spectrum variations as
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shown in Fig. 3-2. The same individual may appear somewhat different in two different spectrums.

It is our hypothesis that incorporating cross-view (e.g. cross-spectrum) information along with

face specific feature space can improve heterogeneous matching. The proposed heterogeneous

discriminant analysis is inspired from the formulation of linear discriminant analysis. Therefore,

we first briefly summarize the formulation and limitations of LDA followed by presenting the

details of HDA.

Traditionally, intra-class and inter-class variabilities are represented using within-class (𝑆𝑊 )

and between-class scatter matrices (𝑆𝐵).

𝑆𝑊 =
𝑐∑︁

𝑖=1

𝑛𝑖∑︁
𝑗=1

(𝑥𝑖,𝑗 − 𝜇𝑖)(𝑥𝑖,𝑗 − 𝜇𝑖)
𝑇 , 𝑆𝐵 =

𝑐∑︁
𝑖=1

𝑐∑︁
𝑙=𝑖+1

(𝜇𝑖 − 𝜇𝑙)(𝜇𝑖 − 𝜇𝑙)
𝑇 (3.1)

Here, 𝑐 is the total number of classes, 𝑥𝑖,𝑗 represents the 𝑗𝑡ℎ sample of the 𝑖𝑡ℎ class, and 𝜇𝑖 is the

mean of the 𝑖𝑡ℎ class. The Fisher criterion attempts to find the projection directions that minimize

the intra-class variability and maximize the inter-class variability in the projected space.

𝐽(𝑤) =
|𝑤𝑇𝑆𝐵𝑤|
|𝑤𝑇𝑆𝑊𝑤|

(3.2)

The way the scatter matrices are defined ensures that all the samples are as close to the corre-

sponding class mean as possible, and that class means are as apart as possible. Any new sample

resembling the samples of a certain class would get projected near the corresponding class mean.

LDA attempts to optimize the projection directions assuming that the data conforms to a normal

distribution. Obtaining such a projection space is useful when the samples to be compared are

homogeneous, i.e. there is no inherent difference in the sample representation. Even if we assume

that each view of each class is normally distributed in itself, the restrictive constraint of LDA is not

satisfied. As shown in Fig. 3-3a and Fig. 3-3b, when provided with a multi-view or heterogeneous

data, the projection directions obtained from LDA may be suboptimal, and can affect the classifi-

cation performance. Therefore, for heterogeneous matching problems, we propose to incorporate

the view information while computing the between-class and within-class scatter matrices.

The formulation of the proposed Heterogeneous Discriminant Analysis is described in the fol-

lowing two stages: 1. adaptation of scatter matrices and 2. analytical solution.
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(c) Projections of HDA

Figure 3-3: A toy example illustrating the effectiveness of HDA with multiple views. Class 1 and
2 are generated using Gaussian mixture of two modes resulting in two views. (a) represents the
scatter plot and the projection directions obtained using LDA and HDA (without regularization).
The histograms of projections of data samples on the LDA and HDA directions are shown in
(b) and (c) respectively. Along with the overall class projection histograms, the histograms of
projections of the constituting views are also shown (in plots with ‘o’ and ‘+’ markers). The
projection direction obtained by LDA is suboptimal, i.e. there are distinct view specific peaks,
relatively more spread projection distributions, and there is a large inter-class overlap. On the other
hand, HDA provides overlapping or very close view specific peaks, and less inter-class overlap.

3.1.1 Adaptation of scatter matrices

Let 𝑥𝑎
𝑖,𝑗 and 𝑥𝑏

𝑖,𝑗 denote the two views (A and B) of the 𝑗 th sample of the 𝑖th class, respectively;

and, 𝑛𝑎
𝑖 and 𝑛𝑏

𝑖 represent the number of samples in view A and B of the 𝑖th class, respectively.

𝜒𝑎
𝑖 = {𝑥𝑎

𝑖,𝑗|1 ≤ 𝑗 ≤ 𝑛𝑎
𝑖 } represents the samples in view A of 𝑖th class. For example, 𝜒𝑎

𝑖 represents
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the visible spectrum face images of 𝑖th subject, and 𝜒𝑏
𝑖 represents the near infrared spectrum face

images of the subject.

• 𝜒𝑎
1-𝜒𝑎

1 and 𝜒𝑎
1-𝜒𝑏

1 are examples of match pairs i.e. face images in a pair belong to same

subject.

• 𝜒𝑎
1-𝜒𝑏

2 and 𝜒𝑎
1-𝜒𝑏

2 are examples of non-match pairs consisting of face images of different

subjects.

• 𝜒𝑎
1-𝜒𝑎

1 and 𝜒𝑏
1-𝜒𝑏

2 represent intra-view pairs where face images belong to same view.

• 𝜒𝑎
1-𝜒𝑏

1 and 𝜒𝑏
1-𝜒𝑎

2 are examples of inter-view pairs i.e. face images in a pair belong to different

view.

As shown in Fig. 3-2, there can be four kinds of information: (i) inter-class intra-view differ-

ence, (ii) inter-class inter-view difference, (iii) intra-class intra-view difference, and (iv) intra-class

inter-view difference. Optimizing the intra-view (homogeneous) distances would not contribute in

achieving the goal of efficient heterogeneous matching. Therefore, the scatter matrices should be

defined such that the objective function reduces the heterogeneity (inter-view variation) along with

improving the classification accuracy. The distance between the inter-view samples of the non-

matching class should be increased and the distance between inter-view samples of the matching

class should be decreased. With this hypothesis, we propose the following two modifications in

the scatter matrices for heterogeneous matching:

Inter-class Inter-view Difference encodes the difference between different views of two individ-

uals (e.g. 𝜒𝑎
1-𝜒𝑏

2 and 𝜒𝑏
1-𝜒𝑎

2 pairs). This can be incorporated in the between-class scatter matrix.

Intra-class Inter-view Difference encodes the difference between two different views of one per-

son (e.g. 𝜒𝑎
1-𝜒𝑏

1 and 𝜒𝑏
2-𝜒𝑎

2 pairs). This can be incorporated in the within-class scatter matrix. (See

Fig. 3-3)

Incorporating these yields a projection space in which same class samples from different views are

drawn closer; thereby fine tuning the objective function for heterogeneous matching.

The heterogeneous between-class scatter matrix (𝑆𝐻𝐵) encodes the difference between differ-
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Figure 3-4: Graphical interpretation of the proposed HDA.

ent views of different classes.

𝑆𝐻𝐵 =
𝑐∑︀

𝑖=1

𝑐∑︀
𝑙=1,𝑙 ̸=𝑖

𝑝𝑎𝑖 𝑝
𝑏
𝑙 (𝜇

𝑎
𝑖 − 𝜇𝑏

𝑙 )(𝜇
𝑎
𝑖 − 𝜇𝑏

𝑙 )
𝑇 (3.3)

𝜇𝑎
𝑖 = 1

𝑛𝑎
𝑖

∑︀
𝑗

𝑥𝑎
𝑖,𝑗, 𝑝𝑎𝑖 =

𝑛𝑎
𝑖

𝑛𝑎+𝑛𝑏 , 𝜇𝑏
𝑖 = 1

𝑛𝑏
𝑖

∑︀
𝑗

𝑥𝑏
𝑖,𝑗, 𝑝𝑏𝑖 =

𝑛𝑏
𝑖

𝑛𝑎+𝑛𝑏

Here, 𝜇𝑎
𝑖 and 𝑝𝑎𝑖 are the mean and prior of view A of class 𝑖, respectively; 𝑛𝑎 represents the number

of samples in view A. Similarly, 𝜇𝑏
𝑖 and 𝑝𝑏𝑖 represent the mean and prior of view B of class 𝑖,

respectively; 𝑛𝑏 represents the number of samples in view B. 𝑛𝑎
𝑖 and 𝑛𝑏

𝑖 represent the number

of samples in view A and B of the 𝑖th class, respectively and 𝑛𝑐 represents the total number of

classes. Note that, unlike CCA, number of samples does not have to be equal in both views. The
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within-class scatter matrix 𝑆𝐻𝑊 is proposed as

𝑆𝐻𝑊 =
𝑐∑︀

𝑖=1

(︃
1
𝑛𝑎
𝑖

𝑛𝑎
𝑖∑︀

𝑗=1

(𝑥𝑎
𝑖,𝑗 − 𝜇𝑏

𝑖)(𝑥
𝑎
𝑖,𝑗 − 𝜇𝑏

𝑖)
𝑇

+ 1
𝑛𝑏
𝑖

𝑛𝑏
𝑖∑︀

𝑗=1

(𝑥𝑏
𝑖,𝑗 − 𝜇𝑎

𝑖 )(𝑥
𝑏
𝑖,𝑗 − 𝜇𝑎

𝑖 )
𝑇

)︃
(3.4)

Since the proposed technique encodes data heterogeneity in the objective function and utilizes

the definitions of between-class and within-class scatter matrices, it is termed as heterogeneous

discriminant analysis. Following the Fisher criterion, the optimization criteria of HDA is proposed

as,

𝑤 = arg max
𝑤

𝐽(𝑤) = arg max
𝑤

⃒⃒
𝑤𝑇𝑆𝐻𝐵𝑤

⃒⃒
|𝑤𝑇𝑆𝐻𝑊𝑤|

(3.5)

The optimization problem in Eq. 3.5 is modeled as a generalized eigenvalue decomposition

problem; which results into a closed form solution such that 𝑤 is the set of top eigenvectors of

𝑆−1
𝐻𝑊𝑆𝐻𝐵. The geometric interpretation of HDA in Fig. 3-4 shows that the objective function in

Eq. 3.5 tries to achieve the following in the projected space: 1) Bring samples 𝜒𝑎
1 closer to mean

𝜇𝑏
1 of 𝜒𝑏

1 and vice versa; and similarly for class 2. This reduces the inter-view distance within

each class, e.g. the projections of visible and NIR images of the same person becomes similar.

2) Increase the distance between mean 𝜇𝑎
1 of 𝜒𝑎

1 and mean 𝜇𝑏
2 of 𝜒𝑏

2; and similarly increase the

distance between mean of 𝜒𝑏
1 and mean of 𝜒𝑎

2, i.e. the projections of mean visible face image

of a subject becomes different from the mean NIR face image of another subject. The proposed

way of encoding the inter-class (Eq. 3.3) and intra-class (Eq. 3.4) variations in the heterogeneous

scenario requires that both the views are of the same dimensionality. In the application domain of

face recognition, this is usually not an unrealistic constraint as, in practice, same kind of features,

with same dimensionality, are extracted from both the views [123].

The time complexity of computing 𝑆𝐻𝐵 and 𝑆𝐻𝑊 is 𝑂(𝑛𝑑2) and 𝑂(𝑐2𝑑2), respectively. The

generalized eigenvalue decomposition in Eq. 3.5 has time complexity of 𝑂(𝑑3), where 𝑛, 𝑑, and 𝑐

are the number of training samples, feature dimensionality, and number of classes, respectively.

In some applications including face recognition, the number of training samples is often lim-

ited. If the number of training samples is less than the feature dimensionality, it leads to problems

such as singular within-class scatter matrix. In literature, it is also known as the small sample size
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problem and a shrinkage regularization is generally used to address the issue [158]. Utilizing the

shrinkage regularization Eq. 3.5 is updated as,

𝐽(𝑤) =

⃒⃒
𝑤𝑇𝑆𝐻𝐵𝑤

⃒⃒
|𝑤𝑇 ((1 − 𝜆)𝑆𝐻𝑊 + 𝜆𝐼)𝑤|

(3.6)

Here, 𝐼 represents the identity matrix and 𝜆 is the regularization parameter. Note that 𝜆 = 0 results

in no regularization, whereas 𝜆 = 1 results into not utilizing the within-class scatter matrix 𝑆𝐻𝑊 .

Analytical Solution of HDA

We further analyze the objective function in Eq. 3.5. Using the representer theorem [159], the

projection direction in 𝑤 can be written as linear sum of the samples, i.e.

𝑤 =
𝑛𝑎∑︁
𝑝=1

𝛼𝑝𝑥
𝑎
𝑝 +

𝑛𝑏∑︁
𝑞=1

𝛽𝑞𝑥
𝑏
𝑞 (3.7)

where, 𝑥𝑎
𝑝 is the 𝑝th sample of view A, and 𝛼𝑝 and 𝛽𝑞 are their corresponding coefficients. In this

formulation, the problem of finding 𝑤 is converted into finding the coefficient vectors 𝛼 and 𝛽. We

begin by obtaining the expression for projection of a sample using coefficient based definition of

projection direction 𝑤. The projection of 𝑗𝑡ℎ sample of 𝑖𝑡ℎ class from view A is given as

𝑤𝑇𝑥𝑎
𝑖,𝑗 =

𝑛𝑎∑︁
𝑝=1

𝛼𝑝𝑥
𝑎
𝑝 · 𝑥𝑎

𝑖,𝑗 +
𝑛𝑏∑︁
𝑞=1

𝛽𝑞𝑥
𝑏
𝑞 · 𝑥𝑎

𝑖,𝑗 = [𝛼𝑇𝛽𝑇 ]

⎡⎢⎣ 𝑋𝑎

𝑋𝑏

⎤⎥⎦𝑥𝑎
𝑖,𝑗 (3.8)

Essentially, the projection of a sample is equal to weighted sum of its dot product with all the

training samples. In other words, the projection of a sample is defined based on its structural

arrangement with respect to samples from both the views. Similarly, the projection of the mean of

𝑖𝑡ℎ class of view A is as follows

𝑤𝑇𝜇𝑎
𝑖 =

𝑛𝑎∑︁
𝑝=1

𝛼𝑝𝑥
𝑎
𝑝 · 𝜇𝑎

𝑖 +
𝑛𝑏∑︁
𝑞=1

𝛽𝑞𝑥
𝑏
𝑞 · 𝜇𝑎

𝑖 = 𝛼𝑇ℳ𝒜𝑎
𝑖 + 𝛽𝑇ℳℬ𝑎

𝑖 (3.9)
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where (ℳ𝒜𝑎
𝑖 )𝑝 = 1

𝑛𝑎
𝑖

∑︀𝑛𝑎
𝑖

𝑟=1 𝑥
𝑎
𝑝 · 𝑥𝑎

𝑖,𝑟 = 𝑥𝑎
𝑝 · 𝜇𝑎

𝑖 , and (ℳℬ𝑎
𝑖 )𝑞 = 1

𝑛𝑎
𝑖

∑︀𝑛𝑎
𝑖

𝑠=1 𝑥
𝑏
𝑞 · 𝑥𝑎

𝑖,𝑠=𝑥
𝑏
𝑞 · 𝜇𝑎

𝑖

𝑤𝑇𝜇𝑎
𝑖 = [𝛼𝑇𝛽𝑇 ]

⎡⎣ ℳ𝒜𝑎
𝑖

ℳℬ𝑎
𝑖

⎤⎦ = [𝛼𝑇𝛽𝑇 ]

⎡⎢⎣ 𝑋𝑎

𝑋𝑏

⎤⎥⎦𝜇𝑎
𝑖 (3.10)

The derivation shows that the projection of mean 𝜇𝑎
𝑖 in direction 𝑤 can be obtained by taking its

dot product with the samples. In a way, the vectors ℳ𝒜𝑎
𝑖 and ℳℬ𝑎

𝑖 encode the relative structural

arrangement of mean 𝜇𝑎
𝑖 with respect to the samples of views 𝐴 and 𝐵 respectively.

Using the samples and mean projections derived in Eq. 3.8 and Eq. 3.10 respectively, we

formulate the 𝑤𝑇𝑆𝐻𝐵𝑤 term of the optimization criteria shown in Eq. 3.5 as follows

𝑤𝑇𝑆𝐻𝐵𝑤 =
𝑐∑︁

𝑖=1

𝑐∑︁
𝑙=1,𝑙 ̸=𝑖

𝑝𝑎𝑖 𝑝
𝑏
𝑙

(︀
𝑤𝑇𝜇𝑎

𝑖 − 𝑤𝑇𝜇𝑏
𝑙

)︀ (︀
𝑤𝑇𝜇𝑎

𝑖 − 𝑤𝑇𝜇𝑏
𝑙

)︀𝑇
(3.11)

Substituting Eq. 3.10 in Eq. 3.11 results in 𝑤𝑇𝑆𝐻𝐵𝑤 = [𝛼𝑇𝛽𝑇 ]𝑀*

⎡⎣ 𝛼

𝛽

⎤⎦ where,

𝑀* =
𝑐∑︁

𝑖=1

𝑐∑︁
𝑙=1,𝑙 ̸=𝑖

𝑝𝑎𝑖 𝑝
𝑏
𝑙

⎡⎣ ℳ𝒜𝑎
𝑖 −ℳ𝒜𝑏

𝑙

ℳℬ𝑎
𝑖 −ℳℬ𝑏

𝑙

⎤⎦⎡⎣ ℳ𝒜𝑎
𝑖 −ℳ𝒜𝑏

𝑙

ℳℬ𝑎
𝑖 −ℳℬ𝑏

𝑙

⎤⎦𝑇

(3.12)

The inter-view within-class variability in the projected space (𝑤𝑇𝑆𝐻𝑊𝑤) which is to be minimized

can be rewritten as following with the help of Eq. 3.3.

𝑤𝑇𝑆𝐻𝑊𝑤 =
𝑐∑︁

𝑖=1

⎛⎝ 1

𝑛𝑎
𝑖

𝑛𝑎
𝑖∑︁

𝑗=1

(︀
𝑤𝑇𝑥𝑎

𝑖,𝑗 − 𝑤𝑇𝜇𝑏
𝑖

)︀ (︀
𝑤𝑇𝑥𝑎

𝑖,𝑗 − 𝑤𝑇𝜇𝑏
𝑖

)︀𝑇
+

1

𝑛𝑏
𝑖

𝑛𝑏
𝑖∑︁

𝑗=1

(𝑤𝑇𝑥𝑏
𝑖,𝑗 − 𝑤𝑇𝜇𝑎

𝑖 )(𝑤
𝑇𝑥𝑏

𝑖,𝑗 − 𝑤𝑇𝜇𝑎
𝑖 )

𝑇

⎞⎠ (3.13)

Similarly, substituting Eq. 3.10 and Eq. 3.8 in Eq. 3.13 results in 𝑤𝑇𝑆Φ
𝐻𝑊𝑤 = [𝛼𝑇𝛽𝑇 ]𝑁*

⎡⎣ 𝛼

𝛽

⎤⎦
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where

𝑁* =
𝑐∑︁

𝑖=1

⎛⎜⎝ 1

𝑛𝑎
𝑖

𝑛𝑎
𝑖∑︁

𝑗=1

⎡⎣ 𝒦𝒜𝑎
𝑖,𝑗 −ℳ𝒜𝑏

𝑖

𝒦ℬ𝑎
𝑖,𝑗 −ℳℬ𝑏

𝑖

⎤⎦⎡⎣ 𝒦𝒜𝑎
𝑖,𝑗 −ℳ𝒜𝑏

𝑖

𝒦ℬ𝑎
𝑖,𝑗 −ℳℬ𝑏

𝑖

⎤⎦𝑇

+
1

𝑛𝑏
𝑖

𝑛𝑏
𝑖∑︁

𝑗=1

⎡⎣ 𝒦𝒜𝑏
𝑖,𝑗 −ℳ𝒜𝑎

𝑖

𝒦ℬ𝑏
𝑖,𝑗 −ℳℬ𝑎

𝑖

⎤⎦⎡⎣ 𝒦𝒜𝑏
𝑖,𝑗 −ℳ𝒜𝑎

𝑖

𝒦ℬ𝑏
𝑖,𝑗 −ℳℬ𝑎

𝑖

⎤⎦𝑇
⎞⎟⎠ (3.14)

where, (𝒦𝒜𝑎
𝑖,𝑗)𝑝 = 𝑥𝑎

𝑝 · 𝑥𝑎
𝑖,𝑗 , (𝒦𝒜𝑏

𝑖,𝑗)𝑝 = 𝑥𝑎
𝑝 · 𝑥𝑏

𝑖,𝑗 , (𝒦ℬ𝑎
𝑖,𝑗)𝑞 = 𝑥𝑏

𝑞 · 𝑥𝑎
𝑖,𝑗 , and (𝒦ℬ𝑏

𝑖,𝑗)𝑞 = 𝑥𝑏
𝑞 · 𝑥𝑏

𝑖,𝑗 .

Substituting Eq. 3.12 and Eq. 3.14 in the optimization function in Eq. 3.5 yields the following

criterion

𝐽(𝛼, 𝛽) =

⃒⃒⃒⃒
⃒⃒[𝛼𝑇𝛽𝑇 ]𝑀*

⎡⎣ 𝛼

𝛽

⎤⎦⃒⃒⃒⃒⃒⃒÷
⃒⃒⃒⃒
⃒⃒[𝛼𝑇𝛽𝑇 ]𝑁*

⎡⎣ 𝛼

𝛽

⎤⎦⃒⃒⃒⃒⃒⃒ (3.15)

Maximization of the criterion is modeled in terms of the generalized eigen decomposition problem.

Thus, utilizing top 𝑐− 1 eigen vectors of 𝑁−1
* 𝑀* as coefficients maximizes the criterion function.

In practice, 𝑁* is often singular, therefore shrinkage regularization is utilized as follows:

𝐽(𝛼, 𝛽) =

⃒⃒⃒⃒
⃒⃒[𝛼𝑇𝛽𝑇 ]𝑀*

⎡⎣ 𝛼

𝛽

⎤⎦⃒⃒⃒⃒⃒⃒÷
⃒⃒⃒⃒
⃒⃒[𝛼𝑇𝛽𝑇 ] [(1 − 𝜆)𝑁* + 𝜆]

⎡⎣ 𝛼

𝛽

⎤⎦⃒⃒⃒⃒⃒⃒ (3.16)

Note that, the criterion in Eq. 3.6 and Eq. 3.16 are different representations of the same

optimization function, i.e. to minimize the inter-view intra-class variability and to maximize the

inter-view inter-class variability in projected space. The matrix 𝑀* and 𝑁* are analogous to 𝑆𝐻𝐵

and 𝑆𝐻𝑊 respectively. However, 𝑀* and 𝑁* are 𝑛 × 𝑛 matrices and 𝑆𝐻𝐵 and 𝑆𝐻𝑊 are 𝑑 × 𝑑

matrices (𝑑=feature dimensionality, 𝑛=number of samples). Each element of matrices 𝑀* and

𝑁* encodes the variability corresponding to a sample pair, whereas, the same for 𝑆𝐻𝐵 and 𝑆𝐻𝑊

encodes the variability corresponding to a feature pair. If 𝑑 < 𝑛, the criterion in Eq. 3.6 is

computationally more efficient than Eq. 3.16 but if 𝑑 > 𝑛, Eq. 3.16 is computationally more

efficient than Eq. 3.6.

The criterion in Eq. 3.16 has a specific advantage over Eq. 3.6; i.e. the matrices 𝑀* and 𝑁*
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can be computed from the Gram matrix, and that the computation of 𝑀* and 𝑁* do not necessarily

require knowledge of actual data samples. This is a crucial property to formulate kernel extension

of HDA with the help of kernel trick [160].

Let Φ(·) be a transformation function that projects data in a higher dimensional space. With

the assumption that the data is linearly separable in a higher dimension space, an appropriate

transformation 𝑥 → Φ(𝑥) can yield a representation where HDA can yield better classification

than in the input space of 𝑥. In the higher dimension space, the entries of Gram matrices become

the dot products of the transformed data points, resulting in the following modification:

(𝒦𝒜𝑎
𝑖,𝑗)𝑝 = Φ(𝑥𝑎

𝑝) · Φ(𝑥𝑎
𝑖,𝑗), (𝒦𝒜𝑏

𝑖,𝑗)𝑝 = Φ(𝑥𝑎
𝑝) · Φ(𝑥𝑏

𝑖,𝑗)

(𝒦ℬ𝑎
𝑖,𝑗)𝑞 = Φ(𝑥𝑏

𝑞) · Φ(𝑥𝑎
𝑖,𝑗), (𝒦ℬ𝑏

𝑖,𝑗)𝑞 = Φ(𝑥𝑏
𝑞) · Φ(𝑥𝑏

𝑖,𝑗)

(ℳ𝒜𝑎
𝑖 )𝑝 =

1

𝑛𝑎
𝑖

𝑛𝑎
𝑖∑︁

𝑠=1

Φ(𝑥)𝑎𝑝 · Φ(𝑥)𝑎𝑖,𝑠 and (ℳℬ𝑎
𝑖 )𝑞 =

1

𝑛𝑎
𝑖

𝑛𝑎
𝑖∑︁

𝑠=1

Φ𝑏
𝑞 · Φ(𝑥)𝑎𝑖,𝑠 (3.17)

A kernel function can be defined as 𝑘(𝑥, 𝑦) = Φ(𝑥) · Φ(𝑦) to facilitate the computations of the

aforementioned matrices bypassing the data transformation stage. Any valid kernel function can

be utilized for this purpose, e.g. radial basis function
(︁
𝑘(𝑥, 𝑦) = exp

(︁
|𝑥−𝑦|2

2𝑡

)︁)︁
and polynomial

function
(︀
𝑘(𝑥, 𝑦) = (1 + 𝑥 · 𝑦)𝑑

)︀
. Eq. 3.17 forms the basis for applying HDA in higher dimen-

sional space. This non-linear extension of HDA is termed as kernel HDA (KHDA). Intuitively,

KHDA is expected to model the non-linearly separable classes more effectively as compared to

HDA.

3.1.2 Visualization

To visualize the functioning of the proposed HDA as opposed to LDA, the distributions of the

projections obtained using LDA and HDA are shown in Fig. 3-3b and Fig. 3-3c respectively.

Table 3.2 presents a quantitative analysis in terms of the overlap between projections of views of

both classes. The overlap between two histograms is calculated as
∑︀

𝑚 min(ℎ1(𝑚), ℎ2(𝑚)), where

ℎ1(𝑚) and ℎ2(𝑚) are the values of the 𝑚𝑡ℎ bin of the first and second histograms respectively. In

the ideal case, the projections of different views of the same class should completely overlap (i.e.

area of overlap 0.5) and the projections of the views of different classes should be non-overlapping
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Table 3.2: Analyzing the overlap of projection distributions in Fig. 3-3b and Fig. 3-3c.

Pair Overlap
Ideal LDA HDA

Overall
class 1 - class 2 0.000 0.356 0.159

Homogeneous
view A class 1 - view A class 2 0.000 0.110 0.135
view B class 1 - view B class 2 0.000 0.005 0.013

Heterogeneous
view A class 1 - view B class 2 0.000 0.351 0.076
view A class 2 - view B class 1 0.000 0.000 0.034
view A class 1 - view B class 1 0.500 0.025 0.261
view A class 2 - view B class 2 0.500 0.174 0.429

(i.e. area of overlap 0). Since LDA does not take into account the view information, the overlap

between projections of both classes is large. Further, it is interesting to note that LDA yields a

significant overlap of 0.351 between view A of class 1 and view B of class 2. Such overlap can

deteriorate the heterogeneous matching performance. In the heterogeneous analysis (last two rows

of Table 3.2), the overlap between projections of two views of the same class is relatively low.

Note that view A and view B of class 1 result in two individual peaks. This also increases the

intra-class variation, i.e. projection distributions of both classes are spread rather than peaked.

HDA yields better projection directions with less than 50% of inter-class overlap compared

to LDA. For the homogeneous matching scenarios (fourth and fifth row), HDA has marginally

poor overlap compared to LDA. However, for the heterogeneous scenarios, the overlap of HDA is

significantly lower for non-match pairs (seventh and eighth row), and higher for match pairs (last

two rows).

3.2 Proposed Face Recognition Approach

The main objective of this research is to utilize the proposed heterogeneity-aware classifiers in

conjunction with robust and unique features for heterogeneous face recognition. Fig. 3-5 shows-

cases the steps involved in the face recognition pipeline. From the given input image, face region
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Table 3.3: Summary of the datasets utilized for evaluating the proposed HDA and KHDA on two
heterogeneous face recognition challenges.

Case Study Gallery Probe Dataset #Subject #Images
Cross spectral VIS NIR CASIA NIR-VIS-2.0 [146] 725 17,850

Cross resolution HR LR CMU-MultiPIE [61] 337 18,420

Photo-to-Sketch DP CS
e-PRIP composite sketch

[161], [162] 123 246

Feature	Extraction
(DSIFT,	LCSSE)

Trained	
PCA	Model

Trained	Classifier	
Models

(HDA,	KHDA)

Dimensionality	
Reduction

Classifier
(HDA,	KHDA)

Feature	Extraction
(DSIFT,	LCSSE)

Prediction
Match	score

Training

Testing

Figure 3-5: Steps involved in the face recognition pipeline with the proposed HDA and KHDA.

is detected using Haar face detector or manually annotated eye coordinates. It is our assertion

that the proposed HDA and KHDA should yield good results with both handcrafted and learnt

representations. Therefore, in this research, we have demonstrated the results with both sets of

features.

In literature, it has been observed that Histogram of Oriented Gradient (HOG) and Local Binary

Patterns (LBP) are commonly used handcrafted features for heterogeneous face matching [120],

[163]. In 2014, Dhamecha et al. [123] compared the performance of different variants of HOG

and showed that DSIFT yields the best results. Therefore, among handcrafted features, we have

demonstrated the results with DSIFT2 and LBP (uniform, 𝑟 = 1, 𝑝 = 8) [164] features.

For learnt representation, we use a recently proposed deep learning based feature extraction ap-

proach, termed as local class sparsity based supervised encoder (LCSSE) [165] that utilizes stacked

auto-encoder [166] with 𝑙2,1 regularization for supervision. LCSSE aims to learn the features with

same sparsity signature across class, thus bringing the sparse representations of the same-class

samples as close as possible in the feature space. The objective function of feature learning is to

2DSIFT features are extracted at keypoints on uniform grid and landmark points.
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obtain encoding and decoding weights, W and W′ such that the following objective function is

minimized.

arg min
W,W′

||X−W′𝜑(WX)||2𝐹 + 𝜆
𝐶∑︁
𝑐=1

||WXc||2,1 (3.18)

where, X is the training matrix, 𝑋𝑐 represents matrix of training samples belonging to class c, 𝜆 is

the regularization parameter, 𝐶 is the number of classes, 𝜑(·) is sigmoid function, and || · ||𝐹 and

|| · ||2,1 represent Frobenius and 𝑙2,1 norms, respectively. In [165], LCSSE based face recognition

approach has shown state-of-the-art results on popular face databases such as LFW and PaSC.

Therefore, LCSSE can be considered as a good choice for our experiments. In this research, we

have used pre-trained LCSSE model and fine-tuned with the training samples for each case study.

As shown in Fig 3-5, once the features are obtained, they are projected on to a PCA space

(preserving 99% eigenenergy) followed by projecting onto the HDA or KHDA space (𝑐 − 1 di-

mensional). It is to be noted that learning of PCA subspace does not use class labels whereas HDA

and KHDA training utilize identity labels and the view labels. While testing, the representation

obtained for probe image is projected onto HDA or KHDA space, to make them better suited for

heterogeneous matching. Finally, distance score between gallery and probe representation vectors

𝑥 and 𝑦 is computed using cosine distance measure i.e.
(︁

1 − 𝑥·𝑦
|𝑥||𝑦|

)︁
.

3.3 Experimental Evaluation

The effectiveness of the proposed heterogeneous discriminant algorithm is evaluated for three dif-

ferent case studies of heterogeneous face recognition: 1) visible to near infrared matching, 2)

cross-resolution face matching, and 3) composite sketch (CS) to digital photo (DP) matching. For

all three case studies, we have used publicly available benchmark databases: CASIA NIR-VIS-2.0

[146], CMU-MultiPIE [61] and e-PRIP composite sketch [161], [162]. Table 3.3 summarizes the

characteristics of the three databases and Fig. 3-1 illustrates sample images from the databases.

The experiments are performed with existing and published protocols so that the results can be

directly compared with reported results.
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Table 3.4: Rank-1 identification accuracies for visible to near infrared face matching on the CASIA
NIR-VIS-2.0 database [146]. The experiments are performed by varying the feature extractors,
classification models, and distance metrics.

Algorithm DSIFT [168] LBP𝑢2
8,1 [164] LCSSE [165]

W/O DA Eucl 12.6±0.9 4.9±0.7 50.3±8.3
Cos 19.6±1.4 6.6±1.0 51.6±7.8

LDA Eucl 56.7±2.2 17.7±2.2 82.3±4.8
Cos 80.4±1.7 46.2±2.1 88.9±3.2

HDA Eucl 58.0±2.1 26.9±2.1 95.2±1.7
Cos 81.0±1.9 48.9±2.0 96.8±0.9

3.3.1 Cross Spectral Face Matching: Visible to NIR Images

Researchers have proposed several algorithms for VIS to NIR matching and primarily used the

CASIA NIR-VIS-2.0 face dataset [146]. It consists of 17,850 NIR and VIS images (combined)

pertaining to 725 subjects of varying age groups. The images are acquired in four different ses-

sions. The protocol defined for performance evaluation consists of 10 splits of train and test sets

for random subsampling cross validation. There are equal number of subjects in both train and test

sets. As required by the predefined protocol, matching results are reported for both identification

and verification scenarios. The identification performance is reported in terms of average rank-

1 identification accuracy with standard deviation over 10 fold cross validation; and verification

performance is reported in terms of GAR at 0.1% FAR.

The images are first detected and preprocessed. Seven landmarks (two eye corners, three points

on nose, two lips corners) are detected [167] from the input face image and geometric normaliza-

tion is applied to register the cropped face images. The output of preprocessing is grayscale face

images of size 130 × 150 pixels. The aforementioned features (DSIFT, LBP, and LCSSE) are ex-

tracted from geometrically normalized face images. We evaluate the effectiveness of HDA over

LDA. To compare the results with LDA, the pipeline shown in Fig. 3-5 is followed with the excep-

tion of using LDA instead of HDA. The results are reported in Table 3.4 and the key observations

are discussed below.

Discriminative Learning using HDA: As shown in Table 3.4, without discriminant analysis (LDA
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or HDA), the performance of individual features are significantly lower and deep learning based

LCSSE yields around 50% rank-1 accuracy. The next experiment illustrates the effect of applying

LDA on individual features. Table 3.4 shows that LDA improves the accuracy up to 60%. Com-

paring the performance of HDA with LDA shows that HDA outperforms LDA. Utilizing HDA

in place of LDA for discriminative learning improves the results up to 12.9%. The improvement

provided by HDA can be attributed to the fact that it learns, a discriminative subspace specifically

for heterogeneous matching. Similar to the toy example shown in Fig. 3-3, it can be asserted that

the multi-view information yields different clusters in the feature space. Under such scenarios,

since the fundamental assumption of Gaussian data distribution is not satisfied, LDA can exhibit

suboptimal results. However, by encoding the view label information, HDA is able to find better

projection space, thereby yielding better results.

Effect of HDA on Features: Table 3.4 shows the performance obtained by applying HDA on

three feature representations. The results show that the proposed HDA improves the accuracy of

all three features by 40–60%. For instance, applying LCSSE with HDA improves the results by

around 45%.

Direction vs Magnitude in Projection Space: For each of the classifier models and feature ex-

tractors, we have evaluated the performance of both Euclidean and cosine distance metrics. Cosine

distance encodes only the difference in direction between samples, whereas the Euclidean distance

encodes both direction and magnitude. As shown in Table 3.4, cosine distance generally yields

higher accuracy over Euclidean distance. This shows that for heterogeneous matching, the mag-

nitude of projections may not provide useful information, and only directional information can be

used for matching.

Optimum Combination: From the above analysis, it can be seen that the proposed HDA in com-

bination with DSIFT features and cosine distance measure yields significantly higher accuracy than

LBP+HDA. Overall, utilizing HDA along with LCSSE features and cosine measure achieves the

highest classification accuracy. Therefore, for the remaining experiments (and other case studies),

we have demonstrated the results with DSIFT and LCSSE features and cosine distance measure

along with proposed heterogeneity-aware classifiers.

Comparison with Existing Algorithms: We next compare the results of the proposed approaches
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Table 3.5: Face recognition performance of the proposed and some existing algorithms for VIS to
NIR face matching on CASIA NIR-VIS-2.0 dataset. †represents value obtained from ROC curve
reported in the corresponding paper. *represents the results reported in [121], [147].

Algorithm Year Rank-1
Accuracy (%)

GAR @
FAR=0.1%

FaceVACS [123] 2014 58.6±1.2 52.9
Pixels as Features

CCA [171]* 2004 28.5±3.4 10.8
PLS [135]* 2011 17.7±1.9 2.3
CDFE [132]* 2006 27.9±2.9 6.9
MvDA [140]* 2012 41.6±4.1 19.2
GMLDA [141]* 2012 23.7±1.4 5.1
GMMFA [141]* 2012 24.8±1.1 7.6
PCA+Symmetry+HCA [146] 2013 23.7±1.9 19.3
PIXEL+HDA − 41.4±1.3 31.4

Other Features/Approaches
DSIFT+SDA (𝐻 = 2)[172] 2006 75.7±1.9 54.8
Gabor + RBM + Remove 11 PCs
[128] 2015 86.2±1.0 81.3

C-DFD (s=3) [173]* 2014 65.8±1.6 46.2
CDFL (s=3)[121] 2015 71.5±1.4 55.1
C-CBFD [147] 2015 56.6±2.4 20.4
C-CBFD+LDA [147] 2015 81.8±2.3 47.3
Joint Dictionary Learning [148] 2015 78.5±1.7 85.8
Saxena and Verbeek [174] 2016 85.9±0.9 78.0
Reale et al. [129] 2016 87.1±0.9 74.5
Frankenstein [130] 2016 85.1±0.8 -
TRIVET [131] 2016 95.7±0.5 91.0
Lezama et al. [175] 2016 89.6±0.9 -
MTC-ELM [176] 2016 89.1 -
Gabor+HJB [150] 2017 91.7±0.9 89.9
G-HFR [151] 2017 85.3±0.0 -
DSIFT+HDA − 81.0±1.9 62.8
DSIFT+KHDA − 83.1±1.7 62.1
LCSSE+HDA − 96.8±0.9 93.1
LCSSE+KHDA − 98.1±0.5 94.3
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Figure 3-6: ROC curves on the CASIA NIR-VIS-2.0 database [146].

with the results reported in literature. The baseline results of (PCA+Symmetry+HCA) are pro-

vided with the dataset [146]. Along with that, we have evaluated the performance of one of the

leading commercial off-the-shelf (COTS) face recognition system, FaceVACS3. Comparative anal-

ysis is shown with 20 recently published results for heterogeneous matching approaches, namely

correlation component analysis (CCA [171]), subclass discriminant analysis (SDA [172]), partial

least square (PLS [135]), couple-discriminative feature encoding (CDFE [132]), multi-view dis-

criminant analysis (MvDA [140]), generalized multi view linear discriminant analysis (GMLDA

[141]) and marginal fisher analysis (GMMFA [141]), coupled discriminant feature descriptor (C-

DFD [173]), coupled discriminant feature learning (CDFL[121]), coupled compact binary face

descriptor and its variants (C-CBFD, C-CBFD+LDA [147]), deep learning based shared rep-

resentation [128], joint dictionary learning based approach [148], and deep learning based ap-

proaches [128]–[131], [174]4. For experiments pertaining to KHDA, the Gaussian kernel function

3http://www.cognitec.com/technology.html
4Due to unavailability of the codes, comparison is shown with published results on official protocol.
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Table 3.6: Rank-1 identification accuracy of the proposed HDA, KHDA and existing algorithms
on CMU-MultiPIE database with different gallery and probe image sizes. Two top performing
approaches are highlighted in each cross-resolution setting.

Resolution CTL FaceVACS DSIFT [168] LCSSE [165]
Gallery Probe [177], [178] [177], [178] HDA KHDA HDA KHDA

216× 216

72× 72 81.0 99.5 94.1 95.4 95.8 97.0
48× 48 79.7 98.1 92.4 94.1 93.7 95.3
32× 32 65.3 97.4 89.0 90.7 92.0 93.2
24× 24 37.7 54.5 87.3 85.7 89.0 89.5
16× 16 23.6 10.9 37.6 37.6 61.2 62.5

72× 72

48× 48 92.3 92.7 95.4 96.2 96.6 97.0
32× 32 84.1 84.3 92.4 96.2 92.8 96.6
24× 24 77.4 78.5 89.0 91.6 93.2 94.1
16× 16 72.4 72.8 44.3 54.9 73.4 75.1

48× 48
32× 32 61.8 96.8 95.4 97.1 96.2 97.9
24× 24 57.1 75.9 95.4 94.9 96.6 97.5
16× 16 32.9 6.4 73.8 71.3 77.2 78.1

32× 32
24× 24 45.7 78.4 94.9 94.5 95.8 96.2
16× 16 28.1 5.4 88.6 86.1 90.3 91.1

24× 24 16× 16 43.2 16.3 85.7 85.2 87.3 89.0

𝑘(𝑥, 𝑦) = exp
(︁

|𝑥−𝑦|2
2𝑡

)︁
is utilized and the parameter 𝑡 is tuned from the development set.

Table 3.5 shows that with pixel values as input, the proposed HDA approach outperforms other

existing algorithms. For example, MvDA with pixel values yields 41.6% rank-1 identification

accuracy and 19.2% GAR at 0.1%FAR, whereas, the proposed approach yields similar rank-1

accuracy with lower standard deviation and much higher GAR of 31.4%. Further, Table 3.5 and

Fig. 3-6 clearly demonstrate the performance improvement due to the proposed HDA and its

non-linear kernel variant (KHDA). KHDA with learnt representation LCSSE outperforms all the

existing algorithms in both identification and verification scenarios. It yields rank-1 identification

accuracy of 98.1% (around 2.5% higher than the previous best reported result) and 94.3% GAR

at 0.1% FAR. Using DSIFT features with the proposed KHDA also yields results comparable to

other non-deep learning based approaches.
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3.3.2 Cross Resolution Face Matching

Cross resolution face recognition entails matching high resolution gallery images with low res-

olution probe images. The cross resolution matching problem arises when the face images are

either captured from different distances and/or camera sensor are of different resolutions. In this

scenario, high resolution and low resolution are considered as two different views of a face image.

For cross-resolution face matching, Bhatt et al. [177], [178] and Lie et al. [119], [137] have shown

state-of-the-art results using co-transfer learning (CTL) and coupled discriminant analysis, respec-

tively. The co-transfer learning algorithm [177], [178] combines co-training and transfer learning

approaches for cross-resolution face matching. On the other hand, Lie et al. [119] presented lo-

cality constraint based coupled discriminant analysis with two variations: locality constraint in

kernel space-coupled discriminant analysis (LCKS-CDA) and LCKS-coupled spectral regression

(LCKS-CSR). Both the papers show results on the CMU Multi-PIE database [61] containing im-

ages pertaining to 337 individuals with pose, illumination, and expression variations. However,

both the researchers have followed different protocols. In this research, we demonstrate the effec-

tiveness of the proposed approach with the protocol followed by Bhatt et al. [177].

Experimental Protocol [177], [178]: In many face recognition applications, it is generally as-

sumed that the gallery contains high resolution images. Therefore, combinations of gallery and

probe set pairs are created such that probe images have lower resolution than gallery images. Each

image is resized to six different resolutions: 16 × 16, 24 × 24, 32 × 32, 48 × 48, 72 × 72, and

216 × 216. In total, 15 cross-matching scenarios are considered. For example, with 216 × 216

size gallery set, five experiments pertaining to 72 × 72, 48 × 48, 32 × 32, 24 × 24, and 16 × 16

size probe sets are performed. For every person, two images are selected and images pertaining to

100 subjects are utilized for training, whereas the remaining 237 subjects are utilized for testing.

The results are reported in Table 3.6 and Fig. 3-7. Since the protocol [177], [178] does not involve

cross-validation, error intervals are not reported.

It can be seen that LCSSE+KHDA outperforms the co-transfer learning [177], [178] in all the

cross-resolution matching scenarios. For example, when 48×48 pixels gallery images are matched

with probe images of 32 × 32, 24 × 24, and 16 × 16 pixels, performance improvement of about
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Figure 3-7: CMC curves for cross-resolution matching (Probe: 48× 48, 32× 32, 24× 24, 16× 16,
Gallery: 72 × 72) on the CMU-MultiPIE database [61].

30%-40% is observed. Analyzing the results across resolutions show that the accuracy reduces

with increase in resolution difference between the gallery and probe images. When compared with

LCSSE alone (without HDA/KHDA), as shown in Fig. 3-8, we observe that KDHA improves the

performance of LCSSE by 2.8 - 8.9%.

FaceVACS yields impressive performance when the size of both gallery and probe are higher

than 32 × 32. However, the performance deteriorates significantly with decrease in the gallery

image size and with increase in the resolution difference. Generally, the performance of the pro-

posed HDA and/or KHDA is less affected due to resolution difference in comparison to FaceVACS,
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Figure 3-8: Performance improvement due to HDA and KHDA with LCSSE features on the CMU
Multi-PIE database. Size of gallery images is 48 × 48, whereas probe sizes are 32 × 32, 24 × 24,
16 × 16.

and CTL. We have also observed that for cross-resolution face recognition, LCSSE shows higher

accuracies compared to DSIFT with a difference of up to 25%.

3.3.3 Digital Photo to Composite Sketch Face matching

In many law enforcement and forensic applications, software tools are used to generate composite

sketches based on eye-witness description and the composite sketch is matched against a gallery

of digital (mugshot) photographs. While there is some research on forensic hand-drawn sketches

[179], [180], the research pertaining to composite sketch matching is relatively less explored. Han

et al. [161] presented a component based approach followed by score fusion for composite to

photo matching. Later, Mittal et al. [162], [181]–[183] and Chugh et al. [184] presented learning

based algorithms for the same. Klum et al. [185] presented FaceSketchID for matching composite

sketches to photos.

For this set of experiments, we perform experiments on the e-PRIP composite sketch dataset

[161], [162]. The dataset contains composite sketches of 123 face images from the AR face dataset

[40]. It contains the composite sketches created using two softwares, Faces and IdentiKit5. The

PRIP dataset [161] originally has composite sketches prepared by a Caucasian user (with IdentiKit

5Faces: http://www.iqbiometrix.com, IdentiKit: http://www.identikit.net
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Figure 3-9: CMC curve for composite sketch to digital photo matching on the e-PRIP composite
sketch dataset [161], [162].

and Faces softwares) and an Asian user (with Faces software). Later, the dataset is extended by

Mittal et al. [162] by adding composite sketches prepared by an Indian user (with Faces software)

which is termed as the e-PRIP composite sketch dataset. In literature, it has been shown that com-

posite sketches prepared by Caucasian and Indian users using Faces software yield better results

compared to other sets [162], [181]. Therefore, in this work, we use composite sketches prepared

using Faces software by the Caucasian and Indian users. The experiments are performed with the

same protocol as presented by Mittal et al. [162]. The dataset is divided into 40% training (48

subjects) and 60% testing (75 subjects), with random sampling based five times cross validation.

Average identification accuracies at Rank-10 are reported in Table 3.7 and Fig. 3-9 shows the

corresponding CMC curves.

With the above mentioned experimental protocol, one of the best results in literature have been

reported by Mittal et al. [183] with rank-10 identification accuracies of 59.3% (Caucasian) and

58.4% (Indian). Saxena and Verbeek [174] have shown results with Indian users only and have

achieved 65.5% rank-10 accuracy. As shown in Table 3.7, the proposed approaches, HDA and

KHDA, with both DSIFT and LCSSE improve the performance significantly. Compared to existing

algorithms, DSIFT demonstrates an improvement in the range of 11–23% while LCSSE+HDA

and LCSSE+KHDA improve the rank-10 accuracy by approximately 30% with respect to state-
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Table 3.7: Rank-10 Identification accuracy for composite sketch to photo matching. The results
marked with * are reported by Mittal et al. [162].

Algorithm Rank-10 Accuracy (%)
Faces (Caucasian) Faces (Indian)

Mittal et al. [181]* 32.4±2.4 30.3±1.7
Mittal et al. [162]* 51.9±1.2 53.3±1.4
Mittal et al. [182] 56.0±2.1 60.2±2.9
Mittal et al. [183] 59.3±0.8 58.4±1.1
COTS [162]* 11.3±2.1 9.1±1.9
Saxena and Verbeek [174] - 65.6±3.7
DSIFT only 67.5±5.8 51.7±4.0
DSIFT+HDA 79.5±2.8 73.9±5.8
DSIFT+KHDA 78.6±3.4 74.6±3.8
LCSSE only 68.0±2.6 65.3±4.1
LCSSE+HDA 85.6±1.3 89.0±1.5
LCSSE+KHDA 89.6±1.9 94.7±1.0

of-the-art. Similar to previous results, this experiment also shows that application of HDA/KHDA

improves the results of DSIFT and LCSSE.

3.4 Comparison with Related Approaches

As discussed in literature review, several discriminant analysis based approaches have been pro-

posed. Here, we compare and contrast the similarities and differences, with selected approaches,

in terms of their objective functions and experimental results.

HDA vs SDA: Within the framework of Subclass discriminant analysis [172], samples of each

class with two views, may be viewed as each class having two subclasses; with each subclass rep-

resenting one view. With this perspective the between-class scatter matrix of HDA can be closely

related to its definition in subclass discriminant analysis. However, the computation of total-scatter

matrices are different. Moreover, SDA is not designed specifically for heterogeneous recognition

tasks. Empirical comparison is shown in Table 3.5. For VIS-NIR matching, SDA yields 75.7%

rank-1 accuracy and 54.8% GAR@0.1% FAR, whereas, with same features, HDA and KHDA

yield 81.0%, 83.1% rank-1 identification accuracy, and 62.8%, 62.1% GAR@0.1% FAR, respec-
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tively.

HDA vs CDA: Coupled discriminant analysis [119], [137] utilizes inter-view and intra-view pairs

of samples (or class means). In other words, the 𝑆𝑏 scatter matrix constitutes of inter-view varia-

tion (𝑆𝑔𝑝
𝑏 and 𝑆𝑝𝑔

𝑏 ) and intra-view variation (𝑆𝑝𝑝
𝑏 and 𝑆𝑔𝑔

𝑏 ) components; similarly for within-class

scatter matrix 𝑆𝑤. In a broader perspective, HDA can be seen as rejecting the intra-view informa-

tion and preserving only the inter-view information. Empirically (not reported here) we observe

that compared to both the variants of CDA, the proposed HDA and KHDA yield approximately

2%-15% improvement in rank-1 identification accuracy for the most of the cross-resolution face

matching scenarios.

HDA vs MvDA: Multi-view discriminant analysis [140] defines the within-class scatter matrix as∑︀𝑐
𝑖=1

∑︀𝑣
𝑗=1

∑︀𝑛𝑖𝑗

𝑘=1(𝑦𝑖𝑗𝑘−𝜇𝑖)(𝑦𝑖𝑗𝑘−𝜇𝑖)
𝑇 and between-class scatter matrix as

∑︀𝑐
𝑖=1(𝜇𝑖−𝜇)(𝜇𝑖−𝜇)𝑇 ;

where 𝑦𝑖𝑗𝑘 is the projection of 𝑘𝑡ℎ sample of 𝑗𝑡ℎ view of 𝑖𝑡ℎ class. Thus, it aims at obtaining view

specific projection directions such that (i) the samples of a class are closer to its class mean (across

views: 𝜇𝑖), and (ii) class means (across views: 𝜇𝑖) are away from the overall mean (𝜇) in the pro-

jected space. Both the objectives are different from HDA where (a) the samples of one view of a

class are brought closer to mean of another view of the same class (𝜇𝑎
𝑖 , 𝜇𝑏

𝑖 ), and (b) mean of one

view of a class (𝜇𝑎
𝑖 ) is pulled apart from means of other view of other classes (𝜇𝑏

𝑙 , 𝑖 ̸= 𝑙). The

comparison of MvDA with the proposed HDA and KHDA in terms of results is shown in Table

3.5. The results of HDA and KHDA are significantly better than MvDA.

HDA vs GMA [141]: Generalized multiview analysis [141] optimizes the 𝑤𝑇
1 𝐴1𝑤1 +𝛽𝑤𝑇

2 𝐴2𝑤2 +

2𝛼𝑤𝑇
1 𝑍1𝑍

𝑇
2 𝑤2 under the constraint of 𝑤𝑇

1 𝐵1𝑤1 + 𝛾𝑤𝑇
2 𝐵2𝑤2 = 1, where 𝐴𝑖 and 𝐵𝑖 represent

within-view inter- and intra- class information, and 𝑍1 and 𝑍2 consist of samples of view 1 and

2, respectively. The objective function encodes difference of intra-view samples and correlation

of inter-view samples. The last term in the optimization function tries to maximize covariance

between the samples from different views to obtain directions to achieve closeness between multi-

view samples of the same class. In other words, GMA can be considered as optimizing the between

and within-class scatter of individual views and the cross-view correlation in a weighted manner.
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In case of HDA, the objective function is catered towards obtaining discriminative projections for

inter-view scenarios. Table 3.5 shows comparative results of both the GMA based approaches,

GMLDA and GMMFA, for VIS-NIR matching. GMLDA and GMMFA [141] achieve 23.7% and

23.8% rank-1 accuracy [121], [147], which is significantly lower compared to our results.

3.5 Summary

In this research, we have proposed a discriminant analysis approach for heterogeneous face recog-

nition. We formulate heterogeneous discriminant analysis which encodes view labels and has the

objective function optimized for heterogeneous matching. Based on the analytical solution, we

propose its kernel extension, KHDA. Experimental results are performed on three heterogeneous

face matching problems, namely, visible to NIR matching, cross resolution matchings, and digital

photo to sketch, with hand-crafted DSIFT and deep learning based LCSSE. The results consis-

tently show that the proposed modification in the classical discriminant analysis technique exhibits

significantly improved recognition performance. For all three case studies, the proposed HDA and

KHDA are among the top performing approaches.
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Chapter 4

Incremental Semi-supervised Discriminant

Analysis for Face Recognition

Discriminant analysis (DA) [186] based classifiers have found their utility in wide range of prob-

lems such as image retrieval [187] and face recognition [16]. Linear discriminant analysis (LDA)

[188] and its variants have been efficiently used in various pattern classification problems [172],

[189]–[191]. Some of the most interesting successors of LDA are kernel LDA [192], maximum

margin criterion based discriminant function [193], and graph-embedding [190], [194] based algo-

rithms.

The formulations of DA techniques, typically, require labeled training data. In certain appli-

cations, such as image retrieval and object classification, it is difficult to obtain large labeled data.

However, large amount of unlabeled data is easily available. To address this aspect, researchers in-

troduced semi-supervised learning in discriminant analysis [195]–[198]. The paradigm utilizes la-

beled as well as large amount of unlabeled training data to learn the model [199]. Semi-supervised

learning is very important in addressing the labeled data related limitation, as it learns a model

from labeled as well as large amount of unlabeled training data. Therefore, semi-supervised learn-

ing approaches have been proposed in discriminant analysis. Generally, existing semi-supervised

incremental learning algorithms first learn the model using labeled data, which is followed by

classification of unlabeled data [197], [198], [200]. Either a new classification model is learned or

existing model is updated using the confidently classified unlabeled data samples. Therefore, these

set of algorithms create pseudo labeled data from unlabeled data, and use an existing supervised
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Figure 4-1: Traditional incremental discriminant approaches, such as Kim et al. [207], [208] and
Lamba et al. [211], update between-class and overall variability. New eigenmodels of S𝐵 and S𝑇

are learned from incremental batch, which are merged with corresponding existing eigenmodels.
Discriminating components V are obtained from merged eigenmodels of S𝐵 and S𝑇 .

learning framework. However, this approach requires to iteratively learn the model which might

be time consuming. Cai et al. [195] proposed semi-supervised discriminant analysis (SSDA)

by utilizing unlabeled data for learning the regularized total scatter matrix. The regularization is

performed using graph Laplacian of unlabeled training set which encodes the manifold assump-

tion. Few other related semi-supervised learning algorithms are summarized in Table 4.1. Semi-

supervised learning can be utilized in various research areas ranging from bioinformatics, speech

recognition, natural language parsing, and spam filtering [199], [201].

Both the types of discriminant analysis algorithms, supervised (e.g. LDA) or semi-supervised

(e.g. SSDA), are usually trained in batch mode. In many real world applications, it is likely that

whole labeled training set is not available before hand; rather the training data is obtained incre-

mentally. The batch learning algorithms have a major limitation related to very limited provision

for updating discriminant components by incorporating the newly available training samples only.

To obtain a new model, the discriminant classifier has to be learned from the merged data i.e.

both original and incremental training data. Since the core of every discriminant analysis objective

function contains an eigenvalue decomposition problem, learning a new classifier from merged

data has cubic time complexity. Further, as SSDA encodes the data in the form of graphs, graph

adjacency matrix has to be obtained from the merged data to update the model. This presents an

additional challenge for learning a new model. The challenge can be addressed using incremental
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Table 4.1: Literature review of the related research pertaining to incremental learning and semi-
supervised learning algorithms related to discriminant analysis.

Algorithm Year Description
Semi-supervised Leaning

SSDA [195] 2007
Semi-supervised discriminant analysis based on LDA which
uses unlabeled set for estimating total scatter

SELF [196] 2010
A semi-supervised extension of local fisher discriminant analysis
that preserves the global structure of the unlabeled data.

SSGDA [197] 2011
Confidently classified unlabeled data samples are utilized with
pseudo labels in generalized discriminant analysis.

Byun [198] 2012
Utilizes pseudo labels of only those unlabeled samples that are
expected to reduce errors.

Incremental Leaning

IPCA [202] 2000
Proposed algorithm for merging eigenpaces of total scatter
matrices

ILDA-Pang[203] 2005 Incrementally updates between- and within-class scatter.
GSVD-ILDA [204] 2008 Incremental version of LDA/GSVD [205]

LS-ILDA [206] 2009
Formulates ILDA in terms of least square solution by
incrementally updating total scatter of mean centered data
matrix.

IDCC [200] 2010
Incremental discriminant canonical correlation analysis by
adapting the sufficient spanning set based merging of eigenspace
[202]

ILDA [207], [208]
2007,
2011

Merging eigenspaces of between- and within-class scatter of
existing and new batch for updating model.

I-CLDA[209], [210] 2012
Incremental complete linear discriminant analysis utilizing QR
decomposition to obtain orthonormal projection directions.

ISDA (subclass)[211] 2012
Extension of ILDA[208] to incremental subclass discriminant
analysis

ILDA-KT [212] 2012
Addressing concept drift in incremental learning using
knowledge transfer

LS-LDA-CD [213] 2013 Addresses concept drift issue in least square LDA [206]
Chunk-IDR/QR [214] 2015 A time-effecient version of IDR-QR [215]

ILDA/QR [216] 2015
Utilization of QR decomposition of data matrix for incremental
learning.

Proposed ISSDA -
Extension of ILDA to semi-supervised discriminant analysis
with reduced time complexity.
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learning [206]–[208] where new training samples are incrementally incorporated into the classi-

fication model. The motivation of incremental learning for discriminant analysis is to be able to

update the existing model using the newly available training samples with significantly less time

complexity. Some existing contributions pertaining to incremental learning are summarized in Ta-

ble 4.1. Kim et al. [207], [208] and Lamba et al. [211] utilized the eigenspace merging algorithm

[202] to formulate incremental linear discriminant analysis (ILDA) and incremental subclass dis-

criminant analysis, respectively. As shown in Figure 4-1, both the algorithms use the new training

samples to update the between-class scatter matrix and the total scatter matrix individually, and

learn the discriminating components . Liu et al. [206] proposed an incremental learning algorithm

based on the least square formulation of LDA. Time complexity of the algorithm proposed in [206]

is less than that of [207], [208], however the space complexity of the former is more as it requires

to store the entire data matrix or total scatter matrix as part of the classification model.

To mitigate the above mentioned challenges, this research presents an incremental semi-supervised

discriminant analysis (ISSDA) algorithm. We address the problem with two reasonable assump-

tions: large unlabeled training data is available offline and labeled data is received incrementally.

The proposed algorithm aims at reducing the computational complexity of the incremental update

process by utilizing the unlabeled dataset for robust data statistics estimation. The major contribu-

tions of this research are:

• showcasing that large unlabeled training set can be leveraged to efficiently estimate the total

scatter matrix,

• utilization of manifold regularization of robust estimation of total scatter matrix, and

• sufficient spanning set representation [207], [208] based incremental learning approach which

requires to update only the between-class scatter matrix and not the total scatter matrix.

The effectiveness of the proposed algorithm is evaluated for face recognition application. The

performance is evaluated by comparing the accuracy, time and consistency of the proposed in-

cremental algorithm with the corresponding batch learning model. Evaluations to understand the

effects of the manifold regularizer and unlabeled data size are also performed. Further, the effect

of updating the model with incremental batch consisting of samples of new classes is also studied.
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4.1 Incremental Semi-supervised Discriminant Analysis

Discriminant analysis based approaches have a fundamental objective of maximizing the inter-

class variation and minimizing the intra-class variation. In case of linear discriminant analysis,

inter-class variability is modeled in terms of between-class scatter matrix S𝐵 and intra-class vari-

ability is modeled in terms of within-class scatter matrix S𝑊 [188],

S𝐵 =
𝑐∑︁

𝑖=1

𝑛𝑖(𝜇𝑖 − 𝜇)(𝜇𝑖 − 𝜇)𝑇 and (4.1)

S𝑊 =
𝑐∑︁

𝑖=1

∑︁
𝑥𝑗∈X𝑖

(𝑥𝑖 − 𝜇𝑖)(𝑥𝑖 − 𝜇𝑖)
𝑇 (4.2)

Here, 𝑐 is the number of classes, 𝑛 is the total number of samples, 𝑛𝑖 is the number of samples

in 𝑖𝑡ℎ class, X = [X1 . . .X𝑐] is the data matrix, X𝑖 is the set of samples belonging to 𝑖𝑡ℎ class,

𝜇𝑖(=
1
𝑛𝑖

∑︀
𝑥𝑗∈X𝑖

𝑥𝑗) is the mean of 𝑖𝑡ℎ class, and 𝜇(= 1
𝑛

∑︀𝑐
𝑖=1

∑︀
𝑥𝑗∈Xi

𝑥𝑗) is the mean of all the

data samples. The objective is to find the set of projection directions V such that,

V = arg max
|V𝑇S𝐵V|
|V𝑇S𝑊V|

(4.3)

In many applications, S𝑊 can be singular; therefore, the following equivalent criterion [188] can

be used:

V = arg max
|V𝑇S𝐵V|

|V𝑇 (S𝑊 + S𝐵)V|
= arg max

|V𝑇S𝐵V|
|V𝑇S𝑇V|

(4.4)

Where, S𝑇 is the total scatter matrix defined as,

S𝑇 =
𝑐∑︁

𝑖=1

∑︁
𝑥𝑗∈X𝑖

(𝑥𝑖 − 𝜇)(𝑥𝑖 − 𝜇)𝑇 (4.5)

Also note that, Eq. 4.5 suggests that S𝑇 depends on the global mean; not on the class means, and

can be computed without having the knowledge of class labels. The criterion, Eq. 4.4, can be

modeled into a generalized eigenvalue problem as

S𝐵V = 𝜆S𝑇V (4.6)
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where, the solution V contains the most discriminant projection directions.

4.1.1 Semi-Supervised Discriminant Analysis

Since the global statistics may be estimated with limited training data, the Fisher criterion in Eq.

4.4 is prone to over fitting. Therefore, the following regularization criterion is often used [217].

V = arg max
|V𝑇S𝐵V|

|V𝑇S𝑇V + 𝛽1R(V)|
(4.7)

where, R(V) is the regularizer function and 𝛽1 controls the weight given to it. Cai et al. [195]

proposed to use a graph embedding based regularizer

R(V) = V𝑇XLX𝑇V (4.8)

where, L is the Laplacian of the graph built by considering each sample 𝑥𝑖 as the node and the

edges describe the connectivity of the two samples. The edges are encoded using an adjacency

matrix W such that the entry W𝑖𝑗 is 𝑒𝛾||𝑥𝑖−𝑥𝑗 ||22 if 𝑥𝑗 is the neighborhood of 𝑥𝑖 or vice-versa and in

other cases W𝑖𝑗 is zero. The graph Laplacian L can be computed as L = W −D, where D is a

diagonal matrix of row sum (or column sum) of W
(︁
D𝑖𝑖 =

∑︀
𝑗 W𝑖𝑗

)︁
[218], [219].

Manifold assumption [218]–[220] expects data samples to be on a surface, whereas data dis-

tribution assumption [221] expects data samples to follow certain distributions. Since manifold

assumption is rather relaxed and more effective in data representation, it is utilized for regulariza-

tion in SSDA. Similarly, [196], [222]–[226] have utilized the manifold assumption to better model

the classifier.

Substituting Eq. 4.8 in Eq. 4.7 results in

V = arg max
|V𝑇S𝐵V|

|V𝑇 (S𝑇 + 𝛽1XLX𝑇 )V|
(4.9)

However, the denominator in this modified criterion is not guaranteed to be nonsingular. Therefore,
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Figure 4-2: The proposed approach incrementally learns the between-class variability and uses
unlabeled data to learn the overall variability. Eigenmodel of S𝐵 is learned from incremental batch
and merged with the existing eigenmodel. New discriminating components V are obtained using
updated eigenmodel of S𝐵 and offline estimated eigenmodel of S𝑇 .

a small positive value 𝛽2 > 0 is added to the diagonal elements making the criterion

V = arg max
|V𝑇S𝐵V|

|V𝑇 (S𝑇 + 𝛽1XLX𝑇 + 𝛽2I)V|
(4.10)

Similar to Eq. 4.6, Eq. 4.10 results in the eigenvalue decomposition problem as follows

S𝐵V = 𝜆
(︀
S𝑇 + 𝛽1XLX𝑇 + 𝛽2I

)︀
V (4.11)

The denominator of Eq. 4.10 encodes the overall/total variability irrespective of the class

labels, in other words “the expected variation among samples". This reflects in the fact that no

term in the denominator depends on class specific statistics. Interestingly, this overall variability

can be learned from an unlabeled dataset [195]. Let X(𝑢) be the unlabeled data matrix, S(𝑢)
𝑇 be its

total scatter matrix, and L(𝑢) be the corresponding graph Laplacian. Eq. 4.11 can be written as,

S𝐵V = 𝜆
(︁
S
(𝑢)
𝑇 + 𝛽1X

(𝑢)L(𝑢)X(𝑢)𝑇 + 𝛽2I
)︁
V (4.12)
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4.1.2 Incremental Learning

To incorporate incremental learning in Eq. 4.12, as shown in Figure 4-1 the between-class scatter

and the regularized total scatter matrices needs to be updated, and accordingly new discriminating

projection directions are to be computed. This update of S𝐵 and S𝑇 should reflect the changes

in the class specific statistics 𝜇𝑖 and the global statistic 𝜇, respectively. While a model can be

learned by recomputing S𝐵 and S𝑇 along with solving the eigenvalue decomposition in Eq. 4.6

from the combined training set, this approach can be very expensive with large data. Therefore,

incrementally updating scatter matrices is preferable than retraining the model with cumulated

data.

As illustrated in Figure 4-2, we propose to estimate the total scatter from large unlabeled data.

It is our assertion that the size of unlabeled dataset affects total variability estimation. With bigger

unlabeled dataset, S𝑇 can more accurately estimate the total scatter of the population and further

addition of new samples should not change it significantly. Thus, if S𝑇 is learned offline from

sufficiently large data, it is not required to be updated with incremental learning. Therefore, the

estimate of total scatter can be precomputed and only S𝐵 is to be updated incrementally. We

utilize sufficient spanning set representation of scatter matrices [207], [208], to obtain incremen-

tally updatable model. This section explains the proposed approach of incrementally updating the

semi-supervised learning based model of ISSDA.

Sufficient Spanning Set Representations and Model Update

Let the existing model be trained on 𝑀1 samples and the incremental batch contains 𝑀2 new

samples. Let S𝐵,1 and S𝐵,2 be the between-class scatter matrices of the existing batch and the

incremental batch respectively. The eigenspace model of the between class scatter matrix may be

represented as {𝜇𝑖,𝑀𝑖,Q𝑖,Δ𝑖, 𝑛𝑖,𝛼𝑖}𝑖=1,2, where 𝑖 represents the 𝑖𝑡ℎ incremental batch of new

data points, and for corresponding batches 𝜇, 𝑀 , Q, and Δ are the mean, number of samples,

eigenvector matrix, and eigenvalue matrix respectively. 𝛼𝑖 is the vector of coefficients to represent

the mean of the 𝑗𝑡ℎ class of 𝑖𝑡ℎ batch as m𝑖𝑗 ≃ 𝜇𝑖 + Q𝑖𝛼𝑖𝑗 . Note that the original between-class

scatter matrix can be approximated by using the corresponding eigenmodel as S𝐵,𝑖 = Q𝑖Δ𝑖Q
𝑇
𝑖 .

The eigenvector matrix Q𝑖 does not contain all the eigenvectors of the matrix, rather it contains the
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set of eigenvectors which are sufficient enough to reconstruct the matrix [207], [208]. In this way,

eigenmodel inherently encompasses the idea of sufficient spanning set, i.e. the set of sufficient

eigenvectors that span the space of scatter matrix.

Let S𝐵,3 be the between-class scatter matrix of the merged training sets of both the batches,

S𝐵,3 = S𝐵,1 + S𝐵,2 +
𝑀1𝑀2

𝑀1 + 𝑀2

(𝜇1 − 𝜇2)(𝜇1 − 𝜇2)
𝑇 + A (4.13)

where,

A =
∑︁
𝑘∈𝑆

−𝑛1𝑘𝑛2𝑘

𝑛1𝑘 + 𝑛2𝑘

(m2𝑘 −m1𝑘)(m2𝑘 −m1𝑘)𝑇 , (4.14)

𝑆 is the set of common classes between the existing batch and new batch, and 𝑛𝑖𝑗 is the number of

samples in the 𝑗𝑡ℎ class in 𝑖𝑡ℎ batch. The solution to finding the merged eigenmodel follows three

steps:

1. The orthogonalization of Q1,Q2, and 𝜇1 − 𝜇2 gives the set of orthonormal basis Ψ, since

the principal components (Q1 and Q2) and mean difference vector (𝜇1 − 𝜇2) can span the

data space of between-class scatter matrix [207], [208]. Moreover, Q3 = ΨR, where R is

the rotation matrix. Orthogonalization can be performed using various methods, one such

method is Gram-Schmidt orthonormalization [227], which computes the matrix Ψ in the

first step.

2. Since Q3 is the eigenvector matrix of S𝐵,3,

S𝐵,3 = Q3Δ3Q
𝑇
3 (4.15)

= Ψ3RΔ3R
𝑇Ψ𝑇

3 (4.16)

=⇒ Ψ𝑇
3 S𝐵,3Ψ3 = RΔ3R

𝑇 (4.17)

where, the term on the left can be approximated without computing the matrix S𝐵,3 [202].

Eigenvalue decomposition of this approximation yields the rotation matrix R and diagonal

matrix containing eigenvalues Δ3.

3. The eigenvector is constructed as Q3 = Ψ3R. The remaining parts of the eigenmodel are

87



computed as

𝑀3 = 𝑀1 + 𝑀2 (4.18)

𝑛3𝑗 = 𝑛1𝑗 + 𝑛2𝑗 (4.19)

𝜇3 =
𝑀1𝜇1 + 𝑀2𝜇2

𝑀3

(4.20)

𝛼3𝑗 = Q𝑇
3 (m3𝑗 − 𝜇3) (4.21)

where, m3𝑗 =
𝑛1𝑗m1𝑗 + 𝑛2𝑗m2𝑗

𝑛3𝑗

(4.22)

Similar to between-class scatter matrix, the regularized total-scatter matrix should also be rep-

resented using sufficient spanning sets. Since it is computed only once and not updated incre-

mentally, it is sufficient to store only the eigenvectors and eigenvalues in its eigenmodel. The

regularized total scatter matrix S
(𝑢)
𝑇 + 𝛽1X

(𝑢)L(𝑢)X(𝑢)𝑇 + 𝛽2I may be represented using {P,Λ},

where P is the matrix containing leading eigenvectors of the scatter matrix and Λ is the diag-

onal matrix containing the corresponding eigenvalues. Note that the sufficiency of eigenvectors

translates to the fact that

S
(𝑢)
𝑇 + 𝛽1X

(𝑢)LX(𝑢)𝑇 + 𝛽2I ≃ PΛP𝑇 (4.23)

Finding Updated Discriminant Components

Having updated the eigenmodel of S𝐵,3 incrementally, the next step is to find the updated dis-

criminant components using the offline computed model {P,Λ} representing the regularized total

scatter and the updated model {𝜇3,𝑀3,Q3,Δ3, 𝑛3,𝛼3}. Similar to Kim et al. [207], [208], dis-

criminant components are computed using Eq. 4.24

V = ZΩR (4.24)

where Z = PΛ− 1
2 , Ω is the matrix containing basis vectors computed by orthogonalization of

Z𝑇Q3, and R is the matrix containing the eigenvectors of Ω𝑇Z𝑇Q3Δ3Q
𝑇
3ZΩ which is an ap-

proximation of Ω𝑇Z𝑇S𝐵,3ZΩ. The initial batch and the incremental learning procedures of the

proposed semi-supervised incremental discriminant analysis are summarized in Psuedocode 1. In

the initial training a model ϒ1 is learned using labeled and unlabeled samples. The incremental
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Figure 4-3: Block diagram of the evaluation protocol for face recognition experiments. At first, the
model is learned using initial training samples and unlabeled data. With each incremental training
batch the existing model is updated to obtain a new model.

data may arrive in batches of different sizes. For example, an incremental batch may consist of 2

new samples per class or it may contain 10 samples of two new classes. The incremental learning

procedure utilizes the incremental batch and the existing learned model, and returns the model ϒ3

that incorporates all the new samples. Further, when another incremental batch arrives, the ϒ3 is

used as the current existing model.

The proposed algorithm is evaluated in context to face recognition. As shown in Figure 4-3,

in the proposed incremental semi-supervised discriminant analysis, initially the classifier model

is learned which consists of the eigenmodels of manifold regularized total scatter obtained from

unlabeled data (Eq. 4.23) and the eigenmodel of between-class scatter obtained from labeled data.

With every new incremental batch, the classifier model is updated by obtaining new eigenmodel of

between-class scatter (Eq. 4.17-4.22) and updating the discriminating components (Eq. 4.24).
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Algorithm 1 Proposed Incremental Semi-Supervised Discriminant Analysis (ISSDA)
procedure INITIAL TRAINING

Input: Data matrix X = [X1 . . .X𝑐] where X𝑖 is the set of samples belonging to 𝑖𝑡ℎ class,
unlabeled set X(𝑢), regularization parameters 𝛽1 and 𝛽2.

1. Compute total scatter S𝑢
𝑇 (Eq. 4.5), and graph Laplacian L(𝑢) from unlabeled set X(𝑢).

2. Obtain eigenvectors P1 and eigenvalues Λ1 of
(︁
S
(𝑢)
𝑇 + 𝛽1X

(𝑢)L(𝑢)X(𝑢)𝑇 + 𝛽2I
)︁

3. Obtain mean of training samples 𝜇1

4. Count number of samples 𝑀1

5. Count number of samples in each class and arrange them in 𝑛1

6. Obtain eigenvectors Q1 and eigenvalues Δ1 of between-class scatter matrix as explained
in Eq. 4.15-4.17

7. Obtain discriminating components V1 as explained in Eq. 4.24

Return: ϒ1 = {V1,P1,Λ1,𝜇1,𝑀1,Q1,Δ1, 𝑛1} : Learned initial model
end procedure

procedure INCREMENTAL LEARNING:
Input: Incremental batch data matrix X = [X1 . . .X𝑐] where X𝑖 is the set of samples

belonging to 𝑖𝑡ℎ class, Current existing model Υ1

1. Update number of sample 𝑀3 (Eq. 4.18), number of samples per class 𝑛3 (Eq. 4.19),
sample mean 𝜇3 (Eq. 4.20)

2. Obtain eigenvectors Q2 and eigenvalues Δ2 of between-class scatter matrix of incremental
batch as explained in Eq. 4.15-4.17

3. Obtain the set of orthonormal basis Ψ3 by applying orthormalization function on [Q1,Q2,
𝜇1 − 𝜇2].

4. Eigendecopmose Ψ𝑇
3 S𝐵,3Ψ3 to obtain rotation matrix R (Eq. 4.17). Set Q3 = Ψ3R.

5. Set P = P3 and Λ = Λ3.

6. Obtain discriminating components V3 as explained in Eq. 4.24

Return: ϒ3 = {V3,P3,Λ3,𝜇3,𝑀3,Q3,Δ3, 𝑛3} : Updated model
end procedure
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4.1.3 Time Complexity

Let 𝑀 , 𝐷, and 𝐶 be the number of data samples, dimensionality, and number of classes respec-

tively (𝑀 ≥ 𝐶). The computation of total scatter and between-class scatter matrices require

𝑂(𝑀𝐷2) and 𝑂(𝐶𝐷2) operations respectively. The inversion of S𝑇 and multiplication of inverted

matrix with S𝐵 both require 𝑂(𝐷3) operations. Finally, the eigenvalue decomposition requires

𝑂(𝐷3) operations. Thus, the overall time complexity of finding discriminant components as per the

objective function in Eq. 4.4 is 𝑂(𝑀𝐷2 + 𝐷3). Moreover, following the trick performed by Turk

and Pentland [14] it can be further reduced to 𝑂(𝑀𝐷2 + 𝑚𝑖𝑛(𝑀,𝐷)3). If the number of samples

in existing batch and incremental batch are 𝑀1 and 𝑀2 respectively and 𝑀3 = 𝑀1 +𝑀2. The time

complexity of (non-incremental) linear discriminant analysis is 𝑂(𝑀3𝐷
2 + 𝑚𝑖𝑛(𝑀3, 𝐷)3). The

computation of incremental linear discriminant analysis [207], [208] is 𝑂(𝑑3𝑇,1+𝑑3𝐵,1+𝐷𝑑𝑇,3𝑑𝐵,3),

under the assumption that 𝑀2 ≪ 𝑀1, where 𝑑𝑇,𝑖 and 𝑑𝐵,𝑖 are the number of eigenvectors in eigen-

models of S𝑇,𝑖 and S𝐵,𝑖 respectively. However, without any inequality constraint assumption be-

tween 𝑀1 and 𝑀2, its time complexity is 𝑂(𝑑3𝑇,3 + 𝑑3𝐵,3 + 𝐷𝑑𝑇,3𝑑𝐵,3), where 𝑑𝑇,3 and 𝑑𝐵,3 are the

number of eigenvectors in the updated model, with 𝑑𝑇,3 ≤ 𝑑𝑇,1+𝑑𝑇,2+1 and 𝑑𝐵,3 ≤ 𝑑𝐵,1+𝑑𝐵,2+1.

It should be noted that usually 𝑀3 ≫ 𝑑𝑇,3 ≥ 𝑑𝐵,3. Therefore, it provides significant improvement

over classical (non-incremental) LDA.

The proposed algorithm aims at further reducing the computational complexity by updating

only S𝐵 incrementally. As the eigenmodel of total scatter is not to be updated, the time complexity

of the proposed incremental learning is 𝑂(𝑑3𝐵,3 + 𝐷𝑑𝑇,3𝑑𝐵,3). The additional learning from the

unlabeled data is 𝑂(𝑘𝐷𝑀2
𝑢 +𝑀𝑢𝐷

2), where the first term corresponds to finding 𝑘-nearest neigh-

bor (considering Euclidean distances) and the second term corresponds to matrix multiplication

XLX𝑇 . 𝑀𝑢 is the number of unlabeled samples. However, these additional operations for find-

ing graph Laplacian are to be performed only once during offline learning from initial batch. The

computational complexities of various approaches is summarized in Table 4.2.

4.2 Experiments and Results

Using face recognition application, the effectiveness of the proposed ISSDA algorithm is evaluated

in terms of recognition performance (accuracy, training time, and consistency) along with its sen-
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Table 4.2: Computational complexity analysis. 𝑀 and 𝐷 represent the number of samples and
feature dimensionality. 𝑑𝑇,𝑖 and 𝑑𝐵,𝑖 is the number of components preserved in eigenmodels of
total and between-class scatter matrices of 𝑖𝑡ℎ batch. 𝑀𝑢 is the number of samples in unlabeled set
and 𝑘 is the neighborhood parameter of learning graph laplacian.

Algorithm Time complexity
PCA 𝑂(𝑚𝑖𝑛(𝑀𝐷2 + 𝐷3))
LDA 𝑂(𝑀𝐷2 + min(𝑀,𝐷)3)
IPCA [202] 𝑂((𝑑𝑇,1 + 𝑑𝑇,2 + 1)3)
ILDA [207], [208] 𝑂(𝑑3𝑇,3 + 𝑑3𝐵,3 + 𝐷𝑑𝑇,3𝑑𝐵,3)
SSDA [195] 𝑂(𝑀𝐷2 + min(𝑀,𝐷)3 + 𝑘𝐷𝑀2

𝑢 + 𝑀𝑢𝐷
2)

ISSDA(Proposed) 𝑂(𝑑3𝐵,3 + 𝐷𝑑𝑇,3𝑑𝐵,3)

sitivity to size of unlabeled set and regularization. Further, results are evaluated when new classes

are incrementally added.

4.2.1 Database, Experiment Design, and Protocols

The experiments are performed on three face databases namely, (1) CMU-PIE [55], (2) NIR-VIS-

2.0 [228], and (3) CMU-MultiPIE [61]. Figure 4-4 shows sample images from all three databases.

• The CMU-PIE face dataset contains 42,368 face images pertaining to 68 subjects with vari-

ations in pose, illuminations and expression. In our experiments, frontal face images with

illumination changes (C27) are used which result in 42 face images per subject and a total

of 2,856 images (i.e. 42 × 68).

• NIR-VIS-2.0 [228] face dataset consists of 5,093 visible and 12,487 near-infrared (NIR)

spectrum frontal face images pertaining to 725 subjects captured in 4 sessions. In NIR

spectrum, there are 5 to 50 images per subject, with a median of 18 images per person. In

fact, there is only one subject with only 5 images. In VIS spectrum, there are 1 to 22 images

per subject, with a median of 6 images per person. The experiments are performed for each

spectrum individually in which cropped face images provided along with the dataset are

used.1

1Since the proposed approach is not designed for heterogeneous face matching, a custom defined protocol is
utilized instead of the the predefined protocol for the NIR-VIS-2.0 dataset.
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(a)

(b)

(c)

(d)

Figure 4-4: Sample images from the (a) CMU-PIE dataset [55] (b) visible spectrum and (c) NIR
images from VIS-NIR-2.0 dataset [228], and (d) CMU-MultiPIE dataset [61].
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Table 4.3: Experimental protocols

Database
Number of Subjects Number of Images

Total Unlabeled Labeled Total Per Subject
CMU-PIE [55] 68 30 38 2,856 42
NIR-VIS-2.0 [228]

725 300 425 5,093 1-22
(VIS only)
NIR-VIS-2.0 [228]

725 300 425 12,487 5-10
(NIR only)
CMU-MultiPIE [61] 337 150 187 32,780 20-140

• CMU-MultiPIE face dataset contains more than 7,50,000 images pertaining to 337 subjects,

with 15 pose, 20 illumination and 6 expression variations captured across 4 sessions. For

this research, we utilize 32,780 images pertaining to frontal pose (camera 05_1), neutral and

smile expressions, and all the illumination variations.

In all the experiments, size of registered face image is set to 32 × 32 pixels, with 256 grey

levels per pixel. All the following experiments are performed on raw pixel intensity features. We

perform four sets of experiments,

1. to study the performance of the proposed approach with respect to batch (PCA, LDA, and

SSDA) and other incremental learning (IPCA, ILDA) approaches.

2. to study effect of manifold regularization.

3. to study the effect of size of unlabeled set.

4. to study the effect of incremental addition of classes.

For each experiment, four sub-experiments are performed using the four datasets:1) CMU-PIE, 2)

VIS images of NIR-VIS-2.0, 3) NIR images of NIR-VIS-2.0, and 4) CMU-MultiPIE datasets.

For all the datasets, the labeled and unlabeled sets are designed such that they are non-overlapping

in terms of subjects. Details of both labeled and unlabeled splits are given in Table 4.3. In all the

experiments, unlabeled set consists of images pertaining to subjects selected for unlabeled train-

ing. Note that for experiments pertaining to NIR images of NIR-VIS-2.0 dataset, the subjects with

less than five images are made part of the unlabeled set. Labeled set is split into train and test sets.
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Train set is further divided into training batches. For labeled data, the initial training batch consists

of one labeled image per subject. Each incremental batch contains an additional labeled image per

subject for training in CMU-PIE and NIR-VIS-2.0 dataset; whereas for CMU-MultiPIE dataset

five additional images per subject are used in each incremental batch. In sub-experiments pertain-

ing to CMU-PIE and CMU-MultiPIE, four such incremental training batches are formed whereas

in sub-experiment pertaining to NIR-VIS-2.0 dataset, three such incremental training batches are

formed. At all the stages, testing is performed on the predefined test set, which is non-overlapping

with the train set. The results are reported with 15 times repeated random sub-sampling based

cross validations.

4.2.2 Experiment 1: Comparative Evaluation

In this experiment, performance of the proposed ISSDA is evaluated and comparison is performed

with

• three batch learning approaches:

– Principal Component Analysis (PCA) [14],

– Regularized Linear Discriminant Analysis (LDA) [158], and

– Semi-supervised discriminant analysis (SSDA) [195], and

• two incremental approaches:

– Incremental PCA (IPCA) [202] and

– Incremental LDA (ILDA) [207], [208].

PCA is applied in two modes: one by augmenting the unlabeled training data to learn eigenspace

(represented as PCA*1) and other by not augmenting (represented as PCA*). The PCA implemen-

tation of statistical toolbox of Matlab is utilized. Publicly available implementation of LDA2,

SSDA2, and ILDA3 are used. IPCA code is derived based on ILDA source code. The proposed

semi-supervised incremental learning is evaluated in terms of accuracy, consistency, and time.

2 http://www.cad.zju.edu.cn/home/dengcai/Data/DimensionReduction.html
3http://www.iis.ee.ic.ac.uk/icvl/code.htm
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Ideally, the incremental learning algorithm is expected to have a similar performance as the corre-

sponding batch algorithm and should consume significantly less time. The consistency measure is

to evaluate the similarity of the models obtained by incremental learning and batch learning.

Accuracy and Consistency

Tables 4.4 and 4.5 show the rank-1 identification accuracies of various algorithms with different

incremental batches. Figure 4-6 shows the cumulative match characteristics (CMC) curves of

the proposed algorithm and Table 4.6 shows the results pertaining to consistency evaluation. The

consistency evaluation enables us to understand how similar are the predicted labels of incremental

and batch learning models. The key observations are as follows:

• It can be observed that the proposed ISSDA, generally, yields similar identification perfor-

mance compared to SSDA. As mentioned previously, incremental version of batch mode

learning has minor effect on accuracy but significantly improves the computational time

(discussed later). Further, it is also observed that the performance difference between LDA

and ILDA is higher compared to SSDA and the proposed ISSDA. This performance improve-

ment of ISSDA compared to ILDA (or IPCA) may be attributed to the graph Laplacian based

regularization in the initial batch and incorporating learning with unlabeled data. As show

in Figure 4-5, for most of the cases, the following trend is observed in terms of accuracy

performance:

IPCA≈PCA* ≈ PCA < ILDA < {LDA, ISSDA} < SSDA

• In the initial batch, the proposed ISSDA and SSDA do not yield exact same accuracy due

to the difference in objective function of both the algorithms. Similar observations can be

made for the case of PCA and LDA. The proposed approach computes the discriminant

components by using eigenmodels of S𝐵 and S𝑇 (Eq. 4.24). This procedure is not exactly

same as finding projection directions by solving generalized eigenvalue problem as in SSDA.

• The algorithms that utilize manifold assumption, i.e. SSDA and the proposed one, generally,

have better accuracies than other DA algorithms the earlier batches. This suggests that SSDA

and the proposed algorithm are less affected by the small sample size problem than other DA

approaches.
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(a) CMU-PIE (b) NIR-VIS-2.0 (VIS only)

(c) NIR-VIS-2.0 (NIR only) (d) CMU-MultiPIE

Figure 4-5: Rank-1 identification accuracy for sub-experiments pertaining to CMU-PIE, NIR-VIS-
2.0, and CMU-MultiPIE face dataset. The graph representation of the accuracy helps understand
the general trend among approaches.

• As shown in Table 4.6, to evaluate the consistency between SSDA and the proposed ISSDA,

we utilize the confusion matrix representing similarity in class label predictions after arrival

of the final batches. If two classification models are exactly same, the confusion matrix

should have zero entries on minor diagonal. The results reported in Table 4.6 show that for

three databases used (CMU-PIE, NIR-VIS-2.0 (VIS only), and CMU-MultiPIE), more than

99.5% and for NIR-VIS-2.0 (NIR only) database approximately 95% of the label predictions

by the proposed ISSDA have agreed with SSDA, respectively.

Time

The time required for training different models is reported in Tables 4.4 and 4.5. The tables show

the time required for computing the model on arrival of new batches. For the incremental ap-

proaches, i.e. ILDA and the proposed ISSDA algorithm, the time required for updating the existing
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(b) NIR-VIS-2.0 (VIS only)
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(c) NIR-VIS-2.0 (NIR only)
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(d) CMU-MultiPIE

Figure 4-6: CMC curves of the proposed approach for (a) CMU-PIE, (b) NIR-VIS-2.0 (VIS only),
(c) NIR-VIS-2.0 (NIR only), and (d) CMU-MultiPIE datasets. Consistently, the incremental up-
date improves the identification performance.
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model are shown. On the other hand, for the batch approaches, i.e. PCA, LDA and SSDA, the time

required for learning a new model using all the available training samples available till the current

batch is shown. The models are computed with Matlab R2010 on a machine with two Intel Xeon

E5640 (2.67GHz) processors and 48GB RAM. The key observations are as follows:

• For the proposed algorithm, the time required in learning from the initial batch is higher,

however it is very small for all the incremental batches. Note that in the purview of incre-

mental learning the one time high computation cost of initial training is acceptable.

• With the experiments on bigger data (Table 4.4(b) and 4.5(a)), the time difference between

SSDA and the proposed ISSDA becomes more apparent. It can be seen that updating the ex-

isting model requires less than approximately 1/10th and one 1/50th of the time than learning

a new model in the batch-mode for NIR-VIS-2.0 and CMU-MultiPIE datasets, respectively.

• Also note that, to incorporate new samples in non-incremental approaches, the new model

is learned and the old model has to be discarded. From systems perspective, this changes in

the classification model may result in significantly more downtime of system compared to

the proposed incremental approach.

• In the proposed ISSDA, 𝑆𝑇 is estimated using the large unsupervised training data and then

not updated using incremental training samples. In order to understand the effect of updating

𝑆𝑇 with incremental training data, we have compared the performance of ISSDA with and

without 𝑆𝑇 update. It is observed that utilizing the unlabeled data to incrementally update to-

tal scatter estimate yields 0− 0.2% accuracy improvement while increasing the computation

times by 2 − 3 times compared to the proposed ISSDA.

4.2.3 Experiment 2: Effect of Manifold Regularization

The objective function in the proposed approach (Eq. 4.12) has a term representing manifold

regularization. To evaluate the impact of the manifold regularization, all the four experiments are

also performed without considering it in the objective function. In other words, the parameter 𝛽1 is

set to zero to remove manifold regularization from the proposed approach. The results are shown

in Table 4.7. The key observations from this set of experiments are as follows:
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Table 4.6: Confusion matrix for comparing the performance of SSDA and ISSDA. 3 and 7 repre-
sent the percentage of correctly classified and misclassified samples respectively.

Confusion SSDA

matrix @ Rank 1 3 7

CMU-PIE Proposed
3 99.71 0.00

7 0.07 0.22

NIR-VIS-2.0 (VIS only) Proposed
3 98.14 0.07

7 0.07 1.72

NIR-VIS-2.0 (NIR only) Proposed
3 84.45 0.14

7 5.88 9.53

CMU-MultiPIE Proposed
3 99.42 0.00

7 0.53 0.04

• Comparison with Table 4.4 and 4.5 shows that in all the experiment pertaining to CMU-PIE

dataset, the performance is superior when manifold regularization is used, whereas, in the

other three datasets performance difference is not statistically significant.

• The limited amount of training data with respect to the amount of variations in the datasets,

leads to performance deterioration in absence of manifold regularization. CMU-PIE, which

has the most variations because of large illumination changes, is affected the most in ab-

sence of regularization. The effect of manifold regularization is not significant in other three

experiments. The deteriorating effect on CMU-PIE may be attributed to over-fitting, as the

learned subspace would try to fit only the variations which are seen in the limited training

set. Incorporating manifold regularization helps to address the issue of over-fitting.

4.2.4 Experiment 3: Effect of Size of Unlabeled Set

Eq. 4.12 shows that the estimation of total scatter is dependent on the size of the unlabeled set. To

understand how the size of unlabeled set affects the overall identification accuracy, performance is

measured by varying the size of unlabeled set. Size of unlabeled set is varied in terms of number

of subjects used to constitute the set. Results pertaining to this experiment are reported in Table

4.8. The key observations of this set of experiments are as follows:
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Table 4.7: Rank-1 identification accuracy (mean±std-dev %) on the CMU-PIE, NIR-VIS-2.0,
and CMU-MultiPIE dataset without using manifold regularization. The experiment design and
protocol is same as Experiment 1 except that 𝛽1 = 0 is set. For easier comparison, the results
obtained with manifold regularization are shown reported within brackets. The smaller the dataset
the more noticeable is the performance drop when manifold regularization is not used.

Datasets Regularizer CMU-PIE VIS only NIR only CMU-MultiPIE

Initial batch without 40.5±2.9 86.9±1.1 61.4±1.8 88.6±0.9
with 91.0±1.8 89.2±1.2 61.7±1.7 88.4±0.9

Batch 1 without 59.1±3.7 93.8±1.2 75.4±1.0 96.0±0.4
with 97.1±1.2 95.3±1.0 75.6±1.0 95.9±0.4

Batch 2 without 69.7±3.1 96.5±0.9 81.6±0.5 98.0±0.3
with 98.6±0.6 97.5±0.8 81.8±0.5 98.0±0.3

Batch 3 without 76.2±2.8 97.7±0.7 84.9±0.5 99.0±0.1
with 99.2±0.5 98.5±0.5 85.0±0.6 98.9±0.1

Batch 4 without 81.1±2.0 - - 99.4±0.0
with 99.5±0.3 - - 99.4±0.0

• On the CMU-PIE dataset a significant performance improvement is obtained by increasing

the size of the unlabeled set. However that is not the case with the rest of the experiments,

where the performance difference of 1-4% is observed with variation in unlabeled set size.

Since the training set of CMU-PIE contains images pertaining to small number of subjects

(only 38), the total scatter estimate may be inaccurate. Moreover, the dataset contains images

with well structured variations. Therefore, adding new subjects in unlabeled set should be

significantly affecting the total scatter estimate. While this may not be the case with NIR-

VIS-2.0 and CMU-MultiPIE datasets, since they not contain face images with well structured

variations and face images pertaining to limited number of subject, respectively. Thus, it is

observed that addition of more images is helpful, only if large (inter-class and intra-class)

variations are captured by these images.

• We further observe that the improvement in results of initial batches is more compared to

successive incremental batches. This shows that role of unlabeled set is more important with

small training set. In a way, the small size of training dataset is being compensated by a

larger unlabeled set.
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Table 4.9: Rank-1 identification accuracy (mean±std-dev %) on the CMU-PIE, NIR-VIS-2.0,
and CMU-MultiPIE datasets by incrementally adding new subjects. The accuracy difference when
incrementally adding new subjects (classes) is similar to that of incremental addition of new images
of existing subjects as reported in Table 4.4 and 4.5.

No. of subjects in
10 10 10 8incremental batch

Proposed ISSDA 99.6±0.4 99.0±0.6 98.5±0.5 97.4±1.0
SSDA 99.5±0.6 99.5±0.4 99.5±0.3 99.5±0.3

(a) CMU-PIE

No. of subjects in
105 105 105 110incremental batch

Proposed ISSDA 98.1±1.3 98.3±0.6 98.2±0.5 98.3±0.5
SSDA 98.3±1.2 98.4±0.5 98.4±0.4 98.5±0.4

(b) NIR-VIS-2.0 (VIS only)

No. of subjects in
105 105 105 110incremental batch

Proposed ISSDA 87.9±1.9 86.2±1.0 85.7±1.0 85.3±0.9
SSDA 91.0±1.5 90.4±0.8 90.2±0.9 90.4±0.7

(c) NIR-VIS-2.0 (NIR only)

No. of subjects in
30 30 30 30 30 37incremental batch

Proposed ISSDA 99.9±0.1 99.8±0.1 99.7±0.1 99.6±0.1 99.5±0.1 99.6±0.1
SSDA 100.0±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0 99.9±0.0

(d) CMU-MultiPIE
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4.2.5 Experiment 4: Incremental Addition of Classes

The results of Experiment 1 showcase that the proposed approach is able to maintain accuracy

and consistency with significantly less time. However, the evaluation protocol of Experiment 1, 2

and 3 is designed such that incremental batches consist of images of existing subjects (i.e. sam-

ple/instance based incremental learning). Experiment 4 is performed to evaluate the performance

when images of new subjects are added incrementally (i.e. class based incremental learning). In

this experiment, labeled training set is divided into four (for CMU-PIE and NIR-VIS-2.0 dataset)

or five batches (for CMU-MuliPIE); where each batch contains images of new subjects. For each

dataset, each batch consists of almost the same number of subjects. Labelled set of CMU-PIE and

NIR-VIS-2.0 dataset consists of 5 images per subjects, whereas the same for CMU-MultiPIE is 25.

The split of databases and the results are reported in Table 4.9. Note that, after incorporating new

subjects in the classification model, the test set is also appended with the samples corresponding

to novel subjects. Therefore, with every incremental training, the test set also increases. Owing to

changing test set sizes, the performance of different batches should not be compared; instead the

performance of different algorithms in the same batch should be compared. The key observations

are as follows:

• In the experiment (Tables 4.9) the performance is affected very little (0 − 2%) with incre-

mental addition of subjects, which suggests that the classifier model is effectively updated

with the samples of novel subjects.

• For CMU-PIE, NIR-VIS-2.0 (VIS only), and CMU-MultiPIE the accuracy of the proposed

incremental semi-supervised discriminant analysis is comparable with SSDA. The addition

of new subjects does not seem to have significant impact on accuracy.

• For the sub-experiment pertaining to NIR-VIS-2.0 (NIR only) the accuracy difference of 5-

7% can be observed with respect to SSDA. The observation made in class based incremental

learning is consistent with sample/instance based incremental learning (i.e. Experiment 1,

Tables 4.4 and 4.5).
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4.3 Summary

In this research, we propose an incremental semi-supervised discriminant analysis algorithm to

mitigate the challenges such as batch learning and inability to utilize large unlabeled data which

typically affect traditional discriminant analysis approaches. In the proposed algorithm, while

between-class scatter is updated incrementally, total variability is estimated from large unlabeled

training data and therefore does not require to update the total scatter with new increments. A

case study in face recognition is presented with evaluations on the CMU-PIE, NIR-VIS-2.0, and

CMU-MultiPIE datasets. The results show that the proposed incremental approach (1) has bet-

ter identification accuracy than LDA and ILDA, (2) is consistent with the batch counterpart with

lesser computational requirements, and (3) can effectively incorporate novel classes in incremental

batches. Moreover, the study includes experiments examining the importance of manifold regular-

ization and size of unlabeled set.
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Chapter 5

Large-scale Face Recognition by Leveraging

Subclasses in Kernel SVM

Table 5.1: Training time as a function of the number of training instances for a synthetic two-
dimensional dataset two concentric circles (2CC).

Visualization
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Number of instances 20 200 2000 20,000
Training time

(seconds) 1.6×10−2 3.6×10−1 1.9×101 3.3×103

More and more applications are collecting large volumes of diverse data to be able to predict or

make decisions. Currently, the size of the largest biometric data is more than a billion, the number

of individuals with bank accounts has increased by more than 700 million in the last three years,

and YouTube generates billions of views everyday. This has lead to an ever-growing popularity

and importance of machine learning and pattern classification algorithms, particularly scalable

machine learning models. Traditionally, the most important parameter in selecting a classification

model is the accuracy of the classifier for a given problem; however, scalability of the classifier is

now becoming another important factor.
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A large number of classification techniques exist in the machine learning literature; each with

their own advantages and limitations, based on their underlying assumptions. Support vector ma-

chine (SVM) [112] has been one of the widely used classification algorithms in a variety of do-

mains and has shown excellent results in various applications including computer vision related

problems (e.g. object classification [229] and pedestrian detection [169]). The efficiency of mod-

eling decision boundary and, in turn, yielding impressive classification results have made SVMs

desirable for real-world scenarios. Due to their impressive classification accuracies on various

problems, one can potentially learn effective (in terms of classification accuracy) SVM models us-

ing large data. Numerous variants of SVM have been proposed in the literature to make large-scale

training efficient [230]–[234]. However, there are two major limitations of SVM in context to large

data.

• Computational complexity: The core optimization function of SVM is a quadratic pro-

gramming (QP) problem. Therefore, the training time complexity of standard SVM is 𝑂(𝑛3)

[235], where 𝑛 is the number of training instances.

• Space complexity: Training an SVM has space complexity of 𝑂(𝑛2) [235]. This estimate

is, typically, dominated by the space required for storing the kernel matrix.

To better understand the role of high time and space complexities, we show an example with a

synthetic dataset termed as two concentric circles (2CC). As illustrated in Table 5.1, it

is a 2D two-class dataset where the samples of each concentric circular band corresponds to one

class. Computing the nonlinear hyperplane to separate the two concentric circles requires learning

kernel SVM models. We perform experiments with varying number of data points in each circle

and the results are summarized in Table 5.11. The results show that depending on the number of

points in the two circular bands, the training time of SVM changes significantly. With 20 data

points, LibSVM requires 1.6 × 10−2 seconds whereas with 20,000 data points, i.e., increasing the

number by three orders of magnitude, the training time increases to five orders of magnitude. This

shows that traditional SVM solvers (here, LibSVM) are not optimized for large-scale learning.

The approaches proposed for scalable SVM can be grouped into four categories: (i) reduced

training set size, (ii) incremental learning, (iii) improved solver, and (iv) leveraging hardware.
1The training time is computed with LibSVM.
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Figure 5-1: Illustrating four categories of approaches designed for scalable SVM learning.

As shown in Figure 5-1, these algorithms either operate at one of the steps involved in the SVM

pipeline or incrementally update the learned model. We next review some of the algorithms in

each of the four categories.

1. Reducing Training Set Size: The approaches that operate at data input stage, generally,

propose to reduce the size of the training set by either dividing or reducing the training

set into subsets. Since all the subsets are operated independently, the process is inherently

parallelizable. Another advantage is that since these approaches operate at the first stage

of training, the benefits of efficient reduction of the training set are observed at the solver

and execution stages as well. From all the subsets, the required information is extracted, for

instance, Lagrange multipliers and candidate support vectors. Later, the information from

individual subsets is combined to obtain the final model.

Among one of the first such approaches, Yu, Yang, and Han [236] proposed a top-down

hierarchical clustering approach. The initial model is learned from the centroids of the top

(biggest) clusters. In the subsequent stages, the model is updated based on the children
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(smaller) clusters. A similar top-down approach is proposed by Boley and Cao [237]. Graf,

Cosatto, Bottou, et al. [238] proposed Cascade SVM to learn models on disjoint subsets

of the training set in parallel. The final SVM model is learned on a cumulative set of SVs

obtained after iteratively processing the subsets.

Another set of techniques has focused on reducing the training set size in order to formulate

scalable SVM models. In the ideal case, the reduced training set should consist of only those

samples which are support vectors of the global solution. The reduced SVM and its variants

[239], [240] include a candidate SV set selection stage followed by learning standard SVM

model on it. Similarly, Ilayaraja, Neeba, and Jawahar [241] aimed at estimating concise can-

didate SV set in the multi-class scenario by exploiting the redundant nature of SVs amongst

individual binary classifiers. Wang, Neskovic, and Cooper [242] explored the geometric in-

terpretation of SVM to obtain the candidate SV set. Recently, Hsieh, Si, and Dhillon [243]

proposed a divide-and-conquer SVM (DCSVM). Kernel 𝑘-means is first employed to divide

the training set into subsets and a set of support vectors (SV) is obtained from each subset.

The SVs are pooled and considered as the refined training set. Iteratively, the subsets are cre-

ated using kernel k-means and the models are learned. The number of subsets is reduced in

each subsequent iteration. DCSVM is currently one of the fastest SVM variants. Although

not with the focus on scalability, Tong and Koller [244] proposed an active learning based

approach to mitigate the need for large dataset.

2. Incremental Learning: A set of approaches inspired from incremental learning paradigm

are also explored in literature. These approaches learn from incremental data streams and

do not require to operate on the whole training set. This inherently results in reduced space

requirements.

Incremental SVM [245] variants have been introduced for more than two decades now. Since

incremental SVM approaches do not require to keep the whole training set in the memory,

their space complexity, typically is scalable for large training sets. Syed, Liu, and Sung [245]

empirically showed that to incrementally update an existing SVM model, it is sufficient to

learn a model from the combined pool of existing SVs and the SVs of the incremental batch.

As an offshoot, it provides an empirical basis for utilizing SVs as the representative of the
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decision boundary. “Incremental support vector machine learning: A local approach” [246]

proposed using the locality information to update an SVM model with a new sample. Poggio

and Cauwenberghs [247] provided a theoretical framework to increment or decrement the ex-

isting SVM model with a sample. Karasuyama and Takeuchi [248] extended the framework

for incrementing existing SVM model with multiple samples.

3. Improved Solver: This category focuses on making the quadratic programming solver of

SVM more efficient to handle large datasets. They can be grouped into either improving the

gradient descent or obtaining the piece-wise linear solutions.

• Improved Gradient Descent: One of the earliest research for addressing the com-

putationally highly complex constrained QP focuses on reformulating the objective

function in an unconstrained optimization function [249]. The proposed least square

SVM classifier operates on the primal formulation by reformulating the optimization

function into a set of linear equations. Other research efforts in similar directions are

by Shalev-Shwartz, Singer, Srebro, et al. [233], Bottou and Lin [250], and Langford,

Li, and Strehl [251] that use iterative algorithms such as stochastic gradient descent.

Although extremely efficient for learning linear SVMs, the major limitation is that the

approaches in this category may be difficult to apply with kernel SVMs due to their

primal formulations and/or large kernel matrix computations.

• Piece-wise Linear Solutions: These techniques operate by approximating the actual

optimization problem. Such approaches focus on utilizing the intuition that even a

nonlinear decision boundary is linear in small sections/local regions [252]. Huang,

Mehrkanoon, and Suykens [253] proposed a piece-wise linear SVM approach via piece-

wise linear feature mapping. Similarly, Fornoni, Caputo, and Orabona [254] proposed

an approach that can leverage the piece-wise linear structure in the multiclass scenario

with class specific weights. Ladicky and Torr [255] proposed to obtain local coding

of each data point based on its local neighborhood. However, this approach is not

aimed for large-scale learning. Kecman and Brooks [256] proposed to use the training

samples in the vicinity of a query sample to obtain the final classification. Recently,

Johnson and Guestrin [257] modeled the piecewise linearity property in terms of work-
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ing set selection for improved scalability. It is to be noted that the locally linear SVM

variants are not necessarily developed with the focus on large-scale learning. However,

they provide the basis for utilizing the locally linear structure of complex decision

boundaries for nonlinear classification.

4. Leveraging Hardware: This category is motivated by the availability of parallel computing

hardware. The focus is to modify the solver algorithms for execution on multicore or multi-

processor environment. The research direction exploring the use of parallel processing and

the hardware technology such as multicore processors [235] and distributed computing envi-

ronments [258], [259] has resulted in various SVM variants for large-scale learning. Zanni,

Serafini, and Zanghirati [260] proposed parallelization of stochastic gradient descent to ex-

ploit the multicore architecture of processors. Tsang, Kwok, and Cheung [235] proposed

core vector machine that is specifically designed for utilizing multiple cores of processors. In

order to efficiently leverage distributed and parallel processing environment, Do and Poulet

[261] proposed a variant of least square SVM. Moreover, the inherently incremental nature

of the approach makes its space complexity more suitable for large-scale learning. Caragea,

Caragea, and Honavar [262] and Forero, Cano, and Giannakis [263] proposed approaches

that rely on exchanging support vectors among sites (processing units) to learn the model in

distributed computing environments. Do and Poulet [264] proposed to partition the training

data and to learn parallel local SVM models on each of them. In a similar partitioning-based

approach, Guo, Alham, Liu, et al. [265] proposed to leverage map-reduce framework for

training SVM in heterogeneous parallel computation infrastructure.

Other approaches proposed for efficient large-scale learning include utilization of semi-supervised

training data [266], leveraging the sparse nature of training data [267], and approximating the ker-

nel equivalent high dimensional representation [268].

In this research, we propose between-subclass piece-wise linear solutions for large scale ker-

nel SVM. The proposed Subclass Reduced Set (SRS) SVM takes advantage of the subset based

approaches and piece-wise linear approaches. It focuses on splitting the nonlinear optimization

problem into multiple linear optimization problems each operating on a significantly smaller frac-

tion of the training data. Since the SVM solvers typically have super-linear time complexity, ap-
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plying solver on such candidate set yields significant time improvements. This research proposes

SRS-SVM which leverages subclass structures of data in order to reduce the time complexity of

obtaining the decision boundary. We also provide a tree-like model of the proposed SRS-SVM,

thereby extending it to its generalized hierarchical version, termed as Hierarchical SRS (HSRS)-

SVM. Experiments are performed on four synthetic nonlinear datasets and six real-world datasets,

namely adult [269], IJCNN1 [270], CIFAR-10 [271], forest cover (covertype) [272], face

detection dataset from the Pascal Large Scale Learning Challenge (LSL-FD) [273], and Labeled

Faces in the Wild (LFW) dataset [48]. The results are shown in comparison to LibSVM and state-

of-the-art SVM variants proposed for large-scale data. The results demonstrate the effectiveness

of the proposed approach on various datasets.

5.1 Preliminaries of SVM

This section briefly summarizes the basic formulation of support vector machine and defines some

terms to facilitate explanation of the proposed approach.

SVM [112] is one of the widely used classification technique which falls under the category

of discriminative classifiers. Let x𝑖, 𝑖 = {1, 2, . . . , 𝑛} be 𝑛 training samples and 𝑦𝑖 = ±1 be their

corresponding class labels. A part of the objective of linear SVM is to obtain a projection direction

w and a bias 𝑏 such that samples of each class are on the different side of the separating plane, i.e.

w · xi + 𝑏 ≥ +1,∀𝑦𝑖 = +1, and (5.1)

w · xi + 𝑏 ≤ −1,∀𝑦𝑖 = −1 (5.2)

Equivalently, this constraint can be written as 𝑦𝑖(w · xi + 𝑏) ≥ 1, 𝑖 ∈ {1, 2, . . . , 𝑛}. The parallel

hyperplanes w · x + 𝑏 = +1 and w · x + 𝑏 = −1 are separated by a margin of width 2
||w|| . The

optimal w and 𝑏 maximize the class separation by maximizing the margin. Thus, the optimization

function of linear SVM becomes arg maxw,𝑏
2

||w|| , s.t. 𝑦𝑖(w · xi + 𝑏) ≥ 1. Without changing the

actual solution, the equivalent optimization function is

arg min
w,𝑏

1

2
||w||2, s.t. 𝑦𝑖(w · xi + 𝑏) ≥ 1 (5.3)
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Practically useful formulation of SVM utilizes soft margin that tries to obtain as much cleaner

decision boundary as possible. In other words, the model is allowed to misclassify training samples

to a certain degree (represented by slack variable 𝜉𝑖), i.e. 𝑦𝑖(w ·xi + 𝑏) ≥ 1− 𝜉𝑖. Correspondingly,

the optimization problem takes the form of

arg min
w,𝑏,𝜉

1

2
||w||2 + 𝐶

𝑛∑︁
𝑖=1

𝜉𝑖, s.t. 𝑦𝑖(w · xi + 𝑏) ≥ 1 − 𝜉𝑖, 𝜉𝑖 ≥ 0 (5.4)

where, 𝐶 is the misclassification cost. Eq. 5.4 is called the primal form of the (soft-margin) SVM

optimization function. By utilizing the Lagrangian multipliers 𝛼, the equivalent dual form of the

optimization becomes

arg max
𝛼

𝑛∑︁
𝑖=1

𝛼𝑖 −
1

2

∑︁
𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗xi · xj, s.t. 0 < 𝛼𝑖 ≤ 𝐶 (5.5)

For complex, linearly non-separable datasets, a nonlinear decision boundary can be obtained

by projecting the training samples in a higher dimensional space using transformation function

𝜑(·). To achieve this, x𝑖 is replaced by 𝜑(𝑥𝑖) in Eq. 5.5. Further, by defining a kernel function

𝑘(xi,xj) = 𝜑(xi) · 𝜑(xj), the optimization function of nonlinear SVM takes the form,

arg max
𝛼

𝑛∑︁
𝑖=1

𝛼𝑖 −
1

2

∑︁
𝑖,𝑗

𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(xi,xj), s.t. 0 < 𝛼𝑖 ≤ 𝐶 (5.6)

Having obtained the optimal multipliers 𝛼, the projection direction w is obtained as,

w =
∑︁
𝑖

𝛼𝑖𝑦𝑖𝜑(xi) (5.7)

As w and 𝑏 define the hyperplane separating samples from two classes, and that w is defined as

a linear summation of xi makes it intuitive that only the 𝛼𝑖 corresponding to the samples near the

decision boundary are non-zero. Only these samples with non-zero multipliers, that contribute in

defining w, are called Support Vectors (SVs). All the points that are outside the margin get zero

coefficient value assigned. In other words, 𝛼𝑖 = 0, 𝑖 ∈ {𝑗|𝑦𝑗(w · xj + 𝑏) > 1}.
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5.2 Reduced Set and Variants

We present the definitions and theorems associated to reduced set with respect to SVMs.

Definition 1 Reduced Set (RS) is a subset of the training set indices. For a training set with 𝑛

samples, the index set 𝑇𝑅𝑆 ⊂ {1, 2, . . . , 𝑛} defines a Reduced Set.

Definition 2 Representative Reduced Set (RRS) is a reduced set that yields the same decision

boundary as the whole training set. Let 𝛼 and �̂� represent the Lagrangian coefficients for the

optimization functions of the whole training set and its reduced set 𝑇𝑅𝑆 , respectively. 𝑇𝑅𝑆 is a

representative reduced set if
∑︀𝑛

𝑖=1 𝛼𝑖𝑦𝑖xi =
∑︀

𝑗∈𝑇𝑅𝑆
�̂�𝑗𝑦𝑗xj.

Definition 3 Minimal Representative Reduced Set (MRRS) is the smallest possible RRS. 𝑇𝑅𝑅𝑆 is

an MRRS of the train set if there exists no other RRS with less cardinality than 𝑇𝑅𝑅𝑆 .

Theorem 5.2.1 Representative Reduced Set (RRS) contains all the support vector indices.

Proof Let 𝑇𝑆𝑉 and 𝑇𝑛𝑆𝑉 be the index sets of support vectors and non-support vector samples,

respectively. The direction w can be written as,

𝑤 =
𝑛∑︁

𝑖=1

𝛼𝑖𝑦𝑖xi =
∑︁

𝑗∈𝑇𝑆𝑉

𝛼𝑗𝑦𝑗xj +
∑︁

𝑘∈𝑇𝑛𝑆𝑉

𝛼𝑘𝑦𝑘xk (5.8)

Since, ∀𝑘 ∈ 𝑇𝑛𝑆𝑉 , 𝛼𝑘 = 0, 𝑤 =
∑︀𝑛

𝑖=1 𝛼𝑖𝑦𝑖xi =
∑︀

𝑗∈𝑈 𝛼𝑗𝑦𝑗xj, such that 𝑇𝑆𝑉 ⊂ 𝑈 and 𝑈 ⊂

{1, 2, . . . , 𝑛}.

Therefore, every RRS (set 𝑈 ) contains all the support vector indices, i.e. 𝑇𝑆𝑉 ⊂ 𝑇𝑅𝑅𝑆 .

Theorem 5.2.2 Minimal Representative Reduced Set (MRRS) contains only the support vector

indices and maximum cardinality of MRRS is |𝑇𝑆𝑉 |.

Proof From Theorem 1, 𝑇𝑆𝑉 ⊂ 𝑇𝑅𝑅𝑆 .

The reduced representative set 𝑇𝑅𝑅𝑆 can further be written as 𝑇𝑅𝑅𝑆 = 𝑇𝑆𝑉 ∪𝑀 , where 𝑀 contains

only the non-support vector indices, i.e. 𝑀 ⊂ 𝑇𝑛𝑆𝑉 .

Since the non-support vectors have no impact on the value of w, all of them can be discarded to
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Figure 5-2: Abstract illustration explaining the core concept of the proposed approach, Subclass
Reduced Set SVM. Approaches, such as SRS-SVM, that fall under the categorizations of the subset
based and piece-wise linear approaches, operate on this basic intuition.

reduce the cardinality of 𝑇𝑅𝑅𝑆 .

Therefore, if a 𝑇𝑅𝑅𝑆 is an MRRS, at most, it can contain all the support vector indices and no other

indices; i.e. |𝑇𝑅𝑅𝑆| ≤ |𝑇𝑆𝑉 |.

Based on these definitions and Theorems, it can be inferred that 1) RRS would contain all the

support vector indices and 2) MRRS would contain only the support vector indices. Further, if we

can find the RRS, an equivalent decision boundary can be obtained with a relatively smaller set.

The MRRS is a smallest such set with which an equivalent decision boundary can be obtained.

In the proposed approach, we focus on obtaining the best possible estimate of MRRS in order to

reduce the computational time without affecting the classifier performance.

5.3 Proposed Subclass Reduced Set SVM

Theorem 1 implies that if we can estimate the candidate SV set, it can be utilized to obtain the same

decision boundary as obtained from the whole train set. If the estimated candidate set contains 𝑚

samples and 𝑚 ≪ 𝑛, then the optimization function can be solved with reduced computation

and space requirements. In other words, the training time can be reduced significantly, as (1)

the number of support vectors is typically very small compared to the total number of training
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(b) Proposed SRS-SVM

Figure 5-3: Traditionally SVM solver is applied on the complete training set. The proposed SRS-
SVM operates in two stages: estimating MRRS and applying SVM solver on the obtained reduced
set. For a detailed illustration of MRRS estimation block, refer Figure 5-4.

samples, i.e. (|𝑇𝑆𝑉 | ≪ 𝑛) and (2) the SVM solvers, typically, have quadratic time complexity.

Further, leveraging this property is well suited in large datasets, as the inequality |𝑇𝑆𝑉 | ≪ 𝑛

is held strongly in densely sampled datasets. Based on this premise, we propose an approach,

termed as Subclass Reduced Set SVM (SRS-SVM), to learn SVM with lower training complexity

compared to a traditional solver. As illustrated in Figures 5-2 and 5-3, the proposed SRS-SVM has

two stages: (1) estimating the MRRS (|𝑇𝑀𝑅𝑅𝑆| ≪ 𝑛) and (2) solving the optimization function

on the estimated MRRS. Stage-2 requires less training time as opposed to solving the optimization

function on the whole training set; however, a significant training time improvement is achievable

only if MRRS is estimated efficiently in Stage-1. Therefore, the proposed approach relies on the

efficient estimation of MRRS in order to reduce the overall computational cost.

5.3.1 Estimating Minimal Representative Reduced Set

The detailed concept of the proposed subclass reduced set SVM is illustrated in Figure 5-4. We use

piece-wise linearity of nonlinear solutions and the subclass structure of data for estimating MRRS.

Details of the MRRS estimation approach are explained below.

• Leveraging subclass structure of data: It is well understood that real-world data may form

subclasses within a class [172]. Samples sharing some common property may create a sub-

class within a class. Since, the variation between subclasses is smaller than the variation

between classes, subclasses may provide a fine-grained information of the data distribution

within a class. Let us consider an example of Dog vs Cat classification problem. There are

certain ways in which dogs differ from cats, however, there are certain ways in which one
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Figure 5-4: Block diagram of MRRS estimation procedure of the proposed Subclass Reduced
Set SVM. Each class is divided into ℎ subclasses. Each subclass of +1 class is paired with each
subclass of −1 class, thus resulting in a total of ℎ2 subclass-pairs. Support vectors from each
subclass-pair are retained as the candidate global support vectors. They are combined either using
union operator (in SRS-SVM) or using a further hierarchical aggregation (in Hierarchical SRS-
SVM).

breed of dog (e.g. German Shepherd) would differ from another breed of dog (e.g. Dober-

man Pinscher). In this example, dogs and cats represent classes whereas various breeds

represent the subclasses. Figure 5-5 provides further illustration of the applicability of sub-

class structure for modeling decision boundary. Researchers have attempted to exploit the

notion of subclasses for different classifiers [172], [252]. In this research, we explore the

subclass notion for fast estimation of MRRS.

As illustrated in Figure 5-5 subclasses represent a finer categorization of a class based on

some shared characteristics (in this case, breed of dog). However, the subclass labels are

typically not available, therefore, we have to estimate the (pseudo) subclass labels. As each

subclass encompasses samples sharing some characteristics, naturally, its estimation is a

clustering problem. Subclasses can be obtained with existing approaches such as k-means.

Although more sophisticated approaches such as Gaussian mixture modeling may be ap-

plied, we have observed that as far as the number of subclasses ℎ is large enough, k-means

efficiently estimates MRRS in the proposed framework. Since k-means is an iterative ap-
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Figure 5-5: Illustrating the applicability of subclass structure in modeling decision boundary for
Dog vs Cat classification problem. Out of a vast variety of dog and cat breeds, there are only limited
breeds (subclasses) that contribute to the decision boundary. Further, different decision boundaries
between breed-pairs of dogs and cats can be seen as constituents for the overall decision boundary.
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proach, by restricting the maximum number of iterations, the subclasses can be obtained in

relatively less time. By utilizing the Lloyds algorithm [274] the subclasses can be obtained

with 𝑂(𝑛+𝑑ℎ𝑝) and 𝑂(𝑛−𝑑ℎ𝑝) time complexities for class +1 and −1, respectively. 𝑛+, 𝑛−,

𝑑, ℎ, and 𝑝 represent the number of samples in +1 class, the number of samples in −1 class,

feature dimensionality, the number of subclasses, and the number of iterations, respectively.

• Piece-wise linear solution to a nonlinear problem: It has been suggested in the literature

that a nonlinear decision boundary can be achieved with the help of several piece-wise linear

solutions (PWL) [253]. This notion also suggests that every piece-wise solution encodes dis-

criminative characteristics of a slice of dataset lying in its vicinity. Essentially, the approach

is based on the idea that the nonlinear decision boundary can be approximated by linear

boundaries in local regions. Since the decision boundaries are described using support vec-

tors, it implies that the SVs obtained for each local region, jointly, can represent the overall

nonlinear decision boundary. Thus, the SVs of piece-wise linear solutions can be utilized to

estimate the representative reduced set. It is important to accurately define the local regions

for obtaining the linear solutions and subclass structure of the data can be leveraged for this

purpose. Theorem 5.3.1 shows that local regions defined as the subclass-pair can be useful

in obtaining the global nonlinear solutions.

Theorem 5.3.1 If a sample is a support vector in the global nonlinear solution, it is a support

vector in at least one of the subclass pair-wise solutions.

Proof If a sample 𝑥𝑖 is a support vector in the global nonlinear solution, it is within the margin of

the solution.

Therefore, the sample 𝑥𝑝 is on the boundary (hull) of its class. [275]

Let 𝑥𝑞 be its nearest support vector in the opposite class (𝑦𝑝 ̸= 𝑦𝑞).

Since 𝑥𝑞 is also a support vector, it is on the boundary (hull) of its class.

Without loss of generality, we can assume that 𝑥𝑝 and 𝑥𝑞 belong to 𝑖𝑡ℎ and 𝑗𝑡ℎ subclasses, i.e.

𝑝 ∈ 𝜑+
𝑖 and 𝑞 ∈ 𝜑−

𝑗 .

Therefore, 𝑥𝑝 is on the boundary (hull) of the 𝑖𝑡ℎ subclass of +1 class and 𝑥𝑞 is on the boundary
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(hull) of the 𝑗𝑡ℎ subclass of −1 class, and

𝑥𝑝 is a Support Vector in the solution learned for the subset 𝜑 = 𝜑+
𝑖

⋃︀
𝜑−
𝑗

Theorem 5.3.1 brings together the notion of piece-wise linear solutions and the subclass struc-

ture of data by providing the basis for utilizing the subclass structure to obtain the PWL solutions

for MRRS estimation. Therefore, the proposed MRRS estimation approach relies on piece-wise

linear solutions selected based on the subclass structure. The PWL solutions make it possible to ob-

tain pairs of subclasses that can be utilized to obtain support vectors. Let 𝜋 be an indicator variable

such that 𝜋(𝑥𝑖) denotes the subclass association of the 𝑖𝑡ℎ sample. Let both the classes be divided

into ℎ subclasses each2, 𝜑+
𝑖 = {𝑘|𝜋(𝑥𝑘) = 𝑖 & 𝑦𝑘 = +1} represents the index set of samples of

+1 class belonging to the 𝑖𝑡ℎ subclass, and, similarly, 𝜑−
𝑗 = {𝑘|𝜋(𝑥𝑘) = 𝑗 & 𝑦𝑘 = −1} represents

the index set of samples of −1 class belonging to the 𝑗𝑡ℎ subclass, where 𝑖, 𝑗 ∈ {1, 2, 3, . . . , ℎ}.

Decision boundaries obtained for the pairs 𝜑+
𝑖

⋃︀
𝜑−
𝑗 describe a set of possible hyperplanes discrim-

inating two classes in local regions. All the ℎ2 pairs of subclasses can be utilized for obtaining the

global solution. Estimating minimal representative reduced set requires solving ℎ2 sub-problems

defined on subclass-pairs. Further, it can be easily visualized that if the subclasses are defined in

small enough region, the decision boundary for a subclass-pair is likely to be linear. A degenerate

case for this is when each sample is considered as a subclass where each subclass-pair solver is

bound to yield a linear decision boundary. With approximately reliable subclass association, each

subclass-pair decision boundary can be assumed to be linear. Overall, estimation of MRRS in-

volves learning ℎ2 linear solvers and aggregating their SVs. For simplicity, we assume that each

subclass of +1 and −1 class have 𝑛+

ℎ
and 𝑛−

ℎ
samples respectively. As a result, at first, ℎ2 linear

SVM models are learned; each of which is learned over ((𝑛+ + 𝑛−)/ℎ) samples. Note that, this

also removes the requirement of storing the whole (𝑛+ + 𝑛−) × (𝑛+ + 𝑛−) kernel matrix in the

memory which is a bottleneck for large-scale SVM learning.

Under the assumption of representative subclass categorization and appropriate parameteriza-

tion, the union set of SVs corresponding to subclass-pair solutions is a representative reduced set.

Note that the union set may not necessarily be an MRRS as the mechanism does not prevent a
2For the ease of mathematics, we assume that both the classes are divided into equal number of the subclasses.

However, that is not a constraint of the proposed SRS-SVM.
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Algorithm 2 Proposed Subclass Reduced Set SVM
procedure

Input: Data matrix 𝑋 , number of subclasses ℎ, cost 𝐶, and kernel hyperparameters
◁ Find subclass association of each sample

𝜋=findSubclasses(X) ◁ 𝜋(𝑥𝑖) denotes the subclass association of 𝑖𝑡ℎ sample.
𝑇𝑅𝑅𝑆 = {} ◁ Initialize reduced representative set
for 𝑖 = 1 to ℎ do

for 𝑗 = 1 to ℎ do
𝜑+
𝑖 = {𝑘|𝜋(𝑥𝑘) = 𝑖 & 𝑦𝑘 = +1} ◁ index set of 𝑖𝑡ℎ subclass samples of +1 class

𝜑−
𝑗 = {𝑘|𝜋(𝑥𝑘) = 𝑗 & 𝑦𝑘 = −1} ◁ Index set of 𝑗𝑡ℎ subclass samples of −1 class

𝜑 = 𝜑+
𝑖

⋃︀
𝜑−
𝑗 ◁ Index set for the subproblem

Solve the subproblem:
arg max𝛼

∑︀
𝑖 𝛼𝑖 − 1

2

∑︀
𝑖,𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗xi · xj, s.t. 0 < 𝛼𝑖 ≤ 𝐶, 𝑖, 𝑗 ∈ 𝜑

𝑇𝑅𝑅𝑆 = 𝑇𝑅𝑅𝑆

⋃︀
{𝑘|𝛼𝑘 > 0}

end for
end for
Solve the nonlinear classification problem on the candidate support vector set
arg max𝛼

∑︀
𝑖 𝛼𝑖 − 1

2

∑︀
𝑖,𝑗 𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗𝑘(xi,xj), s.t. 0 < 𝛼𝑖 ≤ 𝐶, 𝑖, 𝑗 ∈ 𝑇𝑅𝑅𝑆

Return: Learned SVM model on 𝑇𝑅𝑅𝑆

end procedure

global non-support vector from getting introduced into the union set. However, a large portion of

non-support vectors is expected to be absent in the reduced set, yielding a considerable reduction

in computational resources required in later stages. In the best case scenario, when no global non-

support vector is introduced in the union set, the obtained union set is MRRS, resulting in optimally

minimal computation time and space requirements. Algorithm 2 outlines the steps involved in the

proposed subclass reduced set SVM.

5.3.2 Hierarchical Subclass Reduced Set SVM (HSRS-SVM)

Consider the most degenerate case, where each class is divided into as many subclasses as the

number of samples (𝑛/2), implying that each sample belongs to an individual subclass. In this

case, each subproblem operates on two samples - one from each class. Both the samples are bound

to become support vectors, effectively passing all the training samples into the RRS. Although

it is a valid RRS, it is not a good approximation of MRRS. This degenerate case represents the

worst case scenario, where the obtained candidate set is same as the whole training set. Further,

as shown in Table 5.2, any large value (∼ 𝑛
2
) for ℎ is likely to result in similarly unsuitably very
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Table 5.2: The effect of the number of subclasses on the size of estimated MRRS.

Decreasing number of subclasses−−−−−−−−−−−−−−−−→
Subclasses (ℎ) 𝑛

2
𝑛
2
− ∆ · · · ℎ* + ∆ ℎ*

Size of estimated MRRS 𝑛 ∼ 𝑛 < 𝑛 ≪ 𝑛 ≪ 𝑛

large MRRS set. At the opposite case, consider a scenario where the whole class is considered as

one subclass, i.e. ℎ = 1. This configuration is also not useful, as it will violate the assumptions

regarding the piece-wise linearity defined on local regions. Thus, very large (ℎ ≈ 𝑛
2
) as well as

very small (ℎ ≈ 1) number of subclasses are not likely to yield desirable candidate SV set. In

summary, both, overestimation and underestimation of ℎ, are likely to yield sub-optimal results,

due to large candidate SV set or basic violation of piece-wise linearity assumptions, respectively.

As the number of subclasses ℎ is varied from 𝑛/2 (maximum number of subclasses) to ℎ* (op-

timum number subclasses), the size of estimated MRRS varies between 𝑛 and a value close to

a total number of global support vectors (∼ |𝑇𝑆𝑉 |). The optimal ℎ* depends on the geometric

arrangement of the data; e.g. for XOR dataset ℎ* = 2 due to the presence of two distinct clusters

for each class. However, for real-world high dimensional datasets, it is crucial to find a reasonably

balanced estimate of ℎ.

The solution to the problem is either to estimate ℎ* or to devise a mechanism that can handle

arbitrary higher value of ℎ. Estimating ℎ* essentially reduces down to understanding the distribu-

tion of the class, similar to that in a generative modeling. Since, the philosophical foundations of

SVM are in discriminative modeling, we avoid the route of estimating ℎ*. We focus on creating

an extended approach that can provide relatively efficient model even with sub-optimal ℎ. The im-

proved extended approach is a hierarchical version of the proposed approach SRS-SVM. It gains

robustness to over-estimation of ℎ by filtering out global non-support vectors at multiple levels of

hierarchy.

As shown in Figure 5-6, the mechanism of proposed HSRS-SVM can be described in a tree

structure. Since the proposed algorithm follows bottom-up approach, our convention considers the

leaf nodes at level 1. Each leaf node caters to one subclass-pair solver 𝜑+
𝑖

⋃︀
𝜑−
𝑗 , i.e. a linear SVM

is learned within each leaf node. Only the support vectors from each individual solvers is moved
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further up in the tree and the remaining samples are discarded. Further, a set of 𝜇 models is selected

to learn an aggregated solver at the level 2. If each class is divided into ℎ subclasses, there will be

ℎ2 leaf nodes. In this work, a total of ⌈ℎ2/𝜇⌉ aggregated nodes are obtained at level 2. Further,

the same aggregation scheme is applied at level 2. Thus, based on the learned ⌈ℎ2/𝜇⌉ models, a

total of ⌈ℎ2/𝜇2⌉ models are obtained at level 3. In general, the proposed approach operates on

⌈ℎ2/𝜇𝑙−1⌉ nodes at level 𝑙. The iterative aggregation stops at the root level consisting of only one

node. The model at the root level represents the final aggregated solver model. Since, 𝜇 nodes

are aggregated at each level, the root node is placed at level 𝑘 such that ⌈ℎ2/𝜇𝑘−1⌉ = 1. Further,

in the case of 𝜇 = ℎ2, the root level itself becomes level 2, making the mechanism equivalent to

SRS-SVM. Thus, the proposed SRS-SVM is a special case of HSRS-SVM.

To increase the chances of introducing samples from various parts of feature space into the next

level, nodes are randomly shuffled prior to aggregation. This helps maintain representativeness of

the data distribution at next level nodes. For example, without shuffling, the node 2.1 (in Figure

5-6) receives the support vectors from 𝜑+
1

⋃︀
𝜑−
1 , 𝜑+

1

⋃︀
𝜑−
2 , 𝜑+

1

⋃︀
𝜑−
3 , . . . , 𝜑+

1

⋃︀
𝜑−
𝜇 subclass-pairs.

All these subclass-pairs have one common (or repetitively occurring) subclass. The support vectors

from these pairs provide a limited view of the overall data spread, as they only encode decision

boundary between 𝜑+
1 and the parts of −1 class. Instead, if the nodes are shuffled, a relatively

holistic nature of decision boundary may be encoded in the subsequent layers.

We can learn all the leaf nodes in parallel, as each node corresponds to training a separate

linear SVM model. Thus, the total time for leaf level computation is, in the best case scenario,

equal to the maximum time required for an individual solver. Further, the level 2 nodes can also

be learned in parallel in a similar way. Thus, the total time required for the overall computation is∑︀𝑙+1
𝑖=1 max(𝑡1𝑖 , 𝑡

2
𝑖 , . . .), where 𝑡𝑗𝑖 is the time required for training 𝑗𝑡ℎ node in 𝑖𝑡ℎ level. In practice,

propagating the SVs upwards in the tree will also consume computational cycles; however, it will

be negligible relative to learning SVM models in each node.

5.4 Datasets and Protocols

The effectiveness of the proposed SRS-SVM and HSRS-SVM is evaluated on both the non-linearly

separable synthetic datasets and real-world datasets. Datasets are chosen with considerable vari-
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Figure 5-7: Illustration the synthetic datasets used for performance evaluation (best viewed in
color).
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ations in characteristics such as feature dimensionality, training set size, and application domain

(finance, weather, object images, face images, textual data) to show the applicability and efficacy

of the proposed algorithm.

1. Nonlinearly Separable Synthetic Datasets: The synthetic datasets enable performance

evaluation in presence of known nonlinearity characteristics. All the synthetic datasets are

chosen to be two-dimensional, as they provide an opportunity to visualize the data scatter

and the decision boundary.

(a) Two concentric circles (2CC)

(b) Three concentric circles (or bullseye)(3CC)

(c) Shooting range (a set of bullseyes) (SR)

(d) XOR dataset

Figure 5-7 illustrates the distributions of the above mentioned synthetic datasets utilized in

this research. All the synthetic datasets are created by defining the distribution functions.

Thus, we can arbitrarily sample varying number of instances from these datasets. Further,

the datasets have a varying degree of nonlinearity. For example, the nonlinear nature of

the databases increases as we proceed from two concentric circles dataset (2CC) to three

concentric circles dataset (3CC) and then to the shooting range (SR) dataset.

2. Real-world datasets: The proposed HSRS-SVM approach is evaluated on various real-

world datasets. The datasets correspond to classification tasks in different fields of data

analytics. The dataset characteristics are described in Table 5.3.

(a) adult/census income [269]3: predicts whether a person’s income exceeds $50K

based on various demographic features from census data.

(b) ijcnn1 [270]4: consists of time-series of multiple observations from an internal com-

bustion engine, with the goal of predicting normal and misfiring of the engine.

3https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
4https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
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Figure 9: Sample (a) animal and (b) non-animal class images from face detection dataset
of Pascal Large Scale Learning Challenge(Krizhevsky, 2009; Hsieh et al., 2014).
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(b) Face vs Non-Face

Figure 5-8: Samples of the real world databases used for performance evaluation: (a) animal and
non-animal class images from CIFAR-10 [243], [271] and (b) face and non-face images from
face detection dataset of Pascal Large Scale Learning Challenge [273]

(c) covertype [272]5: consists of cartographic measures of wilderness areas belonging

to seven major forest cover classes. In this work, the dataset is converted to a binary

class problem with the goal of separating class 2 from the remaining 6 classes (Protocol

used in Collobert, Bengio, and Bengio [276]).

5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#
covertype.binary
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Table 5.3: Details pertaining to the real-world datasets used in the evaluation and their correspond-
ing hyperparameters. (𝑑 is feature dimensionality, ℎ is number of subclasses, 𝐶 is misclassification
cost, and 𝛾 is radial basis function kernel parameter)

Dataset (size)
number of

training
number of

testing 𝑑
Parameters

samples samples ℎ 𝐶 𝛾

adult (45.8 MB) 32,561 16,281 123 15 1 2−5

ijcnn1 (23.78 MB) 49,990 91,701 22 5 25 2
covertype.binary (239.36 MB) 464,810 116,202 54 500 4 25

cifar-10.binary (1.37 GB) 50,000 10,000 3072 30 2 2−22

LSL-FD (1.34 GB) 150,000 50,000 900 50 10 1

(d) cifar-10 [271]6: is an object detection dataset consisting of images of 10 object cat-

egories. However, in this work the categories are modified to classify between animals

and non-animals (Protocol used in Hsieh, Si, and Dhillon [243]). Figure 5-8(a) shows

sample images from both the categories.

(e) Face detection from Pascal Large Scale Learning Challenge (LSL-FD) [273]: the

dataset consists of a large number of face and non-face images. It is useful for bench-

marking face detection performance. Figure 5-8(b) shows sample face and non-face

images.

5.5 Experiments on Synthetic Datasets

In the first part of the evaluation, we use synthetic datasets to understand the effectiveness of the

proposed approach. As the proposed approach relies on an approximation of original objective

functions, the decision boundaries obtained with SRS-SVM are compared with a traditional solver

(LibSVM).

6https://www.cs.toronto.edu/~kriz/cifar.html
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(b) (left) One linear SVM decision boundary is learned for each of the 4
subclass-pairs obtained by dividing each class into 2 subclasses. (right)
Set of decision boundaries at Level 1 plotted over test data.
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(c) Samples retained at Level 1, i.e.
estimated MRRS (Level 1)
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(d) Final decision boundaries (left) obtained with whole data and (right) using proposed SRS-
SVM approach.

Figure 5-9: Visualization of proposed approach on the XOR dataset. Training on whole dataset
(𝑛 = 800, ℎ = 2) LibSVM takes 3.46 seconds; whereas the proposed SRS-SVM obtains similar
decision boundary in 0.25 seconds. See Algorithm 2 to relate the mathematical formulation of the
individual steps.
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(b) One linear SVM decision boundary is learned for each of the 25 subclass-pairs
obtained by dividing each class into 5 subclasses.
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(c) (left) Samples retained as candidate SVs at Level 1 (leaf nodes).
(right) Corresponding decision boundaries at Level 1.
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(d) (left) Samples retained as candidate SVs at Level 2 (root node).
(right) Corresponding decision boundary at Level 2.
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(e) Final decision boundaries (left) obtained with whole data and
(right) using proposed SRS-SVM.

Figure 5-10: Illustrating the processing of the proposed SRS-SVM on the Shooting Range dataset.
Training on the whole dataset (𝑛 = 4,500) LibSVM takes 93 seconds; whereas the proposed SRS-
SVM obtains similar decision boundary in 50 seconds.
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Figure 5-11: Comparative illustration of the decision boundaries obtained by LibSVM and by the
proposed SRS-SVM approach (ℎ = 5).

5.5.1 Visualization of Each Step

We first demonstrate the functioning of the proposed SRS-SVM by providing the visualization of

various stages of the algorithm on XOR dataset. The scatter plot of training samples is shown in

Figure 5-9(a). The next step involves processing the sub-class pairs with ℎ = 2. Figure 5-9(b)

shows ℎ2 = 4 subclass-pairs along with a linear SVM decision boundary obtained from each of

the subclass-pair based subproblems. All the linear decision boundaries along with the scatter plot

of estimated MRRS (candidate SV set) is shown in Figure 5-9(c). Out of 𝑛 = 800 training samples,

only 26 are retained as candidate SV set. Thus, a large fraction (96.7%) of samples are discarded

at this stage. The final classification boundary obtained using the proposed SRS-SVM is shown in

Figure 5-9(d) (right). Comparing this with the decision boundaries obtained by applying LibSVM

on the entire training set show that both decision boundaries are very similar for the classification

task.

Figure 5-10 shows the working of the proposed SRS-SVM algorithm on the SR (Shooting

range) dataset. As the number of subclasses (ℎ) is parametrized to 5, the linear decision boundary is

learned for 25 subclass-pairs. It can be observed that a large portion of samples from the outermost

band are rejected. The samples lying on the outer boundary of the band are not in the vicinity of

the margin of separation, which leads to their rejection as shown in Figure 5-10(c). At the end of

Level 1, approximately 3, 609 samples are retained out of the total 4,500 training samples. The SR

dataset does not have clearly visible five subclasses; however, due to the mechanism of learning

ℎ2 linear SVMs, the proposed approach yields the decision boundary similar to that obtained with
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LibSVM. With minimal reduced representative set (MRRS) estimation, the proposed approach is

able to reduce the training time by almost half as compared to LibSVM. Similarly, the decision

boundary comparison for the other two synthetic datasets, is shown in Figure 5-11. The XOR

dataset actually contains two subclasses, the class corresponding to inner circle of 2CC has actually

only one subclass (the class itself), and for 3CC and SR datasets it is hard to concretely define the

number of subclasses due to their nonlinearity. However, while applying SRS-SVM, we set the

number of subclasses ℎ = 5 for all these datasets. Although, it is an inexact parameterization, in

all the cases, the decision boundaries obtained with the proposed SRS-SVM are almost same as

(visually) those obtained with LibSVM. The efficacy of SRS-SVM with inexact parameterization

helps understand its performance in application areas with limited domain knowledge.

5.5.2 Quantitative Analysis

In order to understand the time improvement of the SRS-SVM, we generate varying number of

samples from each synthetic dataset. The training time of the proposed approach and LibSVM is

compared as a function of the number of training samples. Figure 5-12 shows the graphs corre-

sponding to this experiment for 2CC, 3CC, and XOR datasets. Figure 5-13 shows similar graphs

for the SR (shooting range) dataset, with results for additional analysis pertaining to the number of

subclass parameter (ℎ).

For all the datasets, both SRS-SVM and LibSVM yield perfect classification on the test sets.

The reported training time in this experiment includes the time required for estimating parameters

𝐶 (misclassification cost) and 𝛾 using grid search, and the time required for training the model. It

can be observed in Figure 5-12 that for a training size above a certain limit (> 500) the training time

of the exact solver (LibSVM) increases rapidly; whereas the rate of increase in the training time

is very small in the case of the proposed SRS-SVM. For example, in the case of 2CC dataset with

10,000 samples, the proposed approach requires few seconds (< 10𝑠) whereas, the exact solver

requires few hundreds of seconds (< 1,000𝑠) for learning a model. Figure 5-13 shows similar

quantitative analysis for Shooting Range dataset. Given that the dataset is relatively complex, we

observe that increasing the number of subclasses from 5 to 20, reduces the training time, as it aids

in significantly reducing the training set size. For example, for 9,000 training samples, training
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Figure 5-12: Comparing training time on three synthetic datasets: two concentric circles (2CC),
three concentric circles (3CC), and XOR. A varying number of samples are generated for each of the
datasets. The training time is shown on the logarithmic scale. As the number of training instances
increases, the training time of LibSVM increases rapidly whereas, the proposed SRS-SVM has a
significantly lower rate of increase in training time.

time required for LibSVM is 430.7s; whereas for SRS-SVM with ℎ = 5, 15, 20 requires training

time of 176.6s, 71.9s, and 64.3s, leading to the speedup of 2.43x, 5.99x, and 6.69x, respectively.
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Figure 5-13: Comparing training time on SR (Shooting Range) dataset. Different number of sam-
ples are generated from the dataset and training set size vs training time plots is shown for different
dataset sizes with number of subclasses (ℎ) as 5, 15, and 20. Consistently, SRS-SVM takes less
training time compared to LibSVM. As the parameter ℎ is increased, the training time is observed
to reduce significantly on the logarithmic scale.

5.6 Experiments on Real-world Datasets

Experiments on diverse real-world datasets are also performed to study (1) the comparative perfor-

mance of the proposed subclass reduced set based approach, (2) the computational time required

at various stages of applying SRS-SVM (namely, clustering, level-1, and level-2), (3) the effec-

tiveness of the proposed representative reduced set (RRS) estimation procedure, and (4) to study

the effect of parameters ℎ (number of subclasses) and 𝜇 (number of children) on training time and

classification accuracy. The first three objectives involve experiments to study the effectiveness of

the proposed subclass reduced set based approach with a parameterization of 𝜇 = ℎ2 (and there-

fore, two levels of hierarchy) as detailed in Section 5.3.1. The experiment is further extended to

the proposed hierarchical subclass reduced set SVM (HSRS-SVM) as described in Section 5.3.2.
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Table 5.4: Results of the proposed HSRS-SVM in comparison to other related approaches in terms
of training time (in seconds) and classification accuracy (in percentage).

(a) Classification Accuracy (%) comparison

Dataset LibSVM LLSVM FastFood DCSVM Proposed
[277] [278] [268] [243] (𝜇 = ℎ2)

adult 85.01 66.28 85.2 84.75 84.46
ijcnn1 98.70 98.34 91.58 98.39 97.82
covertype.binary 96.07 71.25 out of memory 95.81 93.99
cifar-10.binary 89.66 78.27 79.79 89.78 89.92
LSL-FD 99.10 92.27 57.36 99.20 98.50

(b) Training Time (seconds) comparison

Dataset LibSVM LLSVM FastFood DCSVM Proposed
[277] [278] [268] [243] (𝜇 = ℎ2)

adult 135.4 99.4 83.1 122.6 60.2
ijcnn1 68.3 96.6 107.3 74.0 13.3
covertype.binary 102,940 1,854 out of memory 75,183 47,536
cifar-10.binary 69,128 1,220 459.4 78,107 38,243
LSL-FD 311,543 1,396.5 254 515,674 112,558

5.6.1 Comparative Analysis

Comparison of the proposed subclass reduced set based approach with existing algorithm is per-

formed with publicly available implementations. [243] have shown that large-scale SVM ap-

proaches, namely Cascade SVM [238], SpSVM [267], and core vector machines [235] yield lower

accuracies than DCSVM. Therefore, in this work, the results are compared with the most recent

approaches namely DCSVM, LLSVM, and FastFood.7

1. LibSVM [277]: LibSVM is one of the widely used implementations of SVM that relies on

sequential minimal optimization algorithm [269] for optimizing the QP objective function.

2. Divide and Conquer SVM (DCSVM) [243]: DC-SVM is one of the most recent related

approaches. In this study, the exact version DC-SVM is utilized.

7As the proposed approach relies on accurately finding a subset of the training set, it is logical to investigate the
performance of a randomly sampled subset of training set. However, [243] have shown that such random subsets yield
suboptimal performance.
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3. Low-rank Linearization SVM (LLSVM) [278]: We utilize the LLSVM implementation from

the BudgetedSM toolbox [279].

4. FastFood [268]: The technique aims at obtaining approximate high dimensional representa-

tion.

Details regarding datasets and the hyper-parameters are provided in Table 5.3. The first set

of experiments is performed with parameter 𝜇 = ℎ2, which is a special non-hierarchical case of

HSRS-SVM. The results of the comparative prediction performance and training time requirement

are reported in Table 5.4(a) and Table 5.4(b), respectively. All the experiments are performed on a

Windows machine with two 2.66 GHz Intel Xeon E5640 processors with 48GB primary memory.

Compared to LibSVM, the proposed algorithm shows, the speedup of 2.25x, 5.13x, 2.16x, 1.80x,

and 2.76x on adult, ijcnn1, covertype, cifar-10, and LSL-FD, respectively, while

yielding similar classification accuracies. Moreover, the speedup of 2.03x, 5.56x, 1.58x, 2.04x,

and 4.58x with respect to DCSVM is observed in the case of adult, ijcnn1, covertype,

cifar-10, and LSL-FD, respectively. The basic assumption of the proposed approach is that

estimating the candidate support vector set beforehand helps reduce the overall time complexity.

The speedup compared to exact solver can be achieved only if the time consumed in estimating

the candidate support vector set is lesser than the time saved in learning the SVM model from it.

If the dataset is densely sampled, the size of the candidate set is typically a small fraction of the

whole training set; almost, guaranteeing improvement in speed. Typically, an exact model learned

from a densely sampled set has a relatively very small number of support vectors (e.g. ijcnn1,

adult, and LSL-FD) which leads to a significant speed-up with the proposed subclass reduced

set based approach.

5.6.2 Training Time of Individual Stage

To further understand the proposed HSRS-SVM approach, we provide its stage-wise training times

in Table 5.5. As explained earlier the first stage involves obtaining subclasses, which is followed

by Level 1 of training involving the estimation of MRRS based on ℎ2 linear SVM decision bound-

aries, and Level 2 involves learning nonlinear decision boundary. Training time of each stage is

reported on absolute and relative scale. It is observed that the subclass computation stage takes
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Table 5.5: Stage-wise training time of the proposed subclass reduced set based SVM approach.
Time is reported in seconds. The figures in the parenthesis represent the fraction of total training
time consumed in percentage. Level 2 is the root level as 𝜇 = ℎ2.

Dataset Subclass
computation

Level 1 (MRRS
estimation) Level 2

adult 3.5 (5.8%) 14.8 (24.6%) 41.9 (69.6%)
ijcnn1 1.2 (9.1%) 5.3 (40.2%) 6.7 (50.7%)
covterype.binary 235.9 (0.5%) 2,978.3 (6.3%) 44,315.6 (93.2%)
cifar-10.binary 269.5 (0.7%) 5,855.9 (14.7%) 33,635.4 (84.6%)
LSL-FD 228.7 (0.2%) 42,693.0 (38.1%) 69,636.0 (61.7%)

a very small fraction (0.2-10%) of the total training time. This is a very supportive result as any

computationally heavy subclass computation stage can affect the overall computation for large-

scale learning. These results also imply that utilizing more time-efficient subclass computation

approach may not result in further reducing the training time significantly. Level 1 computation

involving MRRS estimation consumes a 6 − 49% of training time. However, this stage involves

learning of ℎ2 linear SVMs independently, thus using parallel architecture (e.g. multi-threading)

can further reduce the computation time of Level 1 by multiple folds. Overall, we observe that the

Level 2 (i.e. learning nonlinear SVM on estimated MRRS) requires more than 50% of the total

training time due to the complex nature of kernel SVM learning.

5.6.3 Effectiveness of MRRS Estimation Approach

This analysis is presented to understand how effectively the proposed subclass based approach

estimates the reduced representative set. In order to understand this, its precision and recall are

computed with respect to the support vector set (𝑇𝑆𝑉 ) of the exact solver. If an estimated MRRS

(𝑇𝑀𝑅𝑅𝑆) is a minimal RRS (i.e. smallest possible RRS), it will overlap completely with 𝑇𝑆𝑉 .

Moreover, for an estimated MRRS to have as less spurious candidate support vectors, its precision,

computed as |𝑇𝑀𝑅𝑅𝑆 ∩ 𝑇𝑆𝑉 |
|𝑇𝑅𝑅𝑆 |

, should be close to one. Similarly, for an estimated MRRS to have all

the actual support vectors, its recall, computed as |𝑇𝑀𝑅𝑅𝑆 ∩ 𝑇𝑆𝑉 |
|𝑇𝑆𝑉 | , should be close to one.

The precision and recall for the set of SVs in the final SVM model of the proposed approach

(𝑇𝑟𝑆𝑉 ) is also computed. The metrics help in quantifying the similarity between the SVM model of
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the exact solver and that obtained with the proposed HSRS-SVM. Note that, this quantification of

similarity of two models is independent of the test set. Table 5.6 summarizes the results pertaining

to this particular analysis. Key observations are as follows:

• As a general trend it can be observed that recall of estimated MRRS 𝑇𝑀𝑅𝑅𝑆 is high (> 80%)

for all the datasets (except LSL-FD). This means the proposed MRRS estimation approach

retains a large fraction of actual support vectors.

• The basic premise of the MRRS estimation is that it should retain all support vectors, i.e.

recall is one. The recall of < 1 results from the following two practical aspects: 1) esti-

mating subclasses using a limited iteration approximate 𝑘-means without actually modeling

the data distribution, and 2) approximating the potentially nonlinear decision boundary of

subclass-pairs with a linear decision boundary. Note that both of these approximations yield

a significant improvement in training time, with recall > 0.8. Table 5.4 shows that the

trade-off does not have a significant impact on the classification accuracy.

• The precision of the MRRS estimation shows that majority of its elements are actual support

vectors. A close-to-one precision is not necessary to obtain SVM model equivalent to the

traditional solver. However, higher precision of RRS estimate reduces the training time of

subsequent levels.

• The precision values of 𝑇𝑟𝑆𝑉 is typically higher than that of 𝑇𝑅𝑅𝑆 . This validates the hy-

pothesis that the spurious support vectors in the reduced representative set get discarded in

the subsequent levels. Theoretically, the recall of 𝑇𝑟𝑆𝑉 cannot be higher than that of 𝑇𝑀𝑅𝑅𝑆 ,

as 𝑇𝑟𝑆𝑉 ⊆ 𝑇𝑀𝑅𝑅𝑆 (therefore, |𝑇𝑟𝑆𝑉 ∩ 𝑇𝑆𝑉 |
|𝑇𝑆𝑉 | ≤ |𝑇𝑀𝑅𝑅𝑆 ∩ 𝑇𝑆𝑉 |

|𝑇𝑆𝑉 | ).

• In the case of LSL-FD dataset, estimated MRRS (𝑇𝑀𝑅𝑅𝑆) is about half the size of the actual

support vector set (𝑇𝑆𝑉 ). On other datasets, the estimated MRRS is larger than the actual

support vector set. Due to this peculiar behavior, we observe that recall values for LSL-FD

are lower as compared to other datasets. In spite of these observations, the classification

performance is affected by only 0.6%, i.e. 99.1% by LibSVM vs 98.5% by the proposed

subclass reduced set based approach in Table 5.4.
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Table 5.7: Effect of varying number of subclasses (ℎ) and number of children (𝜇) on the training
time and classification accuracy of the proposed HSRS-SVM on the adult dataset. The training
time is reported in seconds. The figures within parenthesis represent the classification accuracy.

Number Training Time in seconds (Accuracy in %)
of Subclasses (ℎ) 𝜇 = ℎ2 𝜇 = ⌈ℎ2

2
⌉ 𝜇 = ⌈ℎ2

4
⌉ 𝜇 = ⌈ℎ2

8
⌉ 𝜇 = ⌈ℎ2

16
⌉ 𝜇 = ⌈ℎ2

32
⌉

2
88.0 112.8

𝑛/𝑎
(68.5) (65.8)

4
79.0 84.8 84.1 116.0

𝑛/𝑎
(82.0) (80.7) (82.9) (77.1)

6
68.4 84.2 80.8 103.1 115.8 122.2

(84.2) (83.2) (83.5) (74.9) (75.7) (81.7)

8
68.9 98.8 81.2 70.7 94.4 120.2

(83.7) (84.1) (83.7) (83.9) (83.2) (78.7)

10
68.1 101.9 82.9 78.2 98.2 116.0

(83.5) (83.2) (84.3) (82.3) (84.2) (84.0)

15
70.9 93.2 95.8 80.0 80.2 94.1

(84.1) (84.6) (84.3) (84.1) (84.2) (83.5)

20
77.8 111.0 98.0 87.9 82.1 103.0

(84.7) (84.3) (84.0) (84.7) (84.4) (84.8)

25
81.4 112.6 106.6 94.7 86.1 112.6

(84.4) (84.7) (84.7) (84.2) (84.7) (84.4)

30
88.2 125.0 114.8 107.3 92.4 123.6

(84.4) (84.8) (84.9) (84.9) (84.5) (84.5)

35
91.2 132.7 130.0 119.0 102.7 97.7

(84.7) (84.6) (84.8) (84.7) (84.7) (84.9)

40
95.5 145.2 139.1 127.6 111.8 100.0

(84.6) (84.8) (85.0) (84.8) (85.0) (84.9)

45
102.4 153.1 145.0 138.0 123.7 110.1
(84.6) (84.7) (84.6) (84.6) (84.8) (84.7)

50
106.6 162.7 161.0 147.2 133.2 119.4
(84.9) (84.9) (84.8) (84.8) (84.7) (84.7)

5.6.4 Effect of ℎ (Number of Subclasses) and 𝜇 (Number of Children) Pa-

rameters in Hierarchical SRS-SVM

This experiment focuses on understanding the effect of the parameter ℎ (number of subclasses) and

𝜇 (number of children) on training time and testing accuracy of the proposed HSRS-SVM. Table

5.2 outlines a theoretical relationship between number of subclasses (ℎ) and size of the estimated

MRRS (|𝑇𝑀𝑅𝑅𝑆|). As explained earlier, a large value of ℎ can render the time improvements
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ineffective, whereas a very small value can affect the performance. As detailed in Section 5.3.2,

HSRS-SVM can relax the need of fine tuning ℎ by introducing hierarchical structure to the MRRS

estimation. The proposed hierarchical structure, which is controlled by 𝜇 (number of children),

should yield good results with an approximate parameterization of ℎ. This experiment focuses on

verifying the expected behavior of the proposed hierarchical SRS-SVM. The number of subclasses

ℎ is varied between 2 and 50. For every value of ℎ, experiments are performed with six different

values of 𝜇 (ℎ2, ℎ2/2, ℎ2/4, ℎ2/8, ℎ2/16, and ℎ2/32). Since 𝜇 has to be a natural number, a ceiling

value is used. Table 5.7 summarizes the results for adult dataset8. However, similar trends were

observed on other datasets. Note that, 𝜇 < ℎ2/2 with ℎ = 2, and 𝜇 < ℎ2/8 with ℎ = 4 are invalid

combinations (mentioned as n/a) as they do not satisfy the condition 𝜇 ≥ 1.

• In our experiments, we observe that as the number of subclasses increase, the training time

decreases around moderate value (∼15 subclasses) and then increases steadily. The testing

accuracy appears to increase rapidly but the rate of increase decreases at higher ℎ approach-

ing saturation. Note that as ℎ increases, so does the size of estimated MRRS which is likely

to reduce approximation explaining the accuracy convergence.

• When ℎ is very small, the estimation of MRRS can be poor, i.e. it has low recall (many

actual support vectors may be missed) and/or low precision (many non-support vectors are

retained). The former will lead to poor testing accuracy, whereas the later will increase the

computation time of subsequent levels by increasing the overhead of discarding non-SVs.

It can be verified from Table 5.7 that underestimation of ℎ results in overall poor testing

accuracy and suboptimal training time.

• Similarly, higher values of ℎ increases the size of estimated MRRS, which affects its pre-

cision and overall the training time adversely. However, it improves the recall of MRRS

estimation, resulting in the convergence of the decision boundary and testing accuracy to

that of an exact solver. As shown in Table 5.7 on adult dataset, the classification perfor-

mance appears to converge/saturate at ℎ ≥ 20.

• In our experiments, we observe that, for constant ℎ, varying 𝜇 from ℎ2 to ℎ2/32 increases the

overall training time because for smaller 𝜇 we need to learn more number of intermediate
8Due to the exhaustive nature of this experiment, we show tabular results on one dataset.
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Between-Subclass Piece-wise Linear Solutions for Large Scale Kernel SVM

Dhamecha, Noore, Singh, and Vatsa

(a) Animal (b) Non-Animal

(c) Face (d) Non-Face (e) Faces from LFW

Figure 9: Sample (a) animal and (b) non-animal class images from face detection dataset
of Pascal Large Scale Learning Challenge(Krizhevsky, 2009; Hsieh et al., 2014).

(e) Arbitrary nonlinear (NL) dataset5

All the synthetic datasets, except the NL, are created by defining corresponding dis-
tribution functions. Thus, we can arbitrarily sample number of instances from these
datasets.

2. Real world datasets: The proposed approach is evaluated on six real world datasets
as listed below. The datasets correspond to classification tasks in various fields of data
analytics. The dataset characteristics are described in Table 3.

(a) adult/census income (Platt, 1999)6: the goal is to predict whether a person’s
income exceeds $50K based on various demographic features from censor data.

5. http://openclassroom.stanford.edu/MainFolder/courses/MachineLearning/exercises/
ex8materials/ex8Data.zip

6. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
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(b) Face vs Non-Face

(c) Faces from LFW

Figure 9: Sample (a) animal and (b) non-animal class images from face detection dataset
of Pascal Large Scale Learning Challenge(Krizhevsky, 2009; Hsieh et al., 2014).

19

Figure 5-14: Sample images for Labeled Faces in the Wild (LFW) dataset. The classification task
involves verifying if the identity of persons in two images is same (match pair) or not (non-match
pair).

models. For example, with 𝜇 = ℎ2, ℎ2 linear SVMs (at Level 1) and 1 nonlinear SVM

(at root Level 2) is learned internally; whereas, with 𝜇 = ℎ2/2, ℎ2 linear SVMs at Level

1, 2 nonlinear SVMs at Level 2, and 1 nonlinear SVM at root Level 3 is computed. This

effect is more pronounced with small values of ℎ, as they lead to relatively higher number of

samples per subclass; which make the training computationally expensive. However, with

higher values of ℎ it is still suitable to set 𝜇 at lower values, which can increase prediction

performance with relatively less impact on overall training time.

5.6.5 HSRS-SVM with Deep Learning Features for Face Recognition

To further investigate the performance and suitability of the proposed classifier we perform ex-

periments on a challenging problem of face verification. In last few years, deep learning based

approaches have established state-of-the-art results in various research areas, especially in com-

puter vision and face recognition. These approaches benefit from utilizing deep learning based

features as inputs to traditional classifiers. Therefore, it is our assertion that the proposed subclass

reduced set based SVM may also efficiently utilize deep learning based features. Further, this
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Table 5.8: Verification accuracy of utilizing LCSSE features with HSRS-SVM (ℎ = 5, 𝜇 = 25)
and LibSVM in comparison to state-of-the-art approaches.

Approach Accuracy
LCSSE with HSRS-SVM 90.92

LCSSE with LibSVM [165] 90.51
Spartans [280] 87.55
POP-PEP [281] 91.10

MRF-Fusion-CSKDA [282] 95.89

integration of deep learning feature with HSRS-SVM is expected to achieve improved accuracy

(by virtue of the features) and to be computationally efficient (by the virtue of the proposed clas-

sifier). For face verification, we use Labeled faces in the wild (LFW) dataset. Figure 5-14 shows

sample images contained in the dataset. The dataset consists of face images with the objective of

face verification i.e. predicting match and non-match pairs. The face verification performance is

reported for image-restricted protocol. The official protocol defines 10 fold cross-validation splits

over 3000 match and 3000 non-match pairs. Each cross-validation contains 5400 images for train-

ing and 600 images for testing. We explore the utility of Local Class Sparsity Based Supervised

Encoding (LCSSE) [165] which is a deep learning feature representation. The LCSSE feature

extractions involves a 𝑙2,1 norm in auto-encoder based representation learning to promote joint

sparsity among same-class samples. Majumdar, Singh, and Vatsa [165] have reported impressive

face verification performance using LCSSE features and SVM as classifier. In this experiment,

HSRS-SVM is learned over 1,792 dimensional LCSSE feature representations of face images with

parameterization of ℎ = 5 and 𝜇 = 25.

Table 5.8 and Figure 5-15 provides accuracy comparison of LibSVM and HSRS-SVM with

same LCSSE feature representations. Further, accuracy values of some of the state-of-the-art ap-

proaches are also provided. It is observed that the proposed subclass reduced set based SVM

required 2,972 seconds for training whereas, LibSVM required 3,288 seconds. The cardinality of

estimated MRRS set is observed to be 4,732. The cardinalities of 𝑇𝑟𝑆𝑉 (support vectors at root

level) and 𝑇𝑆𝑉 (support vectors of LibSVM) are observed to be 1,809 and 1,874, respectively.

It can be seen that the verification performance of proposed HSRS-SVM with the deep learning

based features is comparable to state-of-the-art approaches. This provides an empirical evidence
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Figure 5-15: ROC curves on restricted protocol of LFW dataset.

for the suitability of the proposed approach with deep learning based features.

5.7 Summary

In this work we presented a novel approach for efficiently learning nonlinear support vector ma-

chine classifier from large training data. The proposed approach obtains a set of candidate support

vectors based on computationally low-cost linear subproblems. We show that utilizing these candi-

date support vectors (termed as estimated MRRS) to learn the overall nonlinear decision boundary

helps to reduce the overall training time significantly. Although, the proposed approach relies on

an approximation stage for estimating MRRS, the decision boundary and classification accuracy

are not significantly different than that of LibSVM. A hierarchical extension is also proposed,

that divides the MRRS estimation task further into multiple iterative stages. Experimental results

are shown on several synthetic and real-world datasets including adult, ijcnn1, covertype,

cifar-10, and LSL-FD. Synthetic datasets are leveraged to gain the understanding of individual

stages of the proposed approach and to compare the obtained decision boundaries with a traditional
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solver. We observe that the proposed approach yields two to five fold speed-up compared to Lib-

SVM and almost up to an order of magnitude compared to other SVM-based large-scale learning

approaches. We also showcase the suitability of proposed HSRS-SVM approach with deep learn-

ing based features for face verification on LFW dataset.
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Chapter 6

Conclusion and Future Research Directions

Face recognition has progressed from fascination, to constrained applications, and thence to chal-

lenging scenarios such as surveillance. As a culmination of this, researchers are encountering

exciting applications as well as arduous challenges associated with large scale applications of un-

constrained face recognition. In this direction, this dissertation makes four major contributions: (i)

recognize faces with disguise variations, (ii) efficiently match identifies with heterogeneous (e.g.

cross-spectrum, cross-resolution, photo-sketch) face representations, (iii) update the discriminant

analysis based face recognition classifiers incrementally, and (iv) efficiently learn face recognition

classifier from large-scale data.

The first two contributions focus on unconstrained environment where either a user can be un-

cooperative and uses disguise accessories to hide his/her own identity or the acquisition setting can

introduce heterogeneity in the gallery and probe images. To address disguise variations, we pro-

pose a novel approach which enhances local region based face classifier with the help of a disguise

detection stage. The proposed approach attempts to reject the misleading disguise related facial in-

formation and focus only on non-disguised regions for improved face recognition. Experiments are

performed on I2BVSD dataset consisting of 75 subjects. The proposed disguise detection approach

achieves up to 85% classification accuracy and the proposed recognition approach outperforms

state-of-the-art commercial systems. We have also performed experiments with human annotators

which shows that the results of automatic algorithms are similar to unfamiliar face recognition

performance of humans. As the second contribution of this research, we present heterogenous

discriminant analysis based approach to handle cross-view information such as matching sketches
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with digital images and cross-resolution matching in face recognition. HDA and its kernel version

(KHDA) encode heterogeneity in the classifier to obtain a common projection space more suitable

for matching. Further, we explored the combination of deep learning based feature representation

with the proposed HDA/KHDA for heterogeneous face recognition. Experiments are performed

on CASIA NIR-VIS-2.0, MultiPIE, and e-PRIP datasets for cross-spectrum, cross-resolution, and

photo-to-sketch matching scenarios. On all the three datasets, we report state-of-the-art results;

specifically, rank-1 accuracy of 98.1% on the CASIA NIR-VIS 2.0 face database, up to 97.9%

on the CMU Multi-PIE database for different resolutions, and 94.7% rank-10 accuracies on the

e-PRIP database for digital to composite sketch matching. It would be interesting to explore the

proposed approach into other traditional heterogeneous matching scenarios involving pose, illumi-

nation, and expression variations.

In the use-case of repeat offenders, the sample images of subjects are available to the face

recognition system in the form of incremental batches. A recognition system needs to incremen-

tally update the model based on such incremental data. As the third contribution, we propose

Incremental Semi-supervised Discriminant Analysis (ISSDA) approach for face recognition. The

traditional subspace learning based approaches rely on updating the between-class and total scatter;

on the other hand, the proposed ISSDA utilizes large unlabeled data (in our case a set of unlabeled

face images) to estimate the total scatter. The experiments are performed on CMU-PIE, NIR-VIS-

2.0, and CMU-MultiPIE datasets. It is observed that ISSDA can update the existing classification

model more efficiently as compared to other batch learning and incremental learning subspace ap-

proaches. Finally, we propose Subclass Reduced Set Support Vector Machine (SRS-SVM) that

can learn from a large-scale training data with less memory and time requirements as compared to

traditional solvers. Such a technique allows to efficiently learn face recognition models from very

large training sets. The proposed SRS-SVM and its hierarchical extension yield impressive results

for various classification tasks and datasets including LFW face dataset. The proposed approach

exploits subclass structures of training data to reduce the training set size, which eventually leads

to two to ten folds speedup in training time as compared to LibSVM.

Inspired from the field of big data research, we believe that the next generation face recogni-

tion algorithms should encompass 4Vs of face recognition: (1) variety, (2) veracity, (3) volume,

0http://www.ibmbigdatahub.com/infographic/four-vs-big-data
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and (4) velocity. As shown in Figure 6-1, these 4Vs encompasses the challenges of large scale

unconstrained face recognition. Specifically,

• Variety refers to the variations in face images, for example, pose, illumination, and ex-

pression (PIE). The variations in the image acquisition sensors (visible, near infrared, in-

frared, 3D, pseudo-3D), and image generation process (hand drawn sketches and composite

sketches) also contribute to variety of face images. Other factors contributing to variety of

data are distance between camera and face, camera resolution, indoor/outdoor environment,

and the time of capture. Two primary approaches to address the variety are either to obtain

a robust representation or to develop a classifier robust to such variations.

• Veracity, in context to face recognition research, refers to abnormalities or extreme corrup-

tion of data. The issue of veracity can arise due to various kind of alterations to face sample.

Such alterations can be intentional or unintentional and/or reversible or non-reversible. We

categorize the problems pertaining to facial disguise, make-up, plastic surgery, aging, and

• PIE
• Heterogeneous	

• Cross-spectrum
• Cross-resolution
• Photo	to	sketch
• 2D	to	3D

• Multi-spectrum	Fusion

• Training	set	
• Small	– difficult	to	 learn
• Large	– computational	cost

• Large	test	set	
• Large	enrollment	(e.g.	Aadhaar)

• De-duplication	
• 1:N	matching	

• Large	number	of	queries/unit	time

Variety
4Vs	of	Face	Recognition

• Corruption	in	Entity
• Facial	disguise
• Make-up
• Plastic	surgery
• Aging
• Spoofing	Attacks

• Corruption	in	Acquisition:	Noise

• Incremental	update	of	recognition	engine
• Update	with	new	batches	of	data

• Template	update
• Update	enrollment	record	using	new	

samples.

Veracity

Volume Velocity

Figure 6-1: 4Vs of face recognition: Classification of face recognition challenges for next genera-
tion recognition systems.
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spoofing (print, replay, mask) as prominent veracity challenges. Possible approaches to

address these challenges include detecting and discarding the corruption/abnormalities or

synthesizing useful information for face recognition.

• Volume corresponds to those challenges that are posed by the massive size of the data.

The challenges pertaining to large volume, typically, affect the computational time and the

space requirements. It can be the volume of the training data or of the query data that

may pose challenges for practically usable face recognition systems. Most of the efficient

learning algorithms, such as SVM, have super linear time and space complexity with respect

to training set sizes and feature dimensionality. Due to this property, most of the learning

algorithms scale poorly with massive training sets. Further, the query processing time for

identification (1:N matching) and de-duplication scenarios is directly proportional to the

enrollment set size. For example, in national identity projects, such as Aadhaar, the de-

duplication needs to be performed for the population size of whole nation (approximately

1.2 billion enrolled identities).

• Velocity refers to the set of challenges that arises due to the availability of training and/or

enrollment data in multiple batches and not in one single batch. Training with multiple

batches of data require that 1) the learned model can be updated with the help of new samples

and 2) the update requires less time as compared to learning a model on the cumulated

training set. In the domain of pattern recognition, this is the basic premise of Incremental

Learning. Another form of velocity related challenge arises with the need to update the

existing enrollment samples. For example, aging affects the facial appearance, making it

necessary that the face identification record (FIR) is updated at fixed time intervals. This is

often referred as Biometric Template Update.
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