Adversarial Learning in
Face Recognition = Two
Sides of the S@.«t‘ur&v Coin

Mayanlk Vatsa
Infosys Center for Al @ IIIT-Delhi
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For Algorithms For Humah Eyes

~or Humnmain E‘?jé;s For Algorithms



These Exampt&s Question
Robusthness of DL based
Approaf:hes

. Greneralizabion and Robuskhness are
important for ML/DL algorithms

Sensitivity towards “distribution drift” is a
research challenge

> DL models have some sinqularities and
Limikakions

 These can be axptoi&eci bvj an adve.rsar:j to
“Yool” a ML/DL svs%em



Structure of the
Tutorial

o Motivakion and classification of atkacks

@ How bo atbaclke a svs&em/aigoriﬁhm using adversarial
per&urba&iov\?

o How ko detect these adversarial per&urbaEioms
(abbacks)?

o How to mitigate the effect of adversarial perturbation?

o Is adversarial per&urba&icm always bad?



Shallow Learning Attack
Model (Pre-DL Era)
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Deep Leariing Attacle
Models (DL Era)

Formidable
a\dversarié‘s:_ |
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Classification of
Attacles

3 ?kjSiﬁ&i. aktaclkes

o Digital atbtacks
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‘kasia‘ai
Adversarial Abkaclkes

Black robbers used $2,000
white masks to fool victims in
$200,000 ‘Town’-style stickup,
prosecutors say

The white robber who
carried out six raids
disguised as a black man
(and very nearly got away
with it)

By DAILY MAIL REPORTER
UPDATED: 16:11 GMT, 1 December 2010

Man jani et al., Detecting Silicone Mask based Presentation Attack via Deep Dictionary
Learning IEEE T-IFS 2017



Physical
Adversarial Abkacles

Genuine

Obfuscation Impersonation

Kushwaha eb al. CVPRW - DFWROL¥, Singh et al, IEEE T-BIOMR0O19



Digital Adversarial
Attacles

PRAS

o Digital retouching
o PThotoshop effecks
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Digital Adversarial

CCS, 016 Universal Atkack, CVPR 2017



ﬂet@-brﬁéﬁes? ;

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION, ICLR2018






Real-time Facial Reenactment

=

Live capture using a commodity webcam



Imperce ible Noise

Original GoogleNet ResNet-152 Original GoogleNet VGG16

ImageNet Examples Face Examples
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Perturbed

VG Gr-Face model

G. Goswami, N, Ratha, A, Agarwal, R. Singh, and M. Vatsa. Unravelling robustness of deep learning based face
recoqnition aqainst adversarial akbacks. AAAI, 201%




Key Takeout
?so» far)

5 SO, how we are convinced that c&.e@.p
learning based systems can be
attacied

> Keyword is “adversarial perturbation”



How Adversarial
Perturbation Workes?



Adversarial Abkacles
- Sthce Whent

In the context of DL, adversarial examples were discovered by

o C. Szegedy, W. Zaremba, I. Sutskever, 3. Bruna, D. Erhan, I.
Goodfellow, and R. Fergus. Intriguing properties of neural
networks, arXiv Freprim& arXiv:1312.6199, 2013,

@ In PR, False Acceplts and False Rejects have been studied at
length with respect to perturbations

o Biometrics systems have studied the biometbrics zoo
o Biomebrics svsﬁems have studied presem&aﬁmm akbacles

o Adversarial Machine Learning has been knowin for a long time
(since 2004)



Numwerical | -ﬂxo\m[pl@.

From: spammer@example.com

- |Cheap] mortgage now!!!

Ii Feature Weights
\ 4

cheap = 1.0
mortgage = 1.5

Total score = 2.5> 1.0 (threshold)

\fcwobejchi,lz and Li



Numwerical | -ﬂxo\m[pl@.

From: spammer@example.com

- |Chead mortgagk now!!!

ii Feature Weights
\ 4

cheap= 1.0

mortgage = 1.5

Joy=-1.0

Oregon =-1.0
Total score = 0.5< 1.0 (threshold)

\fcwobejchi,lz and Li
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Leb us balee a
si;m[pie Neural Nekt
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Leb us balee a
s&m[p{@. Neural Nekt
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;XEQMC&.EV\S the
exam[pte to CNN
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Maﬁkema&aali.v
Adversarial Perturbakions

decision boundary

Daka Perburbakiown
Z = XHON




M&Ek@.maﬁcaﬂv

This can be viewed as an optimization problem,
Le.

min[D(I) = D(Ip)] + min(]|I~T,]])
o such that Class(Io) # Class(I,)

> Firsk term minimizes the feature distance between
original and perturbed information/features

' Second term minimizes the visual difference
between original and Foer&urbed tmages



Example - Atkribute
Perturbation

Original
Attribute
class

Iy

Perturb Attribute
Image Prediction

Input Image / Attribute
Perturbed
Image /

Learn
Perturbation Optimization
Noise
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FIGURE 3. Universal perturbations computed for different deep neural network architectures. The pixel values are scaled for visibility. (a) CaffeNet,
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Wlmj Adversarial
erburbation Worlkes?

A same set of
data points or
Experience

Local generalization: Extreme generalization:
Generalization power of Generalization power
pattern recognition achieved via
abstraction and reasoning




Adversarial Authors "Descri.p&iov\s
Szegedy et al., 2013 L-BRGS: Lx + p, L) + [lpl]? sk, %, + p; € [P uobiad

Goodfellow, Shiens, and

Szegedy, 2018 FGSM: Xy +E (VxL(anlo )

?“PQ‘”V\O& et al., 2016 Saliency Map: L, distance op&imiz.af:iom

Moosavi-Dezfooli, Fawzi, and

Generation  c.oocard 2016 DeepFool: for each class; L # L,; minimize d(LLo)
/4

Carlini and Wagner, 2017 C & W: Lp distance metric optimization

Universal (Image-Agnostic): Distribution based

Moosavi-Dezfooli et al., 2017 F‘erkurba&i,om

Rauber, Brendel, and Bethge, Blackbox: Uniform, Graussian, Salk and Pepper, Gaussian
2017 Blur, Contrast




Attaclkes on Faces

Grid based occlusion
(Grid)

Most significant bit
based noise (xMSB)

Eye region occlusion

(ERO)

Forehead and brow
occlusion (FHBO)

Beard-like occclusion
(Beard)

Universal Perturbakion




Original
matched
pair

Attacker
created a
false reject

Original

non-matched

pair

Attacker
created a
false accept

VGG =0.23,

OF=0.2
Genuine!

X

VGG =0.7,
OF=24
Impostor!

X

Add distortion

VGG =0.9,

OF =2.8
Impostor!

V4

VGG = 0.6,
OF = 0.24
Genuine!

Add distortion '

Add distortion

Add distortion Add distortion

Groswami ek al. AAAIZOLlY, IICV2019

VGG =0.5,
OF =0.07
Genuine!

X

VGG = 0.85,
OF =2.08
Impostor!

VGG =1.0,
OF =29
Impostor!

V4

VGG =0.28,
OF =0.56
Genuinel!




valuating
Robuskhness

COTS
Openface
VG G-Face
LightCNN

L-CSsE

COTS

Opehﬁace

VG G-Face
LightCNN
L-CSSE

ALl values indicate genuine accept rate (%) ot 1% false accept rate

w2

O wvn ®



What an Atktacleer
can Cause?

o Confidence reduction - the output confidence
score is reduced, thus introducing class
ambigui&j

o Random mis-classification - an tnputk is
modified in order to output any class
different than the correct one

o Targeted mis-classification - an tnputb is
modified in order to output a specific target
class



Types of Attacks

o Whikte-box
@ Grev-"bax

o Rlack-box



White-box Aktacie

o The attacker has perfect knowledge of the
DNN used (architecture, hyper-parameters,
weights, ete.), has access to the training
data and knowledge about any defense
mechanisms em[otoveci (e.q. adversarial
detection systems).

@ Therefore, an attacker has the ability to
«aomyt&a&v repu«to&e the wiodel under atbtaclke



Greybox Abkacie

o In this case the attaclker can colleck some
information about the network’s architecture (e.q.
she knows a certain model /uses an open-source
architecture), she khows the model under attack
was trained using a certain dataset or has
information about some defense mechanisms

° In any of these cases, the information is neither
tcmpi&&& nor certain and provio’\es the atbacieer
an abiii&v to partially simulate the model under
abbtaclke



Black-box Atkacke

@ The attacker has no kihnowledqge about
the model under attack, however, she
has the ability to use the model (or a
proxy of ik) as an oracle.

o The attacker can su,[pptj Limibed
EMF?u,Es and colleck Ou,%[au&
information ko build atbtack model



Adversarial Abkacles

Catalog of

Attack

Modify (M) or
Generate (G)

Input

Optimisation (OP),
Sensitivity (SA),
Geometric
Transformations (GT)

Generative Models (GM)

Targeted (TG),

Non-Targeted (NTG)

Single-Shot (SS),

Iterative (IT)

White-box (WB),
Grey-box (GB),
Black-box (BB)

Specific (SP),
Universal (UN)

L-BFGS [185] M opP TG IT WB SP
Deep Fool [135 M opP NTG I'T WwB SP
UAP [132] M opP NTG I'T WB UN
Carlini (29 M opP TG / NTG I'T WB SP
CFOA (Madry / PG) [128| | M opP TG / NTG I'T WB SP
STA [90] M opP TG / NTG I'T WB SP
Z00 (35 M opP TG / NTG I'T BB SP
IS [137] M opP TG / NTG I'T BB SP
FGS [70] M SA NTG SS wWB SP
JSMA (146 M SA TG I'T WB SP
RSSA [188] M SA NTG SS /1T WB SP
BPDA |7 M SA TG I'T WB SP
Elastic-Net (34 M SA TG I'T WB SP
BI [109] M SA NTG I'T wWB SP
[LC {109 M SA TG I'T WB SP
Momentum [47 M SA NTG [T WB SP
Substitute [145 M SA TG SS /1T BB SP
Rotation Tr. [52] M GT NTG SS /1T WB / GB SP
ManiFool (97 M GT TG / NTG I'T WB SP
Spatial Tr. [198] M GT TG I'T WB SP
ATN [8] G GM TG / NTG I'T WB SP
NAE [211] G GM TG I'T WB SP

Akhbar and Miawn, 201¥%




What to do with
Adversarial Perturbations?




How bo debect adversarial
perturbation (attack)?



What Could be a
sﬁm[ples% &Ptprmaﬂk?



A sﬁm[ﬂe appraaéh

8 Treak this Prcbi.@.m as 2 class
classification problem



A sim[pt@. &F?Wcmc:h

’ ‘ - Support Vector Classification
1 Machine (SVM) (Real/Adversary)
Input Image

Black-box approach: we do not know
about adversary but learn a classifier to
identify the difference between real and

perturbed samples



A slightly modified

VersiLon
| l - Principal Component Support Vector Classification
J Analysis (PCA) Machine (SVM) (Real/Adversary)
Input Image

Black-box approach: we do not know
about adversary but learin a classifier to
Ed@y\&{v the d&{?f@.remc@. bebween real and

perturbed samples



Look at network
activation




CNN based wWhike-
box Approach

oy | Support Vector
SkakFeabure Machine (SVM)



Adversarial
Perturbakion Detection

Deep Neural Network
Network activations

Original Input

Layer-wise SVM
comparison Classifier

Adversarial Deep Neural Network
Input Network activations

White-box Training

Attack
Detected?
(Yes/No)

Deep Neural Network SVM

Network activations Classifier

Testing

Groswami ek al AAAIROLY



Adversarial Perturbakion
Delection ...

Each laver in a c’\eep neural network essentially learns a function or

representation of the input data

The features obtained for a distorted and undistorted imaqe are

measurably different from one another

Internal representations computed at each layer are different for

distorted images as tOMPQde to undistorted images

To detect distortions, the patteri of the intermediate representations
for undistorted images are compared with distorted images ot each

L&var’



Adversarial Perturbakion
Debection ...

1 N yain
W, = Eq)z (]j)
rain .]=1

N,

Y
WAL = ) T

@ Inktermediate representations campu&ed
for an arb&rmv image I can be

compared wikh Ehe Lajerwwase meains



Adversarial

Perturbation Detection

. . Deep Neural Network
St ELLU Network activations
Adversarial Deep Neural Network
Input Network activations

Layer-wise
comparison

SVM
Classifier

White-box Training

Input

Deep Neural
Network

Network
activations

SVM
Classifier

Attack
Detected?
(Yes/No)




Debection Resulks

(o]
o

Proposed
Adaptive Noise Reduction
| |Bayesian Uncertainty

B Proposed
[ Adaptive Noise Reduction
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DeepFool Universal DeepFool Universal

PasSC dakabase MEDS dakabase

Goswami et al.,, Unravelling Robustiness of Deep Learning based Face
Recognition Against Adversarial Attacks, AAAI 201% (Extended version in
IICV2019)



Other Methods

Crrosse ek al., 2017

Gong, Wang, and Ku;
Mebzen et al., 2017

Felliman et al,, 2017
Detection

Lu, Issaranon, and
Fforsv&h, RO17

Das et al., 2017

Li & Li, 2017

Statistical test for adversarial and original
data distribution

Neural network based classification

Randomized network using "Dro[:zouf: ot both
Eraitning and testing

Quantize RellU output for discrete code +
RBF SVM
IPEG compression to reduce the effect of

adversar:j

CNN maps + PCA statistics + Cascade SVM




ek us look at
ransformations

Approximation Vertical Diagonal

Discrete Wavelet Transformation (DWT)




Nowmaep Leariing
Appraaah

Feature Adversarial
Transformation Extraction Detector
(GIST) (SVM)

Database | DNN Model | Attack Adaptive Bayesian GIST Features + SVM Classification (Proposed)
Noise [31] | Uncertainty [14] [ Tmage ][ DCT | FFT [ DWT [ DST | WHT
VGG1e | Universal | 802 | 803 | 964 | 574 | 963 | 083 | 043 | 785

796 | 799 | 965 || 616 | 99 | 983 | 965 | S50 _

|
S B P O L 0 P
CatoNer  |Universal | 789 | 784 | 9407 || 590 | 929 | 982 | 951 | 823 _
P | 788 | 785 | 992 || 675 | 976 | 998 | 992 | 886

|lml

3 [ 760 | 750 | 999 || 618 | T00.0 | 999 | 999 | 989 _

e [ o e ORI 60T %999 {65 | T00 | 999 | 1000 | 059
steNet [/ [ 702 | 705 [ 999 | 598 [ 1000 [ 999 | 999 | 9.0

Caene[Umersal | 7LT | 703 | 1000 [ 582 | 1000 | 999 | 999 | 974 _

3 | 702 | 96 | 999 || 671 | 1000 [ 1000 | 1000 | 990 _

Agrawal et al. 201%



Non-Deep Learning
Approach
|

‘ Feature ‘ Adversarial
100 98.3

VG Gr-16 Detceto

Image Transform

Ne)
o

'VM Classification (Proposed)
‘FT | DWT | DST | WHT

Universal )6.3 08.3 04.3 78.5
E3 )6.9 08.3 96.5 88.0
Universal )7.1 990 4 97.0 83.3
E3 )7.8 97.2 93.1 83.4
Universal Goswami et al. Proposed 2.9 08.2 95.1 82.3
E3 78.5 67.5 97.6 990 8 99.2 88.6

Universal 74.7 57.7 100.0 100.0 990.6 93.0
E3 75.0 61.8 100.0 99.9 90.9 08.9
Universal 69.8 61.8 100.0 99.9 100.0 08.9
E3 70.5 50.8 100.0 99.9 990.9 99.0
Universal 70.3 58.2 100.0 99.9 99.9 97.4
EF3 69.6 67.1 100.0 100.0 | 100.0 99.0

Database DNN Model | Attack

Z
Detection Accuracy %

VGG-16

GoogLeNet

CaffeNet

VGG-16

Multi-PIE | GoogLeNet

CaffeNet

Agrawal et al. 201%



Detecting GANs Grenerated
(and Rebtouched) Images

o &ANs generated images



one of these
Ls/are Omgw\od.




Which one of these
images is/are Qrpgw\at?

Retouched Original Generated



‘Propasec& ‘Pipetme

Feature Maps

Buipjoysaiyl / NAS

IMFM& Deep CNN Model Decision
Image

Jain et al. - On Detecting Sj;gn&he&w Alterations using GANs and Retouching, BTAS201%



http://iab-rubric.org/papers/2018_BTAS_retouching.pdf

Dakabases

Retouching Out pu.?:
IIITD-ND Dakabase

Input Black hair  Blond hair  Brown hair Gender

: ’ '-l ]
" - AR Y=

1= B <
Y . Skar&GAN Ou,&[mE



Resulks
(Retouching)

ND-IIITD datasek

Algorithm Accuracy
Kee et al. [1] 48.8%
Aparna et al. [2] 87.1%
Proposed (Thresholding) - (64,64,3) 99.4%
Proposed (SVM) - (64,64,3) 99.7%
Proposed (Thresholding) - (128,128,3) 99.5%
Proposed (SVM) - (128,128,3) 99.7%

[1] E. Kee and H. Farid, “A perceptual metric for photo retouching,” PNAS, vol. 108, no. 50, pp. 19 907-19 912, 2011.

[2] A. Bharati, R. Singh, M. Vatsa, and K. W. Bowyer, “Detecting facial retouching using supervised deep learning,” IEEE TIFS, vol. 11, no. 9, pp.
1903-1913, 2016.



Resulks (S nkhekbic
images ﬂfrom CxANs)

o To ensure that the network wasnt learning compression
differences, images were converted to PNG compressed formalt.

o Images were compressed to detect them tn compressed form Like
they undergo while being circulated.

Algorithm Accuracy

Compression | Accuracy Accuracy
(SVM) (Thresholding)
Bharati et al. [1] 91.83%
Proposed (Thresholding) | 99.83% JPG Images | 96.33% 88.89%
Proposed (SVM) 99.73% PNG Images 99.73% 99.83%

A. Bharati, R. Singh, M. Vatsa, and K. W. Bowyer, “Detecting facial retouching using supervised deep learning,” IEEE TIFS, vol. 11, no. 9, pp.
1903-1913, 2016.



Some Exbtensions:
Effective Perturbation Detection

Image Agnostic, Model Agnostic, Database Agnostic
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Delection: K@.v
Talkeout

> Detection is an important step to
check i} the systems are attacked or
nok

» Solukbion nmay Lie i non-DL domain



How to mitiqate the
effect of attaciks?



A Sémpte Apprmack



A S&mpte Apprmack

o Whikte-box approach: retrain the
model with original and Feer%u,rbed
samgi&s

o What is the probi&m wibth Ehis
approath?



A S&mpte Apprmack

o White-box approach: retrain the
model with original and perturbed
sam!ﬁes

o What is the F‘robtem wikth Ehis
approa&h?

8 A new abtaclke is proposed and we have
to start the Eraining process again :)



Another s&mgte
aypraac‘:h

o Transform an input image:

o e.q. apply Gaussian blur and then
pro&e&d with classification

o Pixel Deflection (CVPRRoO1¥%)



Image Denoliser

“Panda” “Dog”
(Correct) (Wrong)

Logits H ||||H || H||

Denoiser

Original Image Adversarial Image

Liao et al, CVPRROLY



Modified Approach

Defense-GAN (ICLR201%)

Train a WGAN btrained on legitimate (W\*FaerEurbed)
tratning samples to “denoise” adversarial examples

Prior to feeding a test image x ko the classifier, it is
projected onto the range of the generator by minimizing
the reconstruction error ||G(2) — x]]

' The resulting reconstruction &(z) is then given to the
classifier for classification task

 Since the generator was trained to model the
umyev&urbed Eraining data distribution, this added step
“removes” any potential adversarial notise.



Original
Input

Adversarial
Perturbation Mitigation

Deep Neural
Network

Distorted
Input

Intermediate

activations

Deep Neural
Network

Intermediate

Layer-wise
filter-wise
comparison

activations

Attack
Detected?

Denoising

| Deep Neural

Network

Identify top
affected
layers and
filters

Features

Selective
Dropout

Testing

Matching

Croswami ek al. I9CV2019




Results of Adversary
Mitigation

Algorithm Original Distorted Corrected
608 259 2362
LightCNN g0 2 41.6 61.3

543 146 245

VGG-Face 754 30,8 40,6

Mitiqgation Results on face database



Defence | Type | Method

Statistical Detection [75] Reactive | Detection

& Q 0 0 Binary Classification [67]
In-Layer Detection [130]
Detecting from Artifacts [59)
SafetyNet [121]
é QM s ﬁ Saliency Data Detector [207]
Linear Transformations Detector [16
Key-based Networks [210)
Ensemble Detectors |1
Approaches |[=====
5 Convolutional Qlutis(i('\ Detector '
Imtuu Hquu /m;., 203
VagNet 120
VAE Detecior 7]

Basis Transformations [168| Input Transformation

Randomised Transformations [201] Reactive | Input Transformation

@ E' &' Thermometer Encoding [24] Input Transformation
' QQC Lve Vs Froaﬁ Lve Blind Pre-Processing [153] Input Transformation

Data Discretisation |32 Input Transformation
Adaptive Noise [119) Input Transformation
FGSM Training |70 Training

Cradient Teamuing 175
. Strong Adversary Traiming |! tobust Traming
Eransformation vs
<nsemble Training [188] tobust Traming
Architecture
Arckitectare
Fortified Networks (111 Architecture
Rotation-Equivariant Networks |4 Architecture
DA TI08
Certified Defences [152] Certified
Convex Outer Polytope [102 Certified
Lischitz Margin [1! Certified

. ereltLoin vs Structured Gradient Regularisation [T5
Stochastic Pruning [44) Robust Training
Eraining vs architecture
HyperNetworks (18
Tools [0%. 5102101
Defence Gan [165 Generative

Robust Traluing
Vs Semer&& N l);"'l’(';l“;“k. .‘:'“ S Proactive | Architecture
/ lve T T
Bidirectional Networks [151]
Distributional Robustness [176
FB-GAN [9] Proactive | Genearative



Toolboxes:
SmartBox

- Lack of a benchmark platform to
standardize research efforts in
attack, detection and mitigation

— SmartBox: Benchmarking Adversarial
Detection and Mitigation Algorithms
for Face Recoqnition

Goel et al. Benchmarking Adversarial Detection and Mitigation Algorithms
afor Face Recognition, IEEE BTAS, R01¥



SmartBox

Adversarial

Generation

FGSM (Goodfellow et al.
2014)

DeepFool (Dezfooli et al.
2016, CVPR)

L2 (Carlini and Wagner 2017,
S&P)

EAD (Chen et al. 2018, AAAI)

Detection

Mitigation

Adaptive noise reduction (Liang
etal. 2017)

Artifact Learning (Feinman et al.

2017 & Gong et al. 2017)

RE

Conv Filter (Li and Li 2017, ICCV)

PCA (Bhagoiji et al. 2018, CISS)

Adversarial Training
(Goodfellow et al. 2014,
ICLR)

Denoising AutoEncoder
(Creswell and Bharath 2017)

Randomization (Xie et al.
2018, ICLR)

Gaussian Blur (Proposed)




Okher Toolboxes

@ CleverHans
o Foolbox

8 Adversarial Robuskhness Toolbox



Dakabases
used ko
benchmarke

PasSC, MulkiPlE,
CelebA

MNIST, F-MNIST

CIrFAR-10,
CIFAR-100

ImageNET

SVHN

Defence Datasets Models
Statistical Detection |75 MNIST, DREBIN. MicroRNA DT, SVM. 2 lavers-CNN
Binary Classification 67 MNIST, CIFAR-10. SVHN AlexNet
In-Laver Detection (130 CIFAR-10, 10-class ImageNet ResNet

Detecting from Artifacts .";‘)i

MNIST, CIFAR-10, SVHN

LeNet, 12-layer CNN

SafetyNet [124]

CIFAR-10, ImageNet-1000

ResNet. VGG19

Saliency Data Detector (207

MNIST, CIFAR-10, ImageNet

AlexNet, AlexNet, VGG1Y

Linear Transformations Detector l(:i

MNIST, HAR

SVM

Key-based Networks |210

MNIST

2 /3 lavers CNN

Ensemble Detectors Yl

MNIST, CIFAR-10

J-lavers CNN

Generative Detector [116

CIFAR-10, CIFAR-100

G-lavers CNN

Convolutional Statistics Detector [118

llu;u_gv.\\-l

VGG-16

Feature Squeezing |20

MNIST, CIFAR-10, ImageNet

.E-].l\‘l'n« CNN. DenseNet
MobileNet

PixelDelend [177]

Illml.gt'.\t 1

ResNet, VGG

MagNet [129)

MNIST, CIFAR-10

1/9-lavers CNN

VAE Detector 162

MNIST, SVNH, COIL-100

Bit -l)c'p!]l T.\J

ImageNet

ResNet, DenseNet, Inception-vi

Basis Translormations [108]

Illhll."l‘.\l 1

Illl'n'l)! 10n-v.J4, Ihn'pl won-vi

Randomised Transtormations 201

ImageNet

Inception-vi, ResNet

hermometer Encoding |24|

MNIST, CIFAR-10, CIFAR-100, SVHN

J0-lavers CNN, Wide ResNet

Blind l'l("l’“l('l'f\\lll:.'. l"n.i;}

MNIST, CIFAR-10, SVHN

LeNet, ResNet-50, ResNet-18

Data Discretisation ‘CQT

MNIST, CIFAR-10, ImageNET

InceptionResnet-\V?2

Adaptive Noise (119

MNIST, ImageNet

FGSM Training (70

MNISI

Maxout

Gradient Training 175

CIFAR-10, SVHN

ResNet- 18

Gradient Regularisation lﬁr

MNIST, CIFAR-10

Maxout

Structured Gradient Regularisation (158

MNIST, CIFAR-10

O-layvers CNN

Robust Training [169]

MNIST, CIFAR-10

2-lavers CNN, VGG

Strong Adversary Training (90

MNIST, CIFAR-10

MxNet

CFOA Training | 125

MNIST, CIFAR-10

2/4/6-lavers CNN., Wide ResNet

Ensemble Training (188

lmngeNet

ResNet, Inee pt wonResNet-v2

Stochastic Pruning |44|

CIFAR-10

Resnet-20

Distillation 86|

MNIST, CIFAR-10

b-layvers CNN

Parseval Networks |37

MNIST, CIFAR-10, CIFAR-100, SVHN

ResNet, Wide Resnet

Deep Contractive Networks |77 MNINI LeNet, AlexNet
Biological Networks [ 139 MNINT J-layers CNN
DeepCloak (64 CIFAR-10 ResNet-164
Fortiied Networks [111] MNINT 2-layers CUNN
Rotation-Equivariant Networks (48 CIFAR-10, ImageNet ResNet
HyperNetworks [180 lmageNet ResNet
Bidirectional Networks [151 MNIST, CIFAR-10 J-lavers CNN
DAM [105| MNINI DAM
Certified Defences l.'n'.fi MNIST 2-layers FC
Formal Tools 95, 51, 92, 161 - -
Distributional Robustness 'ifh MNIST S-layers CNN
Convex Outer Polytope (102 MNIST, F-MNIS1 2-layers CNN
Lischitz Margin [191] SVHN Wide ResNet

Defence Gan ;“53

MNIST, F-MNISTI

Defene-GAN

TTRGAN [0

MNIST, F-MNIST

S-layvers CNN




Cabk and Mouse
Game




Cab and Mouse
Crame

o On the Robustness of the CVPR 201%
White-Box Adversarial Exampte Defenses

o “we evaluate the two white-box
defenses thak appeareci at CYPR R01%
and find they are inetfective: when
applying existing techniques, we can
reduce the accuracy of the defended
models to 0%

Athalye and Carlini, 201¥%



Kev Talkkeouk

o Defense mechanism has to be model,
database, and attack agnostic

o It will be always be a game between
an adversary and a defender



Is adversarial
per&urba&mv\ always bad?



Two Approaakes

@ ‘Pr&v&&v Preserving Adversarial
Perbturbakion

o Data Fine-tuhing



Privacy treserving
Adversarial Perturbakion

Chabbra et al. I9CAIO1Y



Adversarial Perturbakions
- The Posikive Side

o While atbtackers have used
adversarial F?er%urba&oms to “Yool”
biometrics/face recognition systems,
it can be used for assisting in
privacy-preserving aspe&%



Face Analysis = In
the News

A new ‘ethn 4; o
: icity recognition’ tool i
just automated racial profilingt;OOI ®
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Right to ‘Pr&vac:j

o Automated foace analysis pose
of an individual

No Specta cles

o Wang and Kosinksi predicted the “ o
sexual orientation fﬁom face images m :
O

o Facial abbribubtes such as age, gender, © 4
and race can be predicted from one's
profile or social media images

o Profiling of a person using his face
image in ID card

o Identity theft using cross database
mabching

Yilun Wang and Michal Kosinski. Deep neural networks are more accurate than humans at detecting sexual
orientation from facial images. PsyArXiv preprint arXiv: 10.17605/05F.I10/HV2¥A, 2017,



Othman and Ross,
2014

Mirjalili and Ross,
2017

Mirjalili et al.,
2017

Rozsa et al.,
2016, 2017

Chhabra et al.,
2018

No. of
Attributes

Face Morphing
and fusion

Delaunay
Triangulation
and fusion

Fusion using
Convolutional
Autoencoder

Fast Flipping

Attribute Multiple

Adversarial

Perturbation Multiple

Controlling
Attributes

MUCT, LFW

MUCT, LFW,
Celeb-A,
AR-Face

CelebA

CelebA, MUCT,
LFW



Three Kev Factors

o While anonymizing facial atbributes, there
should be no visual difference between
original and anonymized images

o Selectively anonymizing few and retaining
some abbribukes require a “control” mechanism

o In face recognition applications, identity
should be preserved while anonymizing
atbributes.

Anonymizing k-Facial Attributes via
Adversarial Perturbations



Overview of the
ropased Amproaﬂl«

Original
Attribute
Class

IAs' lAp

Perturb
Image

Attribute
Prediction

|

Input Image /

Is
TAS * IAS

TAP -_— IAP
?

Optimization

No

Attribute
Anonymized
Image T




Loss Funckion

Atbributes only

Attribute Anonymization Visual Appearance

—————— ——
min [D(IAP,TAP)_D(IAS;TAS)]'l'”I —T”%

such that Ta, # 14, Ty, = 1y,

Atbributes + Idem&i;&v

min {f(T) +|lI —T||3 + D(Id,, Idy)}

Chhabra et al. I9CAI 201%



‘ »xpev&mem&s

Expe_rimev\&
Stingle
Abbribube

Muﬁ:ipt&
Attributbes

lden&iﬁj
Preservation

Datasek

MUCT, CelebA,
LEWCrop

CelebA

MUCT, LEWerop

# Attributes
Av\onvmiz.ed

Atbributbes Anomvmiaed

Su.ppressed Preserved
Crender
Grender,

Attractive,
Smiling

He.av:j makeup,
High cheelkbones

Crender Idevx&i&v




Single Attribute

MUCT dataset = Wcro[p datasek

Male Score Distribution

=)
o

Probablity of Occurence
) 1)
@ Y

Probablity of Occurence
°
®

o
)




Abbribute Suppression
and Preservakion

Probability distribution

Probablity of Occurence

Probablity of Occurence

8

£

Male Score Distribution

Make
Not Male

Probablity of Occurence

Probabiity of Oceurence

Attractive Score Distribution

"

Attractive
Not Attractive.

Attractive
- Not Atirnctive.

f Occurence

Smiling Score Distribution

05
Score

s Smiing
Not Smiling

Probabity of Oc

Hevay Makeup Score Distribution

B Hevay Makeup
Not Hevay Makeup

05
Score
Heavy Makeup Score Distribution

S Heavy Makewp.
18 Not Heavy Makeup

y of Occurence

Probabiity of Occurence

High Cheekbones Score Distribution

S High Choekbones
Nt High Cheekbpnes

Original

High Cheekbones Score Distribution

4 M High Chakbones
Not High Cheektones

Ahohjmiz.ed




tbribute Su Fressmm wikh
Idem%i%v reservakion

~
o

S
SN
>
(&)
©
—
>
Q
(&)
<

(o]
o

- = =Before Anonymization using OpenFace
After Anonymization using OpenFace

- + =Before Anonymization using VGGFace

—+— After Anonymization using using VGGFace

= * =Before anonymization using OpenFace
—+— After anonymization using OpenFace
= = =Before anonymization using VGGFace
— After anonymization using VGGFace

0.6 10 12 14

Rank

FAR

ROC curves on the LFWcrop dakaset

CMC curve on the MUCT dakaset



K@.v Talkkeouts

o Adversarial per%urba%&oms con be
used posi&vﬂv for privacy
Preserv&%g &PFLL@&ROMS



Data Fine-Tuning

o In DL, %ra\d&wmattv, we Per»form

model fine-tuning, if we have access
to the model

Chabbra et al. AAAIZO19



Iin Real World
Apgi&ta&oms

DEC dlli(C
COTS
1;,% 5 : JeCISIO
L\,;}” /4




Iin Real World
Apptwaﬁmms

Dataset Model Access Model
Hyperparame ters

Output of Model Model Training

4 X

Can we enhaince the per§0rmante of a black-
box system?




Data Fine-tuning

Data Fine-tuning (DFT)

O(WX + b) _DFT . d(WZ + b)

R
Class 1 o +++'|+

XX
P 4 & DET Class 14p +||

xxx"x s > | Class 2
b S |

I
< — — — Pre-trained model’s >
(a)  X-axis decision boundary (b)  X-axis




Model Fine-tuning

M(L)Ciﬁi. piﬂ@“&%hfams I Class 1 Model l
2 § ) ¢ Flne-tunlng
OWX +b) _MET_ (W' X +b') | *%x*% Cass2

X X

(a) X-ax:is
L: Data
ine-tuning

— — — Pre-trained model’s

- . : +
b&&& o LMQ“EMV\LMQ decision boundary

Fine-tuned model’s

¢(WX + b) DET > @(WZ —|— b) || Class 2 decision boundary

(c) X-ax>is




Data Fine-tuhing

o Learn a single perturbation for a
given dataset

o The visual appearance of the image
should be preserved after
Perfurmima data Afime*%umi;mQ



X .
.

Oplkimiizabion

Original Training Set y True Labels m _Number of Images

Perturbed Training Set N , Perturbation A Set of Attributes

1 -
Zk — (tanh(Xk + N) 4+ 1) Transform image in

5 range of 0 to 1

Output scores Model Input

\P(A,. 1Z) =@, (Z, W.b)

Enforces the outputs scores
towards true labels

/

1 m
min — Z max(0,1 — y!, P(A;| Z}))
N m = ’



Illustration of Daka Fine-
tuning for Attribute Prediction

Z = {Zl, ZZ’ .. Zm} True Labels

. o Minimize Loss
Attribute Prediction

Optimize over variable




Illustration of Daka Fine-
tuning for Attribute Prediction

Input Image i bt Input Image 1 II;inte turt1_ed Input Image
Space : ' ataset. Space

Add
Class 2 Perturbation Class 1

Class 1 Class 2
»> O* O
A 5 AXxEX xxx %o Oy

A
A
AQXAXCK XCK XCK Class 1 + O*O o ©
AﬁAAxx%;@ H :,‘go 0

@ X-axis 2 X-axis © X-axis

»

Pre-trained
Attribute
Prediction

Attribute Pre-trained
Training on | Prediction Attribute Data fine-tuning

Dataset Model Prediction

Output Class A Output Class Output Class
. Scores ' Scores

Class 1

Class 2

Class 1




Visual Resulks

Smiling Attribute Bushy Eyebrows Attribute Pale Skin Attribute

’S." " s A

Bushy Eyebrows Not Bushy Pale Skin Not Pale Skin
Eyebrows

Misclassified
Before DFT

Correctly
Classified
Before DFT

waies) Wit

Not Smiling Smiling Not Bushy

Bushy Eyebrows Not Pale Skin Pale Skin
Eyebrows




Model Fine-tuning
vs Data Fine-tuning

=2}
o

-3
o
[+:]
()]

Accuracy()%
Accuracy()%

(=]

Smiling Bushy Eyebrows Pale Skin MUCT LEW
B Model Fine-tuning Data Fine-tuning B Model Fine-tuning Data Fine-tuning




Rlack Box Daka

ihe-tuning

Dataset: LFW
Model: CelebA

: Before DFT - - ale Skin: Before DFT
After DFT ’ ’ —— Pale Skin: After DFT

True Positive Rate

Dataset: CelebA
Model: LFW

[—— Smiling: Before DFT]| | [—— Attractive: Before DFT| [——Wearing Lipstick: Before DFT| |
|~ Smiling: After DFT | : —— Attractive: After DFT ’ |~ Wearing Lipstick: After DFT

L N L L L s

0.4 0.5 0.6 0.7 0.8 0.9

. . . L n L s s n

0.6 0.7 0.8 0.9 . .. . 0.4 0.5 0.6 07 08 0.9

False Positive Rate




K@.v Talkkeouk

o Data fine-tuning is an atbractive
alternative to model fine-tuning,
spe&&fi&auv, when model s un-
kkhown or black-box



Trusted Ak

o Robustness is an important topic for building Trusted-AI
systems buk there are three other important topics

Trusted Al

https://towardsdatascience.com/towards-ai-transparency-four-pillars-required-to-build-trust-in-artificial-intelligence-systems-dic45a1bdd59



Research Questions

o How bto debect atbaclkes?

o Current strategy: Detect individual
atbtacks

o Generalized digital perturbation
detection algorithm

o Greneralized digital and ijsmai
attack detection algorithm



Research Questions

@ How to mitiqate attacks?

o Current strategy: Attack-wise
mitigation algorithm

o Generalized mitigation strateqy -
aghostic to model, attack and
database



Research Questions

o Atkributbe amamvmiza&mw

o Can we desigin algorithms that allow
selecting attributes for
amov\jmizaﬁmm

o Design anonymization algorithms that
are independent of prediction
algorithm and image characteristics



Research Questions

o Caln we perform data fine-tuning +
model fine-tuning for performance
enhancement?

o Idam&bﬁj other applications of
perturbations
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