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Structure of the
Tutorial

o Motivakion and classification of abtacks

o How to attack a system/algorithm using adversarial
perturbation?

o How ko deltect these adversarial Fer&urba&ioms
(abbackes)?

o How to mitigate the effect of adversarial perturbation?

o Is adversarial perturbation always bad?



Shallow Learning Attack
Model (Pre-DL Era)
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Deep Learning Attack
Models (DL Era)

3 S 1
Input device/ Application
sensor
A D

Labelled -
. Training Data Deep Network Training

Corrupting training data Corrupting the network Corrupting training process

Formidable
adversaries:
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~ Users
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Classificakion of
Atkacles

8 ‘kasmat aktaclkes

o Digital attacks
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‘thsw&i
Adversarial Abkacles

(a) Live Finger (b) Gummy Finger




?hv$ tcal
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‘thsicai
Adversarial Abkacles

Black robbers used $2,000
white masks to fool victimsin
$200,000 ‘Town’-style stickup,
prosecutors say

The white robber who
carried out six raids
disguised as a black man
(and very nearly got away
with it)

By DAILY MAIL REPORTER
UPDATED: 16:11 GMT, 1 December 2010

Manjoni et al., Detecting Silicone Mask based Presentation Attack via Deep Dictionary
Learning IEEE T-IFS 2017




‘thsia‘&i
Adversarial Abkacles

Genuine

Obfuscation Impersonation

Kushwaha el al. CVPRW - DFWRoly




Digital Adversarial
Abkacles
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o Digital retouching
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o Photoshop effects &
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Digital Adversarial
Akbbtacles

Original J - J
matched

air .
P VGG = 0.23, VGG = 0.5,
OF =0.2 ’ OF =0.07

Genuine! Genuine!

Add distortion Add distortion

Attacker : o
created a N x x
false reject | R i
\ VGG =0.7, ' i VGG = 0.85,

OF =24 G OF =2.08

Impostor! U e Impostor!

Original x

ngir;-matched VGG = 0.9, VGG = 1.0,
P OF =2.8 OF =29
Impostor! . Impostor!

Add distortion

Attacker
created a

false accept G Tt
VGG = 0.6, - i : s VGG = 0.28,
OF = 0.24 - . L e OF =0.56
Genuine! ol ; Genuine!

Add distortion

Groswami et al. AAAIROLY




Digital Adversarial
Abkacles

CCS, 2016 Universal Atkack, CVPR 2017




Who are these
celebrities?

PROGRESSIVE GROWING OF GANS FOR IMPROVED QUALITY, STABILITY, AND VARIATION, ICLR2018




Which one of the
iris images are real?
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Which one of the
iris images are real?

Svh&ke&a‘:
using <ANs

Kohli et al. I3CB, 2017
LIS



What is Ehis?

2 For humains;
stop sign

® For deep
learning based
algorithm: speed
Limit sigh




Adversarial Abkacles
i Videos



Facial Reenackment

Real-time Facial Reenactment

Live capture using a commodity webcam




Impemep&bte NoLse

i

Original GoogleNet ResNet-152 Original GoogleNet VGG16 ResNet-152

ImageNet Examples Face Examples




lmpac& o Face
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Orignal Perturbed

VrCr-Face model

G, Goswami, N. Ratha, A, Agarwal, R. Singh, and M. Vatsa. Unravelling robustiness of deep learning based foce

rec0ﬂmiﬁic>vx aaainsE adversarial attacles, AAA.‘LI 201%



A Real World
Impti&a&om

ROBERT SAMPLE
JOAN SAMPLE
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Key Takeout
?50 far)

o SO, now we are convinced that c&@.@.p
learning based systems can be
attaciked

o Keyword is “adversarial Fver&urba&on"




How Adversarial
Perturbakion Worlkes?



Adversarial Abkacles
- Stnece When?

o In the context of DL, adversarial examples were discovered by

® C. Szegedy, W. Zaremba, I. Sutskever, 3. Bruna, D. Erhan, I,
Goodfellow, and R. Fergus. Intriguing properties of neural
nebworikes, arXiv preprint arXiv:1312.6199, 2013,

° In PR, False Accepts and False Rejects have been studied ot
length with respect to perturbations

® Biometrics systems have studied kthe biometrics zoo
o Blomekrics Sjskems have studied presen&a&ian aktacles

o Adversarial Machine Learning has been known for a long time
(since 2004)



Numerical wxo&mpt@.

From: spammer@example.com

- |Cheap mortgagg now!!!

i_ Feature Weights

cheop— .0
mortgage = 1.5

Total score = 2.5> 1.0 (threshold)

\/orobejchik‘ and Li




Numerical wxo&mpt@.

From: spammer@example.com

* |Cheap mortgagg now!!!

‘_ Feature Weights
\

cheap

= 1.0
mortgage = 1.5
Joy=-1.0
Oregon =-1.0
Total score = 0.5< 1.0 (threshold)

\/orobejchik‘ and Li
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simpi;@_ Neural Nek




Leb us kalkee a
sim[pt@. Neural Nekb
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Leb us kalee a
sim[pt@. Neural Nekb

Find out the node
which are Empof&ak& a
suppress their effect by
 perturbing input

Inactive region

IS
o

N
o
Node Strength

Accuracy (%)

‘ Acw nodes ’
Inactive nodes
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|
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Number of drop nodes in ascending order




Extending the
example to CNN

RELU RELU RELUS REIL RELU RELU

CONV lCONVl CONV lCONVl CONV lCONVl FC
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Extending the
exampi.e to CNN

RELU RELU RELUS REIL RELU RELU
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Maﬁkema&cauv
Adversarial Perturbations

xx xx (::’C|“a/SSZ
X xx

X-axis

erturbation

l|¢(WZ+b)
|

_ _ _ Model’s
decision boundary

Daka Perturbation
Z = XPN




Ma&hema&&attv

> This can be viewed as an optimization problem,
L&,

> min] D(Is) - "D(Ipﬂ i m‘«"\(”IO"‘IPH)
o such that Class(i,) % Ciass(lp>

> Firsk term minimizes the feature distance between
original and perturbed information/features

> Second term minimizes the visual difference
between original and Fer&urbed images



Exampi,e - Abkribute
erturbation

Original
Attribute
class

Iy

Attribute
Prediction

Input Image / Attribute
Perturbed

Image /
Learn

Perturbation Optimization
Noise




LOWN

[ ]
Moosavi-Dezfooll et al.
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FIGURE 3. Universal perturbations computed for different deep neural network architectures. The pixel values are scaled for visibility. (a) CaffeNet,
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Thresher 0 Labrador

Flagpole Labrador

Tibetan mastiff

Lycaenid

Moosavi-Dezfooll et al.
CVPRROL7




Wkaj Adversarial
Perburbakion Worlkes?

A same set of
data points or
Experience

Local generalization: Extreme generalization:
Generalization power of Generalization power
pattern recognition achieved via
abstraction and reasoning




Adversarial

Grenerabtion

Aubhors

Szegedy et al,, 2013

Goodfellow, Shiens, and
Sz.agedv, 2018

‘Paperv\ok et al., 2016

Moosavi-Dezfooli, Fawzi, and
Frossard, 2016

Carlini and Wagner, 2017

Moosavi-Dezfooli et al., 2017

Rauber, Brendel, and Bethqe,
2017

Descrip&i.ons

L_BF:G'S: L(-x i pl L) i ”p”2 S'E'} xi. i pi. 3 [bmi\r\lbmax]

Fesm: x, +&(V_L(x,,1,))

So.Li,eucv Map: L, distance op&imiz.o&iou

DeepFool: for each class; L % L,; minimize d(L,Lo)

C & W: Lp distance metric optimization

Universal (Image-Agnostic): Distribution based
perturbation

Blackbox: Uniform, Graussian, Salk and Pepper, Gaussian
Blur, Contrast




Aktacles on Faces

Grid based occlusion
(Grid)

Most significant bit
based noise (xMSB)

Eje. region occlusion

(ERO)

Forehead and brow

occlusion (FHBO)

Reard-lilkke occlusion
(Beard)

Universal Perturbation




valuating
Robuskhness

COTS

(4] Fehﬁace

V& G-Face
LightCNN

L-CSSE

COTS
Openrace
VG G-Face
LightCNN
L-CSSE

ALl values indicate genuine accept rate (%) at 1% folse accept rate

wid M=

Owvse -



What awn Attacleer
can Cause?

o Confidence reduction - the output confidence
score is reduced, thus introducing class
ambigui&v

o Random mis-classification - an tnput is
modified in order to output any class
different than the correct one

o Targeted mis-classification - an thpuk is
modified in order to oubtpul a specific target
class



7% ypes Oﬂf Attacles

o Whike-box
@ Grefjﬂbox

o Black-box



o

White-box Akkack

The attacker has perfect khowledge of the
DNN used (architecture, hyper-parameters,
weights, ebe.), has access to the training
data and kinowledge about any defense
mechanisms emptoved (e.q9. adversarial
debection s-jsEems)«

Therefore, an attacker has the abiiiiv to
tompl.e&etj reptiao&e the wmodel under atbacie




o

Gr@jﬂbcx Abkacie

In this case the attacker can collect some
information about the network’s architecture (e.q.
she kiows a certain model/uses an open-source
architecture), she kihows the model under abttack
was trained using a certain dataset or has
information about some defense mechanisms

In any of these cases, the information is neither
cmmpi&&e nor cerbain and pravid&s the abttacker
an abiti&-j to partially simulate the model under
attaclke



Black-box Atktacie

@ The attacker has no khowledqe about
the model under attaclk, however, she
has the ability to use the model (or a
proxy of it) as an oracle.

o The atbtaclker can su,ppi.j Limiked
inpu&s and collect ou&pu&
information to build attack model




Some other
classification terms

o Modify vs Generate

@ Opﬁmiz.aﬁom VS Sénsi;&vi,&v VS
Geomelric Transformation vs
Crenerakive Models

o Single Shot vs Iterative

o Specific vs Universal



Catalogq of

Adversarial Abkacies

Optimisation (OP),
.\I‘o(lify (M) ‘or Svns‘itivity (.SA). Targeted (TG), Single-Shot (SS). \\"hitv-l)ox (\‘\'B). Specific (SP).
Attack Generate (G) Geometric Non-Targeted (NTG) Iterative (IT) Grey-bax (GB), Universal (UN)
Input Transformations (GT) R ' Black-box (BB) ' ‘ -
Generative Models (GM)
L-BFGS [185] M opP TG IT WB SP
Deep Fool [135] M opP NTG IT WB SP
UAP [132] M opP NTG I'T WB UN
Carlini [29) M opP TG / NTG IT WB SP
CFOA (Madry / PG) [128] | M opP TG / NTG IT WB SP
STA [90] M opP TG / NTG IT WB SP
Z00 L.'{.')j M opP TG / NTG IT BB SP
IS [137] M oPpP TG / NTG I'T BB SP
FGS [70] M SA NTG SS wB SP
JSMA [146] M SA TG IT wB SP
RSSA [188] M SA NTG SS/IT WwB SP
BPDA |7] M SA TG I'T WB SP
Elastic-Net [34] M SA TG I'T WB SP
BI [109] M SA NTG I'T wWB SP
ILC [109] M SA TG I'T WB SP
Momentum [47 M SA NTG [T WB SP
Substitute [145 M SA TG SS /1T BB SP
Rotation Tr. [52) M GT NTG SS/IT WB / GB SP
ManiFool [97] M GT TG / NTG IT wB SP
Spatial Tr. [198] M GT TG IT wB SP
ATN [8] G GM TG / NTG IT wB SP
NAE [211] G GM TG I'T WB SP

Akhbar and Mian, 201¥%




What to do wikh
Adversarial Perturbakions?




How to debect adversarial
P@.r%urb&&a-m (abbacie)?



What Could be a
si;m[zai.@.s& apprc:-af:k?



A sim[pw_ apyraaﬁh

o Treat this problem as 2 class
classification problem



A simgte agpraa&h

’ l - Support Vector Classification
‘. Machine (SVM) (Real/Adversary)
Input Image

Black-box approach: we do not know
about adversary but learin a classifier to
identify the di{%ammae bebween real and

perturbed samples




A slightly modified

VETSLOWN
’ l - Principal Component Support Vector Classification
‘. Analysis (PCA) Machine (SVM) (Real/Adversary)
Input Image

Black-box approach: we do not know
about adversary but learn a classifier to
identify the difference between real and

perturbed samples




Look abk nebtworlke
ackivakion




CNN based whike-
box Approach

-
Input Imag

7%

Skak Feature




Adversarial
Perburbation Deltection

Deep Neural Network
Network activations

Original Input

Layer-wise SVM
comparison Classifier

Adversarial Deep Neural Network
Input Network activations

White-box Training

Attack
Detected?
(Yes/No)

Deep Neural Network SVM

Network activations Classifier

Testing

Goswami ek al AAAIRO1lY




Adversarial Perturbation
Debectkion ...

Each layer in a deep neural network essentially learns a function or

representation of the input data

The features obtained for a distorted and undistorted image are

measurably different from one anocther

Internal representations computed at each layer are different for

distorted images as compared to undistorted images

To detect distortions, the pattern of the intermediate representations
for undistorted images are compared with distorted images at each

L&ver



Adversarial Perturbation
Delecktion ...

o Inkermediate represen&a&ons Cam!ou&d
for an arbitrary image I can be

t:ompar@.ci wikth the Laver*wise MEans




Adversarial

Original Input

Perturbation Detection

Adversarial
Input

Deep Neural Network
Network activations
Deep Neural Network
Network activations

Layer-wise
comparison

SVM
Classifier

White-box Training

Input

Deep Neural
Network

Network
activations

SVM
Classifier

Attack
Detected?
(Yes/No)




Deleckion Resulks

I Proposed
[ Adaptive Noise Reduction

80 |Bayesian Uncertainty

I Proposed
[ Adaptive Noise Reduction

80 [ IBayesian Uncertainty
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DeepFool Universal DeepFool Universal

PasSC dakabase MEDS database

Goswami et al., Unravelling Robustness of Deep Learning based Face
Recognition Against Adversarial Attacks, AAAI 201%




Other Methods

CGrrosse ek al,, 2017

Gong, Wang, and Ku;
Mebzen et al., 2017

Feiman et al,, 2017
Detection

Lu, Issaranon, and
Forsyth, 2017

Das et al., 2017

Li & Li, 2017

Statistical test for adversarial and original
data distribution

Neural networlk based classification

Randomized network using Dropou& at both
Eraining and testing

Quantize RelU output for discrete code +
RBF SVM
IPEG compression to reduce the effect of

adversarj

CNN wmaps + PCA statistics + Cascade SVM




Lelk us look aob

ransformations




Nonh-Deep Learning
Approach

Feature Adversarial
Transformation Extraction Detector
(GIST) (SVM)

Database | DNN Model | Attack Adaptive Bayesian GIST Features + SVM Classification (Proposed)
Noise [31] | Uncertainty [14] [ Tmage [[ DCT [ FFT | DWT [ DST | WHT |
g I N 3 S S

796 | 99 | 965 | 61698’% 065 | 880

P B 11 R B 4 2 S A A R 4 S

. P [ 770 [ 773 | 951 || 603 | 978 | 972 | 931 | §34
CaroNer | Universal 9401 || 590 | 929 | 987 | 951 | 823 |
‘ |

VGGl [ Umvemal | 755 [ 747 [ 999 ]| 577 ] 1000 | 1000

B € 3 N L B2

MULLPIE | GoosLeNer |UMNersal | 694 | 698 | 999 | 6I8 | 1000 | 999 | 1000 | 989 |
; F3 [ 702 | 705 | 999 || 598 | 1000

1000 || 582_| 1000 97.4

3 | 702 | 96 | 999 || 671 | 1000 | 1000 | 100.0 [ 990 |

CaffeNet

Agrawal et al. 201%




Nonh-Deep Learning
Approach
|

| Feature | Adversarial
100 98.3

VG G-16 v

Transform

Ne]
w

Y]
o

'VM Classification (Proposed)
‘FT | DWT | DST | WHT

Universal )6.3 08.3 94.3 78.5
F3 )6.9 98.3 96.5 88.0
Universal 7.1 09.4 97.0 85.3
F3 7.8 97.2 03.1 83.4
Universal Goswami et al. Proposed )29 98.2 95.1 82.3
F3 785 675 | 976 99.8 99.2 88.6

Universal 747 577 ] 100.0 | 100.0 | 99.6 | 93.0
3 75.0 61.8 | 100.0 | 999 | 999 | 9389
. Universal 698 61.8 | 100.0 | 99.9 [ 100.0 | 980
Multi-PIE | GoogLeNet \—p 705 59.8 [ 100.0 | 99.0 | 99.9 | 99.0
CaffoNet Universal 703 582 | 100.0 | 999 | 999 | 974

atlelne F3 69.6 67.1 | 100.0 | 100.0 | 100.0 | 99.0

Database DNN Model | Attack

Detection Accuracy %

VGG-16

GoogLeNet

CaffeNet

VGG-16

Agrawal et al. 201%



Some Extensions:
Effective Perturbation Detection

Image Agnostic, Model Agnostic, Database Agnostic

Architecture

- A\
5T

™ |
=

Dakabase




Deleckiown: Kev
Talkeouk

o Delection is an meor%am& s&ep ko
check if the systems are attacked or
ok

o Solukion nMay Llie in non-bL domain




How to mitiqgate the
effect of abtacks?



A SEMFL@. Awroa&k



A SEMF}{.@. Awraaak

o Whike-box approach: retrain the
model with original and [per&u,rbeci
samyi.es

o What ts the ercbi.@.m wikh Ehis
amzroaak?




A SEMF}L@. Appraaak

o White-box approach: retrain the
model with original and per&urbeci
samptes

o Whal s the probtem wikh Ehis
appraath?

o A new altltacke is progﬁoseo{ and we have
to start the training process again :)




Anocther simptﬁt
approaah

o Transform an nput image:

o e.q. apply Gaussian blur and then
proaeed with classification

o Pixel Deflection (CVPRRO1%),




Image Denoiser

“Panda” “Dog”
(Correct) (Wrong)

| il

Denoiser

Original Image Adversarial Image

Liao ek al, CVPRRO1¥




Modified Approach

o Defense-GAN (ICLRR01%)

o Train a WGAN trained on legitimate (uw-‘perﬁurbeo\,)
training samples to “denoise” adversarial examples

Prior to feeding a test image x to the classifier, it is
projected onto the range of the generator by minimizing
the reconsbtruction error [|G(2) - x]]

o The resulting reconstruction &(z) is then given to the
classifier for classification task

o Since the generator was brained to model the
uhper&urbeci Eraining data distribution, this added step
“removes” any Pc&ah&iat adversarial noise,



Original
Input

Adversarial
Perturbation Mitiqgation

Deep Neural
Network

Distorted
Input

Intermediate

activations

Deep Neural
Network

Intermediate

Layer-wise
filter-wise
comparison

activations

Attack
Detected?

| Deep Neural

Network

Identify top
affected
layers and
filters

A
1
1
1

Features

Selective
Dropout

Testing

Goswami ek al. AAAIROLlY

Matching




Resulks of Aciversarj

M

Algorithm Original

LightCNN

VG G-Face

Ltigation

Distorted Corrected

60,86 RED 36.2

¥9.3 41.6 &1.3

S4.3 14-.6 R4 ¥

7% 4 30,8 406

Mitiqgation Resulkts on face database



| Defence | Type | Method

Statistical Detection [75] Reactive | Detection

Q Q 0 O Binary Classification [67]
In-Layer Detection [130)
Detecting from Artifacts [5¢

VAE Detecior [i7]
Basis Transformations [168]
Randomised Transformations [201]
@ %" &' Thermometer Encoding [24] Input Transformation
: eALCLVeE VS TOALLLCLVE Blind PreProcessing [153]
Data Discretisation [32]

Adaptive Noise [119)] Reactive | Input Transformation
FGSM Training (70 Proactive | Training

Gradiest Traluiog [175
D N Gradicu “«w'nriww 127
L y ' O |n.|(1l\l .In_

5 ersary ! c(....q .unm-'
&TQMS{OT’MQ&LOM \Y2

> . » . : I
training vs architecture ey

Defence Gan [165

FB-GAN [9] Proactive | Genearative




Toolboxes:
SmartRox

- Lack of a benchmark platform to
standardize research efforts in
attack, detection and mitigation

- SmartBox: Benchmarking Adversarial
Detection and Mitigation Algorithms
for Face Recoqunition

Goel et al, Benchmarking Adversarial Detection and Mitigation Algorithms
for Face Recognition, IEEE BTAS, 201¥%




SmartRox

Adversarial

Generation

FGSM (Goodfellow et al.
2014)

DeepFool (Dezfooli et al.
2016, CVPR)

L2 (Carlini and Wagner 2017,
S&P)

EAD (Chen et al. 2018, AAAI)

Detection

Mitigation

Adaptive noise reduction (Liang
etal. 2017)

Artifact Learning (Feinman et al.

2017 & Gong et al. 2017)

Conv Filter (Li and Li 2017, ICCV)

PCA (Bhagoji et al. 2018, CISS)

Adversarial Training
(Goodfellow et al. 2014,
ICLR)

Denoising AutoEncoder
(Creswell and Bharath 2017)

Randomization (Xie et al.
2018, ICLR)

Gaussian Blur (Proposed)




Okher Toolboxes

o CleverHawns
o Foolbox

o Adversarial Robusthness Toolbox




Defence Datasets Models

Statistical Detection |75 MNIST, DREBIN. MicroRNA DT, SVM. 2 layers-CNN
% Binary Classification |67 MNIST, CIFAR-10, SVHN AlexNet
& & & s Qs In-Laver Detection |[130 CIFAR-10, 10-class ImageNet ResNet
Detecting from Artifacts [59) MNIST, CIFAR-10, SVHN LeNet, 12-layer CNN
‘ SafetyNet [124| CIFAR-10, ImageNet-1000 ResNet, VGG19
g Saliency Data Detector [207 MNIST, CIFAR-10, ImageNet AlexNet, AlexNet, VGG19
M$ Q O Linear Transformations Detector |16 MNIST, HAR SVM
Key-based Networks |210 MNIST 2/3-layers CNN
Ensemble Detectors |1 MNIST, CIFAR-10 J-layers CNN
A Generative Detector (116 CIFAR-10, CIFAR-100 G-layers CNN
éh& m Qr R» Convolutional Statistics Detector 118 ImageNet VGG-16
Feature Squeezing (203 MNIST, CIFAR-10, ImageNet -layers CNN, DenselNet
. ’ MobileNet
PixelDetend ITTV ImageNet ResNet, VGG
MagNet [129] MNIST, CIFAR-10 1/9-layers CNN
VAE Detector |62 MNIST, SVNH, COIL-100 -
fad : LE" { Bit-Depth |78| ImageNet ResNet, DenseNet, Inception-vd
‘P&SL; MM L‘PIE} Basis Transformations [168] ImageNet Inception-vi, Inception-vi
Randomised Transformations |[201] ImageNet Inception-vi, ResNet
el L b Uhermometer Encoding |24] MNIST, CIFAR-10, CIFAR-100, SVHN | 30-layvers CNN, Wide ResNet
L‘e e A Blind Pre-Processing 153 MNIST, CIFAR-10, SVHN LeNet, ResNet-00, ResNet-18
Data Discretisation [32] MNIST, CIFAR-10, ImageNET InceptionResnet-V?2
Adaptive Noise [119 MNIST, ImageNet .
FGSM Training (70 MNIST Maxout
MNIST F:“MNIST Gradient Training [175] CIFAR-10, SVHN ResNet-18
; Y Gradient Regularisation [127] MNIST, CIFAR-10 Maxout
Structured Gradient Regularisation [158 MNIST, CIFAR-10 O-layers CNN
Robust Training [169] MNIST, CIFAR-10 2-layers CNN, VGG
Strong Adversary Training |90 MNIST, CIFAR-10 MxNet
CIp‘AQﬂl O (“l"( JA Training (128 ‘ MNIS l‘. CIFAR-10 2/4/6-lavers CNN, W\ ll‘ll' ResNet
y ] Ensemble Training [188 ImageNet ResNet, InceptionResNet-v2
Stochastic Pruning |[44] CIFAR-10 Resnet-20
CIF"'&AQ‘“:LOO Distillation [S6] MNIST, CIFAR-10 I-layers CNN
Parseval Networks |37 MNIST, CIFAR-10, CIFAR-100, SVHN | ResNet, Wide Resnet
Deep Contractive Networks |77 MNINT LeNet, AlexNet
Biological Networks [139 MNINT 3-layers CNN
3 l)t‘!'ll( Tonk 64 CIFAR-10 ResNet-164
Ima\ QNET Fortified Networks [111] MNIST 2-layors CNN
9 ; Rotation-Equivariant Networks [48 CIFAR-10, ImageNet ResNet
HyperNetworks [180 ImageNet ResNet
Bidirectional Networks [151 MNIST, CIFAR-10 S-layers CNN
DAM [105] MNIST DAM
SVHN Certified Defences [152] MNINT 2-layers FC
: Formal Tools (98, 51, 92, 161} - -
Distributional Robustness [176 MNIST S-layers CNN
Convex Outer Polytope [102 MNIST, F-MNIST 2-layers CNN
Lischitz Margin [191] SVHN Wide ResNet
Defence Gan [165 MNIST, F-MNIST Defene-GAN
FB-GAN |9 MNIST, F-MNIST S-layers CNN




Cabk and Mouse
Game




Cab and Mouse
Crame

o On the Robustiness of the CVPR 201%
White-Box Adversarial Example Defenses

s “we evaluate the two white-box
defenses thak appeareci at CVPR 201¥%
and find they are ineffective: when
applying existing techniques, we can
reduce the accuracy of the defended
models to 0%

Athalye and Carlini, 201%




Kej Talkkeout

o Defense mechanism has to be model,
database, and attack agunostic

o IF will be always be a game between
an adversary and a defender




Is adversarial
per%urba&cm always bad?



Two Atpgzrcaﬁh@.s

° Privacy Preserving Adversarial
Perturbakion

© Data Fine-tuning



Pr E,vaa':‘:fj Preserving
Adversarial Perturbakion

Chabbra ek al. IdCAIRO1Y
LIS



Adversarial Perturbations
- The Posikive Side

o While attackers have used
adversarial perturbations to “fool”
biometrics/face recognition systems,
it can be used for assisting in
privacy-preserving aspect ...




Foce Analusis - In
the News

A new ‘ethn 45 minse,
: icity recognition’ tool i
just automated racial profiling:OOI *

O
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Right to ‘Pr&v&cv

o Automated face analysis pose
of an individual

o Wang and Kosinkesi fpredée&ed the

sexual orientation from face images m

s Facial attributes such as age, gender,
and race can be predicted from one's
profile or social media images

o Profiling of a person using his face
image tn ID card

o Identity theft using cross database
matching

Yilun Wang and michal Kosinski, Deep neural networks are more accurate than humans ab detecting sexual
orientation from facial images. PsyArXiv preprint arXiv: 10.17605/0SF.10/HV2¥A, 2017,




Author

Othman and Ross,
2014

Mirjalili and Ross,
2017

Mirjalili et al.,
2017

Rozsa et al.,
2016, 2017

Chhabra et al.,
2018

Literature

No. of

Method Attributes

Controlling

Dataset Attributes

Face Morphing
and fusion

Delaunay
Triangulation MUCT, LFW
and fusion
Fusion using
Convolutional
Autoencoder

MUCT, LFW,
Celeb-A,
AR-Face

Fast Flipping

Attribute gl

CelebA
Adversarial

CelebA, MUCT,
Perturbation

Multiple LFW




Three Kev Factors

o While anonymizing facial attributes, there
should be no visual difference between
original and anonymized images

o Selectively anonymizing few and retaining
some abbributes require a “control” mechanism

o In face recognition applications, identity
should be preserved while anonymizing
attributes.

Anonymizing k-Facial Abtribubtes via

Adversarial Perturbations




Overview of the
‘Prolposeci Approach

Original
Attribute
Class

lAs' IAP

Y

Is
[ Perturb | Atribute | TasTap) Tpo # I | Yes
Image Prediction TAp = lAp
' ?

[

Input Image / Attribute

No Anonymized

Optimization




Loss Funckion

Attributes ca»vd.v

Attribute Anonymization Visual Appearance

A S B
min [D(I4,, Tap) — D(Iag, Tag)] + 111 —TI|3

such that TAS 7 IAS' TAP = IAP

Atbribubtes + ldeh&i&v

min {f(T) + |I/I —TI|| + D(Id,, Idy)}

Chhabra et al. IJCAI 201%




| »,xperimev&s

# Abbribukes Attributes Ahohjmiz.eo\

Av\ohjmiz.ed

Experémeh& Dakaset

Suppre.ssed Preserved

Single MUCT, CelebA,

ot
Atkribute LFWCrop SRy

Grender,
CelebA Abtractive,
Smiling

Mu.i.f:ipte
Attributes

He&vv makeup,
High cheekbones

Idehf:if:j
Preservakion

MUCT, LF Wcrop CGrender Ideu&if:j




Single Attribute

MUCT dakaset = W«crop dakasek

CGrender Akkribubte Anonumized Imaqes

Male Score Distribution

03 04 05 06 07
Score




Akkribube Suppression
and Preservalkion

Original

Original

Av\ohjmiz.ed

Probability distribution




tbribube Su pressmm with
Idev\&&v reservakion
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- = =Before Anonymization using OpenFace - + ~Before anonymization using OpenFace
—After Anonymization using OpenFace —+—After anonymization using OpenFace
- + =Before Anonymization using VGGFace - = =Before anonymization using VGGFace
—+— After Anonymization using using VGGFace — After anonymization using VGGFace
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FAR

Rank

ROC curves own the LF-‘WcroP datasek CMC curve on the MUCT dakaset




Kefj Talkkeouks

o Adversarial perturbations can be
used positively for privacy
preserving applications



Data Fine-Tuning

o In DL, traditionally, we perform
model fine-tuning, f we have access
to the model

Chabbra ek al. AAAIRO19




In Real World
Appticaémns
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Iin Real World
Apptwaémms

Dataset Model Access Model
Hyperparameters

Output of Model Model Training

4 X

Can we enhance the performance of a black-
box system?




Data Fine-tuning

Data Fine-tuning (DFT)

DO(WX + b) _DET_. &(WZ + b)

—-

— — — Pre-trained model’s
decision boundary




Model Fine-tuning

Mﬂ)déi. pih@.‘“&t&hihﬂ I Class 1 Model I
% § X Flne-tunlng
@(WX + b) MFT > @(W/X + b,) Xxxxx Class 2

X X

X-axis
Data
ine-tuning

— — — Pre-trained model’s

DO\&O\ F:LV\E"‘EMV\ LV\S l decision boundary

Fine-tuned model’s

(D(WX + b) _DFT | @(WZ -+ b) decision boundary




Data Fine-tuning

o Learn a single perturbation for a
given dataset

o The visual appearance of the image
should be preserved after
perﬂfarmur\g) datka nfina*%uming




X
Z__

Opkimization

Original Training Set y . True Labels m Number of Images

, Perturbed Training Set N Perturbation A Set of Attributes

range of 0 to 1

1
Zk — E(l‘anh(Xk + N) + 1) } Transform image in

Output scores Model Input

\P(A,. 1Z) =, (Z, W,b)

Enforces the outputs scores

/ towards true labels

1 m
min — Z max(0,1 — y!, P(A;| Z)))
N m= ’



Illustration of Daka Fine-
tuning for Abtribute Prediction

True Labels

PAIZ) o
Attribute Prediction Inimize Loss

X - {Xl’ Xz, . Xm}

Optimize over variable




Illustration of Daka Fine-
tuning for Abtribute Prediction

Dataset: Input Image

Space

A A 4, AX;;;Z
A?m&%%ﬁ
ATIA X ¥ ¥k

@ X-axis

Attribute

Training on Prediction
Dataset Model

Output Class
Scores

Dataset:

Input Image
Space

Add
Perturbation

¢ Fine tuned

Input Image
Dataset: P 9

Space

Pre-trained
Attribute
Prediction

Data fine-tuning

Output Class
Scores

Pre-trained
Attribute
Prediction

Output Class
Scores

Class 1




Visual Resulks

Smillng Attribute Bushy Eyebrows Attribute Pale Skin Attribute

~ —
1)l
= lI&= L %

Smiling Not Smiling Bushy Eyebrows Not Bushy Pale Skin Not Pale Skin
Eyebrows

Misclassified
Before DFT

Correctly
Classified
Before DFT

1)k 3
e | S _

Not Smiling Smiling Not Bushy Bushy Eyebrows Not Pale Skin Pale Skin
Eyebrows




Model Fine-tuning
vs Data Fine-tuning

(2]

o
-]
o

-]
-]

-
o

Accuracy()%
Accuracy()%

N w
o o
"
'

[y

o
w0
N

0
80

Smiling Bushy Eyebrows Pale Skin MUCT LFW

¥ Model Fine-tuning Data Fine-tuning ¥ Model Fine-tuning  m Data Fine-tuning




Rlack Box Data
~ilhe-tuning

Dataset: LFW
Model: CelebA

Before DFT|

True Positive Rate

Dataset: CelebA

Model: LFW

—— Attractive: Before DFT —— Wearing Lipstick: Before DFT
— Attractive: After DFT | |~ Wearing Lipstick: After DFT

07 08 09

False Positive Rate




K@.j Talkkeout

o Data fine-tuning is an atbractive
alternative to model fine-tuning,
specifically, when model is un-
kowin or black-box




Sum mMary

o Defense aqgainst adversarial
perturbations is important

o Adversarial perturbations can be
used for privacy preserving
approaches and fine-tuning the
models




Trusted AT

s Robustness is an important topic for building Trusted-AI
systems but there are bthree other important topics

Trusted Al

https://towardsdatascience.com/towards-ai-transparency-four-pillars-required-to-build-trust-in-artificial-intelligence-systems-d1c45a1bdd59



Acknowledgments

Puspita Ma jumdar, Gaurav Goswamd, Ask*kaj_AgarmaL, Saheb Chhabra,
Alkhil Goel, Anirudh Singh, Alnubhav Jain

www&o\b“rubriaorg




