
1

RGB-D Face Recognition with Texture and
Attribute Features

Gaurav Goswami, Student Member, IEEE, Mayank Vatsa, Senior Member, IEEE, and Richa Singh, Senior
Member, IEEE

Abstract—Face recognition algorithms generally utilize 2D
images for feature extraction and matching. To achieve higher
resilience towards covariates such as expression, illumination
and pose, 3D face recognition algorithms are developed. While
it is highly challenging to use specialized 3D sensors due to
high cost, RGB-D images can be captured by low cost sensors
such as Kinect. This research introduces a novel face recognition
algorithm using RGB-D images. The proposed algorithm com-
putes a descriptor based on the entropy of RGB-D faces along
with the saliency feature obtained from a 2D face. Geometric
facial attributes are also extracted from the depth image and
face recognition is performed by fusing both the descriptor and
attribute match scores. The experimental results indicate that the
proposed algorithm achieves high face recognition accuracy on
RGB-D images obtained using Kinect compared to existing 2D
and 3D approaches.

Index Terms—Face Recognition, Saliency, Entropy, RGB-D,
Kinect.

I. INTRODUCTION

FACE recognition with 2D images is a challenging prob-
lem especially in the presence of covariates such as pose,

illumination, expression, disguise, and plastic surgery. These
covariates introduce high degree of variation in two 2D images
of the same person thereby reducing the performance of
recognition algorithms [3], [9], [20]. Therefore, it is desirable
to perform face recognition using a representation which is
less susceptible to such distortions. While 2D images are not
robust to these covariates, 3D images offer a comparatively
resilient representation of a face. 3D images can capture more
information about a face, thus enabling higher preservation of
facial detail under varying conditions. 3D face recognition has
been explored in literature and several algorithms have been
developed [5]. While it is advantageous to utilize 3D images
for face recognition, the high cost of specialized 3D sensors
limits their usage in large scale applications.

With advancements in sensor technology, low cost sensors
have been developed that provide (pseudo) 3D information in
the form of RGB-D images. As shown in Fig. 1, an RGB-D
image consists of a 2D color image (RGB) along with a depth
map (D). RGB image provides the texture and appearance
information whereas depth map provides the distance of each
pixel from the sensor. The depth map is a characterization of
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Fig. 1. Different modes of capture: (a) RGB image, (b) depth map captured
using Kinect, and (c) Range image from 3D TEC dataset [30] obtained using
a 3D scanner.

the geometry of the face with grayscale values representing the
distance of each point from the sensor. While a RGB-D image
does not provide highly accurate 3D information, it captures
more information compared to a 2D image alone.

An RGB-D image captured using consumer devices such as
Kinect is fundamentally different from a 3D image captured
using range sensors due to the manner in which they capture
the target. Kinect captures RGB-D image by utilizing an
infrared laser projector combined with a monochrome CMOS
sensor. 3D sensors on the other hand utilize specialized high
quality sensors to obtain accurate range and texture image.
3D face recognition approaches utilize techniques such as
Principal Component Analysis (PCA) and Linear Discriminant
Analysis (LDA) to characterize a 3D face model. Some
approaches also utilize facial landmarks identified in a 3D face
model to extract local features. However, 3D face recognition
algorithms generally rely on accurate 3D data. Since the depth
map returned by RGB-D Kinect sensor is not as precise as a
3D sensor and contains noise in the form of holes and spikes,
existing 3D face recognition approaches may not be directly
applied to RGB-D images. While RGB-D images have been
used for several computer vision tasks such as object tracking,
face detection, gender recognition, and robot vision [11], [14],
[15], [17], [18], [26], there exists relatively limited work in
face recognition. Li et al. [24] proposed a face recognition
framework based on RGB-D images. The RGB-D face image
obtained from Kinect is cropped using the nose tip which
is reliably detectable via the depth map. The face is then
transformed into a canonical frontal representation and pose
correction is performed using a reference face model. The
missing data is filled by symmetric filling which utilizes the
symmetry of human faces to approximate one side of the
face with corresponding points from the other side. Smooth
resampling is then performed to account for holes and spikes.
The image is converted using Discriminant Color Space (DCS)
transform [32], [35] and the three channels are stacked into
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Fig. 2. Illustrating the steps involved in the proposed RGB-D face recognition algorithm.

one augmented vector. This vector and the depth map are
individually matched via Sparse Representation Classifier [34]
and the scores are combined. Experimental results indicate
that using both depth and color information yields around 6%
higher identification accuracy compared to color image based
algorithms. Segundo et al. [29] proposed a continuous face
authentication algorithm which utilizes Kinect as the RGB-D
sensor. The detected face image is aligned to an average face
image using the Iterative Closest Point (ICP) algorithm [2]
and a region of interest (ROI) is extracted. The ROI is then
characterized using Histogram of Oriented Gradients (HOG)
approach and utilized for matching with stored user template
for authentication. Kinect also has its own algorithm for face
recognition, the details of which are not publicly available.

While there are few algorithms that utilize RGB-D im-
ages obtained from consumer devices for face recognition,
this research presents a different perspective. As mentioned
previously, the depth maps obtained using Kinect are noisy
and of low resolution. Therefore, instead of using the depth
information to generate a 3D face model for recognition, we
utilize noise tolerant features for extracting discriminatory
information. We propose a novel face recognition algorithm
that operates on a combination of entropy and saliency features
extracted from the RGB image and depth entropy features
extracted from the depth map. The proposed algorithm also
utilizes geometric attributes of the human face to extract
geometric features. These geometric features are utilized in
conjunction with the entropy and saliency features to perform
RGB-D face recognition. The key contributions of this re-
search are:

• A novel algorithm is developed that uses both texture (ori-
ented gradient descriptor based on saliency and entropy
features) and geometric attribute features for identifying
RGB-D faces.

• IIIT-D RGB-D face database of 106 individuals is pre-
pared and shared with the research community to promote
further research in this area. A detailed experimental
protocol along with train-test splits are also shared to
encourage other researchers to report comparative results.

II. PROPOSED RGB-D FACE RECOGNITION ALGORITHM

The steps involved in the proposed algorithm are shown in
Fig. 2. The algorithm is comprised of four major steps: (a) pre-
processing, (b) computing texture descriptor from both color
image and depth map using entropy, saliency, and HOG [7],
(c) extracting geometric facial features from depth map, and

(d) combining texture and geometric features for classification.
These steps are explained in the following subsections.

A. Preprocessing

First, an automatic face detector (Viola-Jones face detector)
is applied on the RGB image to obtain the face region.
The corresponding region is also extracted from the depth
map to crop the face region in depth space. While texture
feature descriptor does not require image size normalization,
the images are resized to 100×100 to compute depth features.
Depth map is then preprocessed to remove noise (holes and
spikes). Depth map of a face is divided into 25×25 blocks
and each block is examined for existence of holes and spikes.
Depth values identified as the hole/spike are rectified using
linear interpolation, i.e. assigned the average value of their
3×3 neighborhood.

B. RISE: RGB-D Image descriptor based on Saliency and
Entropy

The motivation of the proposed RGB-D Image descriptor
based on Saliency and Entropy (termed as RISE descriptor)
lies in the nature of the RGB-D images produced by Kinect.
Specifically, as shown in Fig. 3, depth information obtained
from Kinect has high inter-class similarity and may not be
directly useful for face recognition. It is our assertion that 3D
reconstruction based approaches may not be optimal in this
scenario. However, due to low intra-class variability, depth data
obtained from Kinect can be utilized to increase robustness
towards covariates such as expression and pose after relevant
processing/feature extraction. On the other hand, 2D color
images can provide inter-class differentiability which depth
data lacks. Since the color images contain visible texture prop-
erties of a face and the depth maps contain facial geometry,
it is important to utilize both RGB and depth data for feature
extraction and classification. As shown in Fig. 4, four entropy
maps corresponding to both RGB and depth information and
a visual saliency map of the RGB image are computed. The
HOG descriptor [7] is then used to extract features from these
five entropy/saliency maps. The concatenation of five HOG
descriptors provides the texture feature descriptor which is
used as input to the trained Random Decision Forest (RDF)
classifier to obtain the match score.

1) Entropy and Saliency: Entropy is defined as the mea-
sure of uncertainty in a random variable [28]. Similarly, the
entropy of an image characterizes the variance in the grayscale
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Fig. 3. RGB-D images of two subjects illustrating the inter-class similarities
of RGB images and depth maps.

levels in a local neighborhood. The entropy H of an image
neighborhood x is given by Equation 1,

H(x) = −
n∑

i=1

p(xi)log2p(xi) (1)

where p(xi) is the value of the probability mass function for
xi. In the case of images, p(xi) signifies the probability that
grayscale xi appears in the neighborhood and n is the total
number of possible grayscale values, i.e., 255. If x is a MH×
NH neighborhood then

p(xi) =
nxi

MH ×NH
(2)

Here, nxi denotes the number of pixels in the neighborhood
with value xi. MH × NH is the total number of pixels in
the neighborhood. By controlling the size of neighborhood,
entropy computation can be performed at a fine or coarse level.
In the current research, the neighborhood size for entropy
map computation is fixed at 5×5 and RGB input images are
converted to grayscale. The visual entropy map of an image
is a characteristic of its texture and can be used to extract
meaningful information from an image. Examples of entropy
and depth entropy maps are presented in Fig. 4. The absolute
values of the depth entropy map do not vary abruptly in
adjacent regions except in special regions such as near the
eye sockets, nose tip, mouth, and chin. The local entropy of
an image neighborhood measures the amount of randomness in
texture (in local region). Higher local entropy represents higher
prominence and therefore, it can be viewed as a texture feature
map that encodes the uniqueness of the face image locally and
allows for a robust feature extraction.

Apart from entropy, we also utilize visual saliency of the
RGB image to compute useful facial information. It measures
the capability of local regions to attract the viewer’s visual
attention [8]. The distribution of visual attention across the
entire image is termed as visual saliency map of the image.
There are several approaches to compute the visual saliency
map of an image. This research utilizes the approach proposed
by Itti et al. [19]. Let the image be represented as an intensity
function which maps a set of co-ordinates (x, y) to intensity
values. The approach preprocesses a color image to normalize

Fig. 4. Illustrating the steps of the proposed RISE algorithm.

the color channels and de-couple hue from intensity. After
normalization, center-surround differences are utilized to yield
the feature maps [19]. 42 feature maps are extracted from
the image in accordance with the visual cortex processing
in mammals. Six of these maps are computed for intensity,
12 for color, and 24 for orientation across multiple scales.
Intensity and orientation feature maps are denoted by I and
O respectively. The color feature maps are represented by
RG and BY which are created to account for color double
opponency in the human primary visual cortex [10]. Based on
these maps, the saliency map of the image is computed by
cumulating the individual feature maps obtained at different
scales to one common scale (= 4) of the saliency map. This is
achieved after inhibiting the feature maps which are globally
homogeneous and promoting the maps which comprise of few
unique activation spots (global maxima) via a normalization
function N(·). The feature maps for color, intensity and
orientation are combined in separate groups to create three
feature maps Cfinal, Ifinal, and Ofinal corresponding to
color, intensity, and orientation respectively.

Cfinal =
4⊕

c=2

c+4⊕
s=c+3

[N(RG(c, s)) +N(BY (c, s))] (3)

Ifinal =
4⊕

c=2

c+4⊕
s=c+3

N(I(c, s)) (4)

Ofinal =
∑

θ∈{0◦,45◦,90◦,135◦}

N

(
4⊕

c=2

c+4⊕
s=c+3

N(O(c, s, θ))

)
(5)
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Here, c and s denote the center and surround scales re-
spectively and the

⊕
operator denotes across-scale addition

which is defined to consist of reduction of each map to the
common scale and point-wise addition [19]. These maps are
then combined into the final visual saliency map S according
to equation 6:

S =
1

3
[N(Cfinal) +N(Ifinal) +N(Ofinal)] (6)

Fig. 4 presents an example of the visual saliency map,
S, of an input face image. It models the image regions
with high feature activation in accordance with the visual
processing that occurs in the visual cortex of mammals. It
is observed that gradient orientations of this saliency map
provide discriminative information which aids in improving
the recognition performance, specifically in reducing the intra-
class discrepancies. Therefore, orientation histogram of the
saliency map of a color image (obtained using HOG approach)
is utilized as an additional feature. It is to be noted that
saliency is computed only for RGB image and not depth map
because the depth map lacks salient information and therefore,
the saliency of depth map does not provide discriminating
information.

2) Extracting Entropy Map and Visual Saliency Map: Let
the input RGB-D image be denoted as [Irgb(x, y), Id(x, y)],
where Irgb(x, y) is the RGB image and Id(x, y) is the depth
map, both of size M×N . Let both of these be defined over the
same set of (x, y) points such that x ∈ [1,M ] and y ∈ [1, N ].
Let H(Ij) denote the visual entropy map of image Ij . Here,
Ij can be the depth map or the RGB image or a small part of
these images. Two image patches are extracted for both Irgb
and Id. Two patches, P1 of size M

2 ×
N
2 centered at [M2 , N

2 ],
and P2 of size 3M

4 ×
3N
4 centered at [M2 , N

2 ] are extracted from
Irgb. Similarly, two patches P3 and P4 are extracted from Id.
Four entropy maps E1−E4 are computed for patches P1−P4

using Equation 7:

Ei = H(Pi), where i ∈ [1, 4] (7)

E1, E2 represent the entropy of the color image (Irgb) and
E3, E4 represent the depth entropy maps.

The proposed RISE algorithm also extracts visual saliency
map S1 of the color image Irgb using Equation 8.

S1(x, y) = S(Irgb(x, y)∀(x ∈ [1,M ], y ∈ [1, N ])) (8)

3) Extracting Features using HOG: HOG [7] descriptor
produces the histogram of a given image in which pixels
are binned according to the magnitude and direction of their
gradients. HOG has been successfully used as a feature and
texture descriptor in many applications related to object de-
tection, recognition, and other computer vision problems [6],
[12], [31]. HOG of an entropy map or saliency map encodes
the gradient direction and magnitude of the image variances in
a fixed length feature vector. The information contained in the
entropy/saliency map can therefore be represented compactly
with a HOG histogram. Further, histogram based feature
encoding enables non-rigid matching of the entropy/saliency
characteristics which may not be possible otherwise.

In the proposed RISE algorithm, HOG is applied on the
entropy and saliency maps. The entropy maps are extracted
from patches Pi which allows capturing multiple granularities
of the input image. Let D(·) denote the HOG histogram; the
proposed algorithm computes HOG of entropy maps using the
following equation:

Fi = D(Ei), where i ∈ [1, 4] (9)

Here, F1 represents the HOG of entropy map E1 defined over
patch P1 and F2 represents the HOG of entropy map E2

defined over patch P2 of Irgb. Similarly, F3 and F4 represent
the HOG of entropy maps E3 and E4 defined over patches P3

and P4 of Id respectively. F1 and F2 capture traditional texture
information but instead of directly using visual information,
entropy maps are used to make the descriptor robust against
intra-class variations. F3 and F4 capture the depth information
embedded in the RGB-D image.

Next, HOG descriptor of visual saliency map, S1 is com-
puted using Equation 10. The final descriptor F is created
using an ordered concatenation of the five HOG histograms
as shown in Equation 11.

F5 = D(S1(Irgb)) (10)

F = [F1, F2, F3, F4, F5] (11)

Concatenation is used to facilitate training by reducing five
vectors to a single feature vector. Since each HOG vector is
small, the resulting concatenated vector has a small size which
helps in reducing the computational requirement. The feature
vector F is provided as input to a multi-class classifier.

4) Classification: To establish the identity of a given
probe, a multi-class classifier such as Nearest Neighbor (NN),
Random Decision Forests (RDFs) [16], and Support Vector
Machines (SVM) can be used. However, the classifier should
be robust for large number of classes, computationally in-
expensive during probe identification, and accurate. Among
several choices, RDFs being an ensemble of classifiers, can
produce non-linear decision boundaries and handle multi-class
classification. RDFs are also robust towards outliers compared
to the Nearest Neighbor algorithm, since every tree in the
forest is only trained with a small subset of data. Therefore, the
probability of an entire collection of trees making an incorrect
decision due to a few outlier data points is very low. Moreover,
as per the experimental results in the preliminary research,
RDF is found to perform better than NN [13]. Other classifiers
such as SVM require significantly more training data per class.
Therefore, in this research, RDF is used for classification. In
RDF training, the number of trees in the forest and the fraction
of training data used to train an individual tree control the
generalizability of the forest. These parameters are obtained
using the training samples and a grid search. Here, each feature
descriptor is a data point and the subject identification number
is the class label, therefore, the number of classes is equal to
the number of subjects. The trained RDF is then used for probe
identification. A probe feature vector is input to the trained
RDF which provides a probabilistic match score for each
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Fig. 5. Steps involved in the proposed ADM approach.

class. This match score denotes the probability with which
the feature vector belongs to a particular class. To summarize,
the RISE algorithm is presented in Algorithm 1.

Data: Preprocessed RGB-D image, Irgb, denotes the
color image and Id denotes the depth map

Result: The RISE descriptor for the given RGB-D image
F

for i← 1 to 2 do
Ei = Entropy map of patch Pi of grayscale(Irgb);

end
for i← 3 to 4 do

Ei = Entropy map of patch Pi of Id;
end
S = Saliency map of Irgb;
E5 = Entropy map of S;
for i← 1 to 5 do

Fi = HOG of Ei;
F = Concatenation of Hi;

end
Algorithm 1: The RISE algorithm

C. ADM: Attributes based on Depth Map

Attribute based methodologies have been applied success-
fully in image retrieval [21], [23] and face verification [22]. In
RGB-D face recognition, it can be a useful additional feature.
However, instead of qualitative or descriptive attributes such
as gender, age, and complexion, the proposed Attributes based
on Depth Map (ADM) algorithm extracts geometric attributes.
Multiple geometric attributes can be utilized to describe a face
such as the distances between various key facial features such
as eyes, nose, and chin. By exploiting the uniform nature
of a human face, key facial landmarks can be located and
utilized to extract geometric attributes that can be used for
face recognition in conjunction with the entropy and saliency
features. An overview of the ADM approach is illustrated in
Fig. 5. The ADM approach consists of the following steps.

1) Keypoint Labeling: To extract geometric attributes, first
a few facial key points are located with the help of depth
map. The points such as nose tip, eye sockets, and chin can
be extracted by using a ”rule template”. In a detected face

depth map, the nose tip is closest point from the sensor, the
two eye sockets are always located above the nose tip and
at a higher distance than their local surrounding regions (due
to cheek bones and eyebrows being at a lesser distance), the
chin can be detected as the closest point to the sensor below
the nose tip. Utilizing these key points, some other landmarks
such as the nose bridge and eyebrow coordinates can also be
located. By using a standard set of landmarks for all faces,
a consistent way to compute geometric measurements of the
face is possible.

2) Geometric Attribute Computation: To obtain the geo-
metric attributes, various distances between these landmark
points are computed: inter-eye distance, eye to nose bridge
distance, nose bridge to nose tip distance, nose tip to chin
distance, nose bridge to chin distance, chin to eye distance,
eyebrow length, nose tip distance to both ends of both eye-
brows, and overall length of the face. Since the measured value
of these parameters may vary across pose and expression, mul-
tiple gallery images are utilized to extract the facial features.
Attributes are computed individually for each gallery image
and the distances are averaged. In this manner, a consistent
set of attributes is computed for a subject. These contribute
towards the attribute feature vector for the RGB-D face image.

3) Attribute Match Score Computation: The attributes for
a probe are computed similar to gallery images. Once the
attributes are computed for a probe, the match score Φ is
computed for each subject in the gallery using Equation 12.

Φ =

N∑
i=1

wi × (Ai − ai)
2 (12)

Here, Ai and ai are the ith attributes of the probe image and
the gallery image respectively. wi is the weight of the ith

attribute and N is the total number of attributes. wi is used to
assign different weights to different attributes depending upon
how reliably they can be computed. In this research, wi is opti-
mized using grid search for efficient identification performance
on the training dataset. After computation, the match scores
from each subject can be utilized for identification. However,
in the proposed approach it is combined with the match score
obtained by RISE algorithm for taking the final decision.
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D. Combining RISE and ADM

The match scores obtained by RISE and ADM algorithms
can be combined in various ways. In this research, we explore
two types of fusion:

1) Match Score Level Fusion: Match score level fusion is
performed using the weighted sum rule [27]. Let ΦRISE be
the match score obtained using the RISE approach and ΦADM

be the match score obtained by the ADM approach. The fused
match score Φfused is computed as,

Φfinal = wRISE × ΦRISE + wADM × ΦADM (13)

where wRISE and wADM are the weights assigned to the RISE
and ADM match scores respectively.

2) Rank Level Fusion: Rank level fusion is performed using
Weighted Borda Count approach [27]. Weighted Borda count
allocates a score to a subject depending on its rank in both the
ranked lists and then creates a new ranked list for identification
based on these scores. The ranked list of subjects is created
using both RISE and ADM match scores individually. These
ranked lists are then combined by computing a new match
score for each subject based on these ranked lists according
to Equation 14.

Rfsubj =∑
i=RISE,ADM

Rmax∑
j=1

{
wi(Rmax − j) if Rij = rank(subj)

0 otherwise

(14)

Here, Rmax denotes the maximum (worst) possible rank value.
wRISE and wADM denote the weights for RISE and ADM
respectively. Similarly, RRISE and RADM denote the ranked
lists of RISE and ADM respectively. The weights wRISE and
wADM can be used to control the number of points that the
ranked lists of RISE and ADM can provide to the subject.
Rij = rank(subj) signifies the condition that the subject
has rank j in the ith ranked list.

III. EXPERIMENTAL RESULTS

The performance of the proposed approach is analyzed via
two types of experiments. First, the experiments are conducted
on the IIIT-D RGB-D dataset to analyze the performance of the
proposed approach with various combinations of constituent
components and their parameters. Thereafter, the performance
is compared with existing 2D and 3D approaches on an
extended dataset.

A. Database and Experimental Protocol

There are a few existing RGB-D databases in literature.
The EURECOM [18] database has 936 images pertaining
to 52 subjects and the images are captured in two sessions
with variations in pose, illumination, view, and occlusion.
The VAP RGB-D [15] face database contains 153 images
pertaining to 31 individuals. The dataset has 51 images for
each individual with variations in pose. However, both of

Session 1

Session 2

Fig. 6. Sample images of a subject in two sessions from the IIIT-D RGB-D
database.

these datasets contain images pertaining to a relatively small
number of individuals. To evaluate the performance of face
recognition, a larger dataset is preferable. Therefore, the IIIT-
D RGB-D database1 is prepared for the experiments. This
database contains 4605 RGB-D images pertaining to 106
individuals captured in two sessions using Kinect sensor and
OpenNI SDK. The resolution of both the color image and the
depth map is 640×480. The number of images per individual
is variable with a minimum of 11 images and a maximum
of 254 images. In this database, the images are captured in
normal illumination with variations in pose and expression (in
some cases, there are variations due to eye-glasses as well).
Some sample images for a subject in the IIIT-D database
are presented in Fig. 6. Using these three datasets, two
types of experiments are performed. The initial experiments
are performed on the IIIT-D RGB-D dataset to analyze the
component-wise performance of the proposed RISE approach
as well as to study the impact of weights and gallery size on
the identification performance. Thereafter, the IIIT-D RGB-D
dataset is merged with the EURECOM [18] and VAP [15]
datasets to create an extended dataset of 189 individuals. The
extended dataset is used to compare the performance of the
proposed algorithm with existing 2D and 3D approaches.

The experimental protocol for each experiment is detailed
below:

• Experiment 1: 40% of the IIIT-D Kinect RGB-D
database is used for training and validation. The training
dataset is utilized to compute the weights involved in
ADM approach, RDF classifier parameters, and weights

1The database and ground truth information is available via
https://research.iiitd.edu.in/groups/iab/rgbd.html
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TABLE I
EXPERIMENTAL PROTOCOL FOR BOTH INITIAL AND EXTENDED

EXPERIMENTS.

Experiment Database No. of No. of Subjects
Images Training Testing

Experiment 1 IIIT-D RGB-D 4605 42 64

Experiment 2 IIIT-D RGB-D +
VAP + EURECOM 5694 75 114

for fusion. Note that RDF classifier is separately trained
for the initial and extended experiments by utilizing the
respective training datasets. After training and parameter
optimization, the remaining 60% dataset (unseen sub-
jects) is used for testing. The results are computed with
five times random subsampling. In each iteration of the
subsampling, the subjects chosen for training/testing as
well as the gallery images selected for each subject are
randomly selected. Gallery size is fixed at four images
per subject.

• Experiment 2: The extended database of 189 subjects
is used for this experiment. Images pertaining to 40%
individuals from the extended database are used for
training and the remaining 60% unseen subjects are used
for testing. To create the complete subject list for the
extended dataset, the subjects are randomly subsampled
within the three datasets according to 40/60 partition-
ing and then merged together to form one extended
training/testing partition. Therefore, the extended training
dataset has proportionate (40%) representation from each
of the three datasets. The number of images available per
individual varies across the three datasets and therefore
the gallery size for the extended dataset experiment is
fixed at two gallery images per individual. The remaining
images of the subject are used as probe.

Cumulative Match Characteristics (CMC) curves are com-
puted for each experiment and the average accuracy values
are presented along with standard deviations across random
subsamples. The experimental protocol for all the experiments
are summarized in Table I.

The performance of the proposed algorithm is compared
with several existing algorithms namely: Four Patch Local
Binary Patterns (FPLBP) [33], Pyramid Histogram of Oriented
Gradients (PHOG) [1], Scale Invariant Feature Transform
(SIFT) [25], and Sparse representation [34]. Besides these
methods which utilize only 2D information, a comparison is
also performed with 3D-PCA based algorithm [5] which com-
putes a subspace based on depth and grayscale information.

B. Results and Analysis: Experiment 1

Component-wise analysis: As discussed in Section II, the
proposed RISE algorithm has various components: entropy,
saliency, and depth information. The experiments are per-
formed to analyze the effect and relevance of each component.
The performance of the proposed algorithm is computed in the
following six cases:

• Case (a) RGB-D and saliency without entropy: RGB
image and depth map are used directly instead of entropy

maps, i.e., F = [F1, F2, F3, F4, F5], where Fi = D(Pi)
instead of Fi = D(H(Pi)), ∀i ∈ [1, 4].

• Case (b) RGB only: Only the RGB image is used to ex-
tract entropy and saliency features, i.e., F = [F1, F2, F5]

• Case (c) RGB-D only: Only the entropy maps are used,
saliency is not used, i.e., F = [F1, F2, F3, F4]

• Case (d) RGB and saliency without entropy: RGB
information is used directly instead of entropy maps,
i.e., F = [F1, F2, F5], where Fi = D(Pi) instead of
Fi = D(H(Pi)), ∀i ∈ [1, 2].

• Case (e) RGB-D only without entropy: RGB-D infor-
mation is used directly instead of entropy maps, i.e.,
F = [F1, F2, F3, F4], where Fi = D(Pi) instead of
Fi = D(H(Pi)), ∀i ∈ [1, 4].

• Case (f) RGB only without saliency: F = [F1, F2]

These cases analyze the effect of different components
of the proposed algorithm on the overall performance. For
example, if the descriptor performs poorly in case (a), it
suggests that not using entropy maps for feature extraction is
detrimental to the descriptor. Similar inferences can potentially
be drawn from the results of other five cases. Comparing
the performance of the proposed descriptor with entropy,
saliency and depth information can also determine whether
the proposed combination of components improves the face
recognition performance with respect to the individual com-
ponents.

The results of individual experiments are shown in Fig. 7. It
is observed that removing any of the components significantly
reduces the performance of the proposed algorithm. For ex-
ample, the CMC curve corresponding to case (c) shows that
the contribution of including visual saliency map as an added
feature is important. It is observed that saliency is relevant
towards stabilizing the feature descriptor and preserving intra-
class similarities. Further, in cases (d) and (e), it is observed
that including depth without computing entropy performs
worse than not including depth information but using entropy
maps to characterize the RGB image. Intuitively, this indicates
that directly using depth map results in more performance loss
than not using depth at all. This is probably due to the fact
that depth data from Kinect is noisy and increases intra-class
variability in raw form. Overall, the proposed algorithm yields
95% rank 5 accuracy on IIIT-D database. Further, Table II
shows the comparison of the proposed algorithm with existing
algorithms. The results indicate that, on the IIIT-D database,
the proposed algorithm is about 8% better than the second best
algorithm (in this case, Sparse representation [34]). Compared
with 3D-PCA algorithm, the proposed algorithm is able to
yield about 12% improvement.

Fusion of algorithms: Experiments are performed with vari-
ous combinations of the proposed RISE and ADM approaches
as well as 3D-PCA [5]. In order to fuse 3D-PCA with RISE
and ADM, both weighted sum rule and weighted Borda count
can be utilized. The results of this experiment are presented
in Fig. 8. W.B.C. refers to rank level fusion using Weighted
Borda Count and W.S. refers to match score level fusion using
Weighted Sum rule. The key analysis are explained below:

• The proposed RISE + ADM with weighted sum rule
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Fig. 7. Analyzing the proposed RISE algorithm and its individual components
on the IIIT-D RGB-D face database.

yields the best rank 5 identification accuracy of 95.3%.
RISE+ADM approach using weighted Borda count also
performs well providing an accuracy of 79.7% which is
better than the remaining combinations at rank 1.

• Even though RISE+ADM+3D-PCA performs second best
with rank 5 identification accuracy of 93.7%, the dif-
ference in performance at rank 1 is 10.9% lower than
RISE+ADM (W.S.) and the use of 3D-PCA also adds to
the computational complexity.

• The weighted sum variants of the combinations perform
consistently better than their weighted Borda count vari-
ants. This indicates that match score level fusion performs
better than rank level fusion. However, it is also notable
that the difference in performance for all approaches
reduces at rank 5 compared to rank 1. This implies that
any advantage gained by utilizing one approach over
the other diminishes at higher ranks as the criteria for
successful identification is relaxed.

Since weights are involved in both weighted Borda count
and weighted sum approaches, it is interesting to observe
how the performance of the proposed algorithm varies with
the variation in weights. The results of this experiment are
presented in Figs. 9 and 10 for weighted sum rule and
weighted Borda count respectively. The number in parenthesis
after the algorithm indicates their weight in the approach. For
example, RISE (0.5) + ADM (0.5) implies that both RISE and
ADM are allocated equal weights. Based on these results, the
following analysis can be performed:

• The best performance is achieved with RISE (0.7) +
ADM (0.3) for both the fusion algorithms. This indicates
that texture features extracted by RISE are more infor-
mative for identification and therefore must be assigned
higher weight. However, the geometric features from
ADM also contribute towards the identification perfor-
mance after fusion, thereby increasing the rank 5 accuracy
from 92.2% (RISE only) to 95.3% (RISE + ADM) when
weighted sum rule is utilized.

• The performance of weighted Borda count is lower than
weighted sum possibly because of the loss of information
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Fig. 8. Analyzing the performance of different combinations of the proposed
algorithm with 3D PCA and fusion algorithms on the IIIT-D RGB-D face
database.
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Fig. 11. Analyzing the effect of gallery size on the identification performance
on the IIIT-D RGB-D face database.
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Fig. 12. Comparing the performance of the proposed approach with existing
2D and 3D approaches on the extended database.

that occurs in using the ranked list for fusion instead of
the match scores.

• Experiments have been conducted to assess the perfor-
mance with all other combinations of weights as well,
but none of these combinations perform better than RISE
(0.7) + ADM (0.3).

Analysis with gallery size: All the experiments described
above on the IIIT-D RGB-D database are performed with
a gallery size of four. To analyze the effect of gallery size
on the identification performance, additional experiments are
performed by varying the number of images in the gallery.
The results of this experiment are presented in Fig. 11 and the
analysis is presented below.

• The curve indicates that the performance of RISE, ADM
and the proposed RISE+ADM approach increases with
increase in gallery size. However, the maximum incre-
ment is observed from gallery size 1 to gallery size 2 in
the ADM approach. This major performance increment
of 22.6% can be credited to the possibility that using
only single gallery image yields approximate geometric

TABLE II
IDENTIFICATION ACCURACY (%) FOR THE RECOGNITION EXPERIMENTS

ON IIIT-D RGB-D FACE DATABASE AND EURECOM DATABASE
INDIVIDUALLY. THE MEAN ACCURACY VALUES ARE REPORTED ALONG

WITH STANDARD DEVIATION.

Modality Descriptor Rank 5 Identification Accuracy (%)
IIIT-D RGB-D EURECOM

2D

SIFT 50.1±1.4 83.8±2.1
HOG 75.1±0.7 89.5±0.8
PHOG 81.6±1.4 90.5±1.0
FPLBP 85.0±0.7 94.3±1.4
Sparse 87.2±1.9 84.8±1.7

3D 3D-PCA 83.4±2.1 94.1±2.7
RISE + ADM 95.3±1.7 98.5±1.6

attributes. As soon as more than one sample becomes
available, the averaging process increases the reliability
of the geometric attributes and hence there is a significant
increase in performance.

• With the above discussed exception, the performance
of each approach increases consistently but in small
amounts with increase in gallery size. Therefore, after
a certain point, increasing gallery size does not provide
high returns in terms of the performance. It is notable that
even with single gallery image, the proposed algorithm
yields the rank 5 identification accuracy of 89%.

Assessing the accuracy of ADM keypoint labeling: The
performance of ADM approach is dependent on the key-
point labeling phase. In order to determine the accuracy of
this phase, manual keypoint labels are collected via crowd-
sourcing. Human volunteers are requested to label the key-
points (nose, left eye, right eye and chin) on 10 images of
every subject. The average of human-annotated keypoint co-
ordinates is computed and compared with the automatically
obtained keypoints. An automatic keypoint is considered to
be correct if it lies within a small local neighborhood of
the average human-annotated keypoint. It is observed that the
overall accuracy of automated keypoint labeling, using manual
annotations as ground truth, on the IIIT-D Kinect RGB-D
database is 90.1% with a 5 × 5 neighborhood and 93.6%
with a neighborhood size of 7 × 7. Based on the performance
of ADM on individual frames, it can be noted that it performs
the best on near frontal frames and semi-frontal frames.

Performance on EURECOM: Performance of the proposed
algorithm is also compared with existing algorithms on the
EURECOM dataset. In order to perform this recognition
experiment, the gallery sizes for the EURECOM dataset is
fixed at 2 images per subject. The results of this experiment
are presented in Table II. The analysis is similar to the IIIT-
D database and the proposed algorithm yields an accuracy
of 98.5% rank-5 identification accuracy which is around 4%
better than existing algorithms. Note that the EURECOM
database is relatively smaller than IIIT-D database and there-
fore, near perfect rank 5 accuracy is achieved.

C. Results and Analysis: Experiment 2
The proposed RISE + ADM approach is compared with

some existing 2D and 3D approaches on the extended dataset
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TABLE III
IDENTIFICATION ACCURACY (%) FOR THE EXTENDED EXPERIMENTS. THE

MEAN ACCURACY VALUES ARE REPORTED ALONG WITH STANDARD
DEVIATION.

Modality Descriptor Rank 1 Rank 5

2D

SIFT 55.3 ± 1.7 72.8 ± 2.1
HOG 58.8 ± 1.4 76.3 ± 1.8
PHOG 60.5 ± 1.6 78.1 ± 1.1
FPLBP 64.0 ± 1.1 80.7 ± 2.0
Sparse 65.8 ± 0.6 84.2 ± 0.8

3D

3D-PCA 67.5 ± 1.2 82.5 ± 1.9
RISE+ADM (W.B.C.) 76.3 ± 1.0 90.3 ± 1.1
RISE+ADM (W.S.) 78.9 ± 1.7 92.9 ± 1.3

TABLE IV
A DETAILED COMPARATIVE ANALYSIS OF THE PROPOSED ALGORITHM

WITH 3D-PCA, FPLBP, AND SPARSE APPROACHES. T AND F REPRESENT
TRUE AND FALSE RESPECTIVELY. TRUE GROUND TRUTH REFERS TO

GENUINE CASES AND FALSE GROUND TRUTH REFERS TO THE IMPOSTOR
CASES.

Algorithm Results Ground Truth
True False

3D-PCA=T, Proposed=T 61.9% 5.3%
3D-PCA=F, Proposed=T 21.3% 5.4%
3D-PCA=T, Proposed=F 10.0% 24.3%
3D-PCA=F, Proposed=F 6.8% 65.0%
FPLBP=T, Proposed=T 61.8% 6.8%
FPLBP=F, Proposed=T 27.6% 3.4%
FPLBP=T, Proposed=F 6.3% 25.3%
FPLBP=F, Proposed=F 4.3% 64.5%
Sparse=T, Proposed=T 68.6% 3.2%
Sparse=F, Proposed=T 18.7% 11.4%
Sparse=T, Proposed=F 8.0% 26.0%
Sparse=F, Proposed=F 4.7% 59.4%

(Experiment 2). The identification performance of these ap-
proaches is presented in Fig. 12 and summarized in Table III.
The results indicate that the proposed RISE+ADM algorithm
(both weighted sum and weighted Borda count versions)
outperforms the existing approaches by a difference of around
8% in terms of the rank 5 identification performance. The
proposed algorithm yields the best results at rank 1 with an
accuracy of 78.9% which is at least 11.4% better than second
best algorithm, 3D-PCA.

Detailed comparison with other algorithms: In order to
compare the performance of the proposed algorithm with other
top performing algorithms, a comparative study is performed.
The details of this study are presented in Table IV. As is
evident from the results presented, the proposed algorithm is
able to correctly determine ground truth in the case of a wrong
decision by another algorithm more often than the reverse
case, i.e., when another algorithm is correct and the proposed
algorithm is incorrect. For example, the percentage of impostor
cases when 3D-PCA is incorrect and the proposed algorithm
is correct is 24.30% whereas the percentage of impostor cases
where the proposed algorithm is incorrect and 3D-PCA is
correct is only 5.38%.

In order to further analyze the performance, we examine two
types of results. Fig. 13 contains two samples of gallery and
probe images. Case 1 is when all the algorithms could match
the probe to the gallery image and successfully identify the
subject. Case 2 is when only the proposed algorithm is able

Fig. 13. Analyzing the performance of the proposed algorithm. The first row
(Case 1) presents sample gallery and probe images when all the algorithms
are able to recognize. The second row (Case 2) presents example gallery and
probe images when only the proposed algorithm is able to correctly identify
the subject at rank-1.

to identify the subject and other algorithms provide incorrect
results. As it can be seen from the example images of Case 1,
when there are minor variations in expression and pose, all the
algorithms are able to correctly identify. However, as shown in
case 2, the proposed algorithm is able to recognize even when
there are high pose and expression variations. Thus, it can
be concluded that the proposed descriptor outperforms these
existing 2D and 3D approaches. In summary, this difference
in performance can be attributed to the following reasons:

• The RISE descriptor uses depth information in addition
to traditional color information which allows it to utilize
additional sources for feature extraction. After charac-
terization by local entropy, the depth map is able to
mitigate the effect of illumination and expression. The
geometrical attributes obtained from the ADM approach
further contribute towards resilient identification.

• The proposed descriptor utilizes saliency map for feature
extraction to model visual attention. The saliency dis-
tribution of a face is not significantly affected by pose
variations and therefore it provides tolerance to minor
pose variations.

• Compared to existing approaches, entropy and saliency
maps of RGB-D images are not highly affected by noise
such as holes in depth map and low resolution, and there-
fore, yield higher performance. The additional geometric
attributes are another source of noise tolerant features as
they are averaged across multiple gallery images.

D. Experiments on 3D TEC dataset

In order to evaluate the performance of the proposed RGB-D
recognition algorithm on other 3D databases, identification re-
sults are also presented on the 3D-Twins Expression Challenge
(3D TEC) dataset [30]. The database contains images pertain-
ing to 107 pairs of twins acquired using a Minolta VIVID
910 3D scanner in controlled illumination and background.
The range and texture images are of 480 × 640 resolution.
The dataset provides four sets for performing identification
experiments between two twins, A and B. Each set defines
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TABLE V
RANK-ONE IDENTIFICATION ACCURACIES ON THE 3D TEC [30] DATASET.
THE RESULTS OF OTHER ALGORITHMS ARE PRESENTED AS REPORTED IN

[30]. THE PROPOSED ALGORITHM ACHIEVES CLOSE TO
STATE-OF-THE-ART PERFORMANCE.

Algorithm Rank 1 Identification Accuracy
I II III IV

Alg. 1 (Epkn) 93.5% 93.0% 72.0% 72.4%
Alg. 1 (Eminmax) 94.4% 93.5% 72.4% 72.9%
Alg. 2 (SI) 92.1% 93.0% 83.2% 83.2%
Alg. 2 (eLBP) 91.1% 93.5% 77.1% 78.5%
Alg. 2 (Range PFI) 91.6% 93.9% 68.7% 71.0%
Alg. 2 (Text, PFI) 95.8% 96.3% 91.6% 92.1%
Alg. 3 62.6% 63.6% 54.2% 59.4%
Alg. 4 98.1% 98.1% 91.6% 93.5%
Proposed 95.8% 94.3% 90.1% 92.4%

the gallery and probe images for each twin according to the
expression variations (smile or neutral). Further details of these
sets are provided in [30].

Along with the proposed algorithm, we also compare the
results with four existing algorithms that participated in the
Twin Expression Challenge, 2012. The existing algorithms,
Alg. 1 to Alg. 4, are designed to utilize rich 3D maps and/or
texture information captured using telephoto lens equipped
Minolta scanner. The details of these algorithms and their
results are available in [30]. Table V presents the results of the
proposed and four existing algorithms on the 3D TEC dataset.
As shown in Table V, even though the proposed algorithm
does not fully utilize rich depth maps, it achieves the second
best performance on two of the four sets and is able to yield
close to state-of-the-art performance with more than 90% rank
1 accuracy on all four sets.

IV. CONCLUSION

Existing face recognition algorithms generally utilize 2D
or 3D information for recognition. However, the performance
and applicability of existing face recognition algorithms is
bound by the information content or cost implications. This
research proposes a novel RISE algorithm that utilizes the
depth information along with RGB images obtained from
Kinect to improve the recognition performance. The proposed
algorithm uses a combination of entropy, visual saliency, and
depth information with HOG for feature extraction and random
decision forest for classification. Further, the ADM algorithm
is proposed to extract and match geometric attributes. ADM is
then combined with the RISE algorithm for identification. The
experiments performed on the RGB-D databases demonstrate
the effectiveness of the proposed algorithm and show that it
performs better than some existing 2D and 3D approaches
of face recognition. Future research can be directed towards
incorporating depth data in video face recognition [4].

APPENDIX

The performance of the proposed algorithm is also com-
pared with a commercial system (3D-COTS)2. COTS employs
a 3D model reconstruction for each subject using the gallery

2Name of the commercial system is suppressed due to the constraints in
the license agreement.
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Fig. 14. Comparing the identification performance of the proposed algorithm
with COTS on all three databases.

RGB images. RGB probe image is also converted to 3D model
for matching. The details of reconstruction algorithm are
not available. Fig. 14 presents a comparison of identification
performance between COTS and the proposed algorithm. It
is evident that the proposed algorithm is able to consistently
achieve better performance. The failure of COTS can be
attributed to the 3D reconstruction method which possibly
suffers from low spatial resolution of RGB images.
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