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Abstract

Face verification, though for humans seems to be an easy

task, is a long-standing research area. With challenging

covariates such as disguise or face obfuscation, automat-

ically verifying the identity of a person is assumed to be

very hard. This paper explores the feasibility of face verifi-

cation under disguise variations using multi-spectrum (vis-

ible and thermal) face images. We propose a framework,

termed as Anāvr. ta1, which classifies the local facial re-

gions of both visible and thermal face images into biometric

(regions without disguise) and non-biometric (regions with

disguise) classes. The biometric patches are then used for

facial feature extraction and matching. The performance

of the algorithm is evaluated on the IIITD In and Beyond

Visible Spectrum Disguise database that is prepared by the

authors and contains images pertaining to 75 subjects with

different kinds of disguise variations. The experimental re-

sults suggest that the proposed framework improves the per-

formance compared to existing algorithms, however there is

a need for more research to address this important covari-

ate.

1. Introduction

Face recognition2 has been an interesting area of re-

search for more than five decades [29]. The pursuit to find

the most accurate face representation and perform recog-

nition has passed through shifts in the paradigm [29], as

well as shifts in the challenges addressed. Earlier research

has primarily focused on the covariates of pose, illumina-

tion and expression whereas recently, the challenges such

as twins [17], face alterations due to plastic surgery [21],

sketch-to-photo matching [3, 12], multi-spectrum matching

[6, 11, 22], and disguise [18, 24] are also being explored.

Disguise is an interesting and a challenging covariate of

face recognition. It involves intentional or unintentional

changes on face through which one can either obfuscate

his/her identity and/or impersonate someone else’s identity.

1Anāvr.ta is a Sanskrit word which means uncovered.
2In this paper, recognition and verification are interchangeably used.

Figure 1. Same person can appear differently by the use of disguise

accessories. The images belong to a famous Indian actor, Amitabh

Bachchan, with various disguise variations. Images are taken from

Internet.

In either case, facial disguise falls under the broader cate-

gory of biometric obfuscation [27]. Figure 1 shows an ex-

ample of face obfuscation, where the appearance of a sub-

ject can vary by using different disguise accessories. (Note

that the images in Figure 1 may be affected by covariates

other than disguise, e.g. aging; however, in this work we

are concentrating on disguise only). Disguise increases the

within-class variation (when it is used to hide one’s identity)

and reduces the between-class variation (when it is used

to impersonate someone else). Even though the problem

of face recognition under disguise is very prevalent in real

world applications, it has not been studied extensively. Ta-

ble 1 presents a brief overview of research papers related to

face recognition under disguise variations. Note that most

of the research has been performed in visible spectrum us-

ing the AR [13] and Yale [2] face databases which con-

tains very limited disguise (sunglasses and scarves only).

Researchers have also suggested that the effect of occlu-

sion cannot be circumvented by using only visible spectrum

[16, 23, 24]. Though thermal imaging has been used for

face recognition [6, 20, 22], to the best of our knowledge,

its usefulness has not been explored for addressing disguise

variations. Unlike single spectrum face recognition, [6, 22]

provide motivation for utilizing visible and thermal spec-

trum together for improved face recognition.

To make face recognition more usable and secure, it is

necessary to address the problem of (at least unintentional)

disguise. As discussed earlier, it is difficult to address

the problem using visible spectrum images alone. There-

fore, this research attempts to combine the information ob-

tained from both visible and thermal spectrum images to



Algorithm
Basic

approach

Disguise

detection

Disguise /

Occlusion

detected as

Face

recognition
Spectrum Database

Ramanathan et al. [18] PCA Yes
Left/right

half face
Yes Visible

National

Geographic, AR

Singh et al. [24]
2D-log polar

Gabor
No - Yes Visible

AR, Private∗,

Synthetic

Disguise+

Martinez [14]
Probabilistic

matching
No - Yes Visible AR

Wright et al. [25] SRC No - Yes Visible AR, Yale B [2]

Kim et al. [9] ICA No - Yes Visible AR, FERET

Yang and Zhang [26] Gabor SRC No - Yes Visible AR, Yale B

Pavlidis and Symosek [16] - Yes
Not

explicitly
No Near-IR -

Yoon and Kee [28] PCA + SVM Yes
Upper/lower

half
No Visible AR, Private×

Kim et al. [10] PCA + SVM Yes
Upper/lower

half
No Visible AR, Private×

Choi and Kim [7]

AdaBoost +

MCT-based

features

Yes
Left-right

eye, mouth
No Visible AR

Min et al. [15]
Gabor + PCA

+ SVM, LBP

Yes (Gabor +

PCA +

SVM)

Upper/lower

half
Yes (LBP) Visible AR

Proposed ITE, LBP Yes (ITE)
Individual

patches
Yes (LBP)

Visible

and

Thermal

I2BVSD

Table 1. Existing algorithms for addressing disguise variations. AR database [13] contains 3200+ images pertaining to 126 subjects with

two kinds of disguises (sunglasses and scarves). The National Geographic (NG) dataset contains 46 images of 1 individual, with various

accessories such as hat, glasses, sunglasses, and facial hair. ∗Private dataset of 150 images pertaining to 15 individuals which contains

similar real and synthetic disguise variations as in NG dataset. +Synthetic disguise dataset of 4000 images pertaining to 100 individuals.
×Private datasets are collected by researches in real world scenarios from ATM (automatic teller machine) kiosk. PCA, SRC, ICA, and

SVM are abbreviations of principal component analysis, sparse representation classifier, independent component analysis, and support

vector machines, respectively.

improve the performance of face recognition algorithms for

disguise. The main contributions of the paper are: (1) a

multi-spectrum framework to address the problem of dis-

guise, (2) a descriptor for better encoding of disguise varia-

tions, (3) multi-spectrum face database with disguise varia-

tions, and (4) performance evaluation of the proposed tech-

nique and comparison with existing algorithms and a com-

mercial off-the-shelf (COTS) face recognition system.

2. Anāvr.ta: Framework for Recognizing Dis-

guised Faces

Pavlidis and Symosek [16] have suggested that detect-

ing disguise is necessary to efficiently recognize disguised

faces. Inspired from [16], our hypothesis is:

“The facial part or patches which are under the effect of

disguise (or occluded in most of the cases), are not only

un-useful for face recognition, but may also provide mis-

leading information. It is this misleading information that

a person uses to hide his/her own identity and/or to imper-

sonate someone else.”

Building upon this intuition, we propose a framework,

termed as Anāvr.ta, for recognizing faces with variations in

disguise. As illustrated in Figure 2, there are two cascaded

stages in the proposed framework:

1. Patch Classification: It comprises dividing face im-

age into patches and classifying them into biometric or

non-biometric classes.

2. Patch based Face Recognition: Biometric patches are

matched using local binary pattern (LBP) based face

recognition algorithm.

2.1. Patch Classification

Several researchers have proposed patch or part-based

face recognition in literature [1, 5] and evaluated the per-

formance of individual parts for face recognition. To the
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Figure 2. Illustrating the steps involved in the proposed multi-spectrum face recognition framework. The framework provides the flexibility

to perform face recognition using either multi-spectrum or visible spectrum only.

best of our knowledge, [15] is the only work in literature

which uses occlusion detection, to enhance the recognition

performance. In applications such as law-enforcement, ana-

lyzing the patches to determine whether they are genuine fa-

cial regions or accessories is very important. The proposed

patch classification algorithm therefore aims to classify the

patches into biometric and non-biometric classes.

• Biometric patches are those facial parts that are not

disguised; and hence they are useful for recognition.

• Non-biometric patches/artifacts are facial parts that

are disguised. These patches may reduce the perfor-

mance and should be avoided as far as possible.

Figure 3. Example of biometric and non-biometric patches. The

first row contains biometric patches and the second row contains

non-biometric patches. These patches are for illustration only, and

are not part of our database.

Figure 3 shows some examples of biometric and non-

biometric patches. The proposed patch classification algo-

rithm has two steps: feature extraction and classification.

2.1.1 ITE Feature Extraction

It is our assertion that some of the non-biometric patches

or occlusions, such as hair and artificial nose, can be dis-

tinguished using texture information, while some others,

such as scarves and sunglasses, can be distinguished us-

ing their intensity values. Therefore, the proposed algo-

rithm uses a concatenation of texture and intensity descrip-

tors as input feature. As shown in Figure 2, the algorithm

starts with tessellating the face image. Input face image I is

first divided into non-overlapping rectangular patches Iij ,

1 ≤ i ≤ m, 1 ≤ j ≤ n, where m and n are the number

of horizontal and vertical patches respectively. The inten-

sity and texture descriptors are computed for all the patches

using the intensity histogram and Local Binary Patterns

(LBP) algorithm [1] respectively. The proposed descriptor

is termed as the Intensity and Texture Encoder (ITE). For a

patch ij of an image I , ITE is defined as

E(Iij) = [intensityHist(Iij); lbpHist(Iij)] (1)

where intensityHist(·) represents the histogram of an in-

tensity image and lbpHist(·) represents the LBP histogram.

We use basic LBP operator with 8 sampling points, that pro-

duces 256 dimensional feature vector for each patch. Inten-

sity histogram consists of 256 bins, resulting in a feature

vector of the same dimension.

2.1.2 ITE Feature Classification

The ITE features can, potentially, be classified using any

of the generative or discriminative classification techniques.

Our observation of biometric and non-biometric patches

shows that the set of biometric patches is well defined and

can be modeled efficiently. However, due to the variety

of accessories that can be used for disguise, non-biometric

patches have an exhaustive population set which is difficult



to model using a limited training database. Therefore, in

this research, we have proposed the use of Support Vector

Machine (SVM) [8], a discriminative classifier, for classi-

fying biometric and non-biometric patches.

An SVM model is learned from the ITE descriptors of

all the patches from training images (which are annotated

manually). This model is used to classify the patches from

the testing data. For every patch, a decision score s is com-

puted using SVM. A patch is classified as biometric, if the

score is less than the threshold T , i.e. s < T ; and if score is

equal to or greater than threshold, i.e. s ≥ T , the patch

is classified as non-biometric. Accordingly, a flag vari-

able Fij is generated, which represents whether the patch

is classified as biometric or non-biometric. The flag value

of every patch is then combined to generate the flag matrix,

Fm×n = [Fij ]1≤i≤m,1≤j≤n, using Eq. 2.

F (I)ij =

{

1 if Iij is classified as biometric

0 otherwise.
(2)

This classification algorithm can be utilized for both single

and multiple spectrum images. In single spectrum mode,

ITE features of images patches are classified using trained

SVM. We propose to employ patch classification in multi-

spectrum mode, where patch classification scores of both

the spectrums can be combined using sum rule fusion [19].

The fused score, sf , is computed as the weighted average

of the patch classification scores of individual spectrums,

i.e. sf = (wvsv + wtst)/(wv + wt), where wi represent

the weights and si represent the classification score in each

spectrum. In this work we have assumed wv = wt.

2.2. Patch based Face Recognition

Let Ip be the probe image which is to be matched with

the gallery image Ig. The corresponding flag matrices

F(Ip) and F(Ig) are generated using Eq. 2. Here, it is

possible that for some gallery patch, Igxy, which is clas-

sified as biometric, the corresponding probe patch, Ipxy , is

classified as non-biometric. In other words, F (Ig)xy = 1
and F (Ip)xy = 0, or F (Ig)xy = 0 and F (Ip)xy = 1.

This renders the particular patch of gallery image not useful

for recognition because the corresponding patch from the

probe image is under disguise effect and matching a biomet-

ric patch with a non-biometric patch may lead to incorrect

information.

F
u(Ip, Ig) = F(Ip) ∧ F(Ig) (3)

The patch classification algorithm explained in Section 2.1

classifies the patches into biometric and non-biometric, and

Eq. 3 provides information that for a given gallery-probe

pair, which patches should be used for face recognition.

Note that, in order to take advantage of patch classifica-

tion, the face recognition approach has to be patch-based.

Therefore, we propose to use LBP [1] which is one of the

widely used patch-based descriptors for face recognition. If

descIij represents the LBP descriptor of ij patch of image I ,

and the χ2-distance between two LBP descriptors is repre-

sented as dist(·, ·), then the distance between two images,

Ip and Ig , is calculated as:

Dist(Ip, Ig) = 1

η

∑

i j

dist(descI
p

ij , desc
Ig

ij )F
u(Ip, Ig)ij

where η =
∑

i j

F
u(Ip, Ig)ij (4)

and F
u(Ip, Ig)ij is calculated using Eq. 3. As we pro-

pose to use multiple spectrums, the distances are com-

puted for each spectrum individually and then fused using

sum ruleross2006multimodal. So, Dist(Ip, Ig) in multiple

spectrum mode is defined as,

Dist(Ip, Ig) = Fusion(Dist(V Ip, V Ig), Dist(TIp, T Ig))

subject to Eq. 4, where V I and TI represent the visible and

thermal spectrum images respectively. Since both the spec-

trums encode different kinds of information, it is our as-

sertion that fusion of visible and thermal spectrums should

result in improved recognition performance.

3. Database

To the best of our knowledge, there is no publicly avail-

able face database that contains multi-spectrum (visible and

thermal) images with disguise variations. Further, the vis-

ible spectrum databases generally used for disguise related

research (AR [13] and Yale [2] face databases) contain

very limited disguise variations, such as scarves and/or sun-

glasses. Therefore, to evaluate the effectiveness of the pro-

posed algorithms, we have prepared the IIITD In and Be-

yond Visible Spectrum Disguise (I2BVSD) face database3

of disguised/obfuscated face images. The database contains

visible and thermal spectrum images of 75 participants with

disguise variations. The number of images per person varies

from 6 to 10. For every subject, there is at least one frontal

neutral4 face image and at least five frontal disguised face

images. For each spectrum, there are 681 images. The vis-

ible spectrum images are captured using Nikon D-90 and

thermal images are captured using a thermal camera having

micro-bolometer sensor operating at 8 − 14µm. The size

of visible images is 4288× 2848, while the thermal images

are of size 720× 576 . All the face images are captured un-

der (almost) constant illumination with neutral expressions

and frontal pose. The disguise variations included in the

database are categorized into the following categories. (1)

Without disguise: neutral image, (2) Variations in hair

styles: different styles and colors of wigs, (3) Variations

3The database will be publicly available to the research community.
4Face images without any disguise is referred as neutral face image.



(a) (b)

Figure 4. Sample images from the I2BVSD database (a) images captured in visible spectrum, and (b) corresponding images acquired in

thermal spectrum.

due to beard and mustache: different styles of beard and

mustaches, (4) Variations due to glasses: sunglasses and

spectacles, (5) Variations due to cap and hat: different

kinds of caps, turbans, veil (also known as hijab which cov-

ers hair), and bandanas, (6) Variation due to mask: dispos-

able doctor’s mask, and (7) Multiple variations: A combi-

nation of disguise accessories.

Figure 4 shows a sample of both visible and thermal im-

ages from the database. The disguises are chosen in such a

way that they result in more realistic appearances and (al-

most) every part of the face is hidden at least once. The

subjects are asked to disguise themselves using the given

accessories. This allows different subjects to have differ-

ent types of disguises thus providing more variations across

individuals in the database.

4. Experiments and Results

This section demonstrates the results of the proposed

face recognition framework which includes the patch clas-

sification algorithm and LBP based face recognition. The

experiments are performed on the I2BVSD face database.

Eye coordinates are manually annotated to avoid any er-

rors in face detection. Face images are first preprocessed

using the CSU Face Identification Evaluation System [4]

to obtain normalized images, which includes: (a) locating

left and right eye at fixed positions, (b) resizing target face

image to 130 × 150 pixels, (c) applying an elliptical face

mask to remove the background information, (d) converting

the image to gray scale, (e) histogram equalization, and (f)

pixel normalization so that, the average of all pixel inten-

sities is 0 and standard deviation is 1. The result section

is divided into three subsections: patch classification using

ITE, evaluation of the proposed algorithm, and comparison

with sparse representation classifier (SRC) and COTS.

4.1. Patch Classification using ITE

All the images in the database are divided into 5×5

non-overlapping rectangular patches of size 26×30 pixels.

Every patch is manually annotated as biometric or non-

biometric to create the ground truth for training as well as

evaluation. If more than half of the patch is covered with

accessories, it is annotated as a non-biometric patch. Im-

ages of randomly chosen 35 subjects form the training set

and the images from the remaining 40 subjects are used

for testing. The training set thus contains 8050 patches

(322 images×25 patches) in each band, out of which 6324

patches are biometric and 1726 patches are non-biometric.

Similarly, the testing set comprises of 8975 patches (359

images×25 patches) amongst which 6944 are biometric and

2031 are non-biometric. Figure 5 shows the distribution

of (annotated) biometric patches in the training and test-

ing splits. Notice that there are face images with different

amounts (in terms of number of biometric patches) of dis-

guises.
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Figure 5. The distribution of biometric patches in the training and

test sets.

As explained earlier, for each patch, the ITE features are

computed using Eq. 1; and min-max normalization is per-

formed to map the values in the interval [−1, 1]. The nor-

malized descriptor is provided as input to SVM with Ra-

dial Basis Function kernel for patch classification. The ker-

nel parameter and misclassification cost are estimated us-

ing grid search along with 5-fold cross validation. In grid

search, parameters that provide the maximum training ac-

curacy are considered as optimum.

Since ITE is a concatenation of LBP and intensity val-

ues, the efficacy of ITE is compared with LBP and pixel

intensity values. LBP histograms, intensity histograms, and

ITE histograms are computed and provided as input to SVM

separately for classification. The performance of all three



histograms is evaluated for (a) visible spectrum images,

(b) thermal images, and (c) feature fusion (concatenation)

of descriptors extracted from visible and thermal images.

Receiver Operating Characteristics (ROC) curves for patch

classification representing the results of these experiments

are shown in Figure 6.
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Figure 6. ROC curves for patch classification. Here, (V+T) repre-

sents feature level fusion (concatenation) of descriptors.

In case of both visible and thermal spectrums, ITE pro-

vides better results compared to texture or intensity infor-

mation for patch classification. This supports our hypothe-

sis that concatenation of texture and intensity should yield

better patch classification results. The proposed score level

fusion of both the bands outperforms all other approaches.

It is also observed that visible spectrum performs better than

thermal, this may be due to the fact that thermal images

contain less texture information. Feature level fusion per-

formed by concatenation of visible and thermal ITE, does

not increase the accuracy.

4.2. Performance Evaluation of Proposed Frame­
work

The output of patch classification yields biometric

patches which are used for feature extraction and match-

ing. For evaluating the proposed face matching approach,

the testing set is divided into two parts: gallery and probe.

For each subject, one neutral face image, and four other ran-

domly selected images are taken as gallery and the remain-

ing images constitute the probe/query set. Hence, there are

total 200 gallery images and 159 probe images. We have

performed experiments with five random cross validation

trials. The experiments are performed in verification mode

and the results are reported in terms of ROC curve and veri-

fication accuracy at 0.1%, 1.0% and 10% False Accept Rate

(FAR). The performance of the proposed approach (multi

spectrum score fusion) is compared with the performance

of individual spectrums. Note that such an evaluation is

important to understand the importance of fusion over indi-

vidual spectrums. For each of these three scenarios (visi-

ble only, thermal only, and fusion), we performed following

three experiments.

1. Face recognition with biometric patches is classified

using ITE and SVM classifier

2. Face recognition with manually annotated biometric

patches

3. Face recognition with all the patches (normal LBP ap-

proach)

The results of face recognition are shown in Figure 7.

In both the spectrums individually (left and middle graphs),

for FAR>1%, using only ground truth biometric patches

results in better accuracy than using all the patches for face

recognition. The performance of the proposed framework

depends significantly on the performance of the patch clas-

sification algorithm. Intuitively, rejecting a non-biometric

patch is less benefitting than the loss incurred by wrongly

rejecting a biometric patch. From the ROC curve of patch

classification shown in Figure 6, it can be analyzed that

at EER, 13% of the biometric patches are being misclas-

sified. Since, the number of biometric patches provided as

input to the face recognition algorithm reduces, the ROC

curves in Figure 7 show that the performance of face recog-

nition reduces when the threshold of patch classification is

chosen at EER. However, for 95% correct biometric patch

classification (Figure 6), even though, the number of cor-

rectly classified non-biometric patches decreases, the face

recognition algorithm is receiving more biometric patches

as input and the results show that at the threshold per-

taining to 95% biometric patch classification, the proposed

face recognition framework yields the best performance for

FAR>0.1%. This support our hypothesis that not using

non-biometric patches for recognition can result in better

accuracy. As shown in Figure 7(c), using the threshold ob-

tained at 95% correct biometric patch classification accu-

racy, the proposed score fusion of visible and thermal spec-

trums further improves the verification accuracy.

4.3. Comparison with COTS and Sparse Represen­
tation Classification

In this section, we present the comparison with

FaceVacs, a commercial-off-the-shelf system (referred as

COTS) and sparse representation classification (SRC) [25].

Note that, SRC is one of the most important techniques in

literature for addressing occlusion/disguise. In SRC, the

residual is considered as the dissimilarity measure of the

gallery-probe pair. In case of SRC, for fusion of two spec-

trums, sum rule fusion of residuals of both individual spec-

trums is performed. Since, COTS is designed to work with

visible spectrum images only, all the results pertaining to

COTS are computed for visible spectrum images only.
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LBP Visible SVM Biometric Patches @ 95%
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Figure 7. The results of the proposed face recognition framework using LBP descriptor (a) on visible spectrum images, (b) on thermal

spectrum images, and (c) sum fusion of both spectrums under three different cases of patch classification scenarios.

For evaluating the performance of the proposed frame-

work, we have utilized all the gallery and probe images irre-

spective of the information content or image quality. How-

ever, the COTS used in this research has inbuilt algorithms

for quality assessment and enrollment. The thresholds for

enrolling a gallery image are very strict whereas for probe

images, it is relaxed. Out of the 200 gallery images, COTS

registered approximately 60% of the gallery images and

the remaining images were considered as failure to enroll

whereas all the probe images were processed successfully.

It is also observed that if the face image does not contain any

non-biometric patch, then the probability of getting enrolled

in the COTS is higher. However, for a fair comparison, we

have overridden the COTS to include all 200 images in the

gallery.

Figure 8 and Table 2 demonstrate the results of COTS,

SRC in individual spectrums, and score fusion of SRC in

visible and thermal spectrums. Comparisons with the corre-

sponding experiments of proposed approach are also shown.

It shows that COTS is not able to classify the faces un-

der disguises very well. Moreover, it provides evidence of

challenging nature of dataset itself. Note that, for lower

FAR(<0.05%), all approaches shown in comparison exhibit

very poor performance. From approximately 0.2% till 5%

FAR, the verification rate of COTS changes from 16% to

20% GAR. This is attributed to COTS rejecting many sam-

ples while recognition. For the same range of FAR, the pro-

posed approach yields up to 45% GAR. In case of SRC, at

1.0% FAR, score fusion improves the performance by 5-7%

GAR.

As shown in Table 2, although the performance reported

by the proposed approach is not as high as it is usually re-

ported in face recognition literature, it outperforms one of

the state-of-art commercial system, and a widely used tech-

nique, SRC, by at least 3% at 1.0% FAR.
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Figure 8. Comparison of COTS and SRC with the proposed ap-

proach on visible, thermal spectrum and their score fusion.

Approach
Verification accuracy @ FAR

0.1% 1.0% 10%

SRC(V) 5.6± 1.3 15.5± 1.6 37.7± 1.8
SRC(T) 7.8± 1.1 18.4± 1.3 40.7± 1.9

SRC(V+T) 11.7± 1.3 23.7± 1.7 47.5± 1.9
COTS 10.9± 2.4 17.1± 1.5 22.5± 1.2

LBP(V) 6.0± 0.5 17.5± 0.1 38.3± 0.1
LBP(T) 8.3± 0.8 23.3± 1.0 51.7± 2.0

LBP(V+T) 10.9± 1.0 26.8± 1.2 51.7± 1.6

Table 2. Genuine accept rates and their standard deviations at dif-

ferent false accept rates of the proposed approach along with com-

parison to COTS and SRC.

5. Conclusion and Future Work

This research focuses on addressing the covariate of dis-

guise in face verification using multi-spectrum images. The

major contributions of this research are two folds. We de-

signed a framework, Anāvr.ta, which is based on the obser-

vation that artifacts are not part of biometric information



of face and they should not be used for recognition. The

framework consists of the ITE based patch classification

(in biometric/non-biometric classes) and LBP based face

recognition applied on classified biometric patches. The

second contribution is creation of a multi-spectrum face dis-

guise database, I2BVSD database, to encourage research in

this domain. The proposed approach improves verification

accuracy over direct application of LBP, COTS, and SRC. It

is also observed that for both, patch classification and face

recognition, score fusion of visible and thermal spectrum

match scores leads to improvements. It is our assertion that

the I2BVSD database will boost the research in face recog-

nition with disguise variations. Though Anāvr.ta provides

improved performance over existing state-of-the-art algo-

rithms, it is still an open research problem. As a future re-

search direction, we plan to approximate the set of disguise

artifacts and use human knowledge for better recognition.
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