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Abstract

Matching near-infrared to visible images is one of the

heterogeneous face recognition challenges in which spec-

tral variations cause changes in the appearance of face

images. In this paper, we propose to utilize a keypoint

selection approach in the recognition pipeline. The pro-

posed keypoint selection approach is a fast approximation

of feature selection approach, yielding two orders of mag-

nitude improvement in computational time while maintain-

ing the recognition performance with respect to feature se-

lection. The keypoint selection approach also enables to

visualize the keypoints that are important for recognition.

The proposed matching framework yields state-of-the-art

approaches results on CASIA NIR-VIS-2.0 dataset.

1. Introduction

Heterogeneous face recognition includes matching im-

ages pertaining to different imaging modalities [4, 5, 9, 16].

One of the heterogeneous face recognition problem is to ef-

ficiently match a near infrared (NIR) face image with a vis-

ible (VIS) spectrum face image. In NIR-VIS face match-

ing scenario, the NIR face image obtained from specialized

hardware [13] may be compared with legacy face datasets

such as driver’s license and voter’s ID which contain face

images in visible spectrum. Figure 1 shows some samples

of face images captured in VIS and NIR spectrum. Due

to the difference in the spectrum, traditional face recogni-

tion approaches may not be directly applicable for matching

these cross-spectral images.

To address this heterogeneity, two types of approaches

are proposed: synthesis based and direct matching based.

Yi et al. [19] introduced the problem of visible to near in-

frared matching and proposed a solution which was based

on learning the correlation between visible and NIR images.

Lei and Li [12] proposed a subspace learning framework

termed as coupled spectral regression, which learns the as-

sociated projections of VIS and NIR images to project het-
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(a) Visible (b) Near Infrared

Figure 1: Example visible and near infrared spectrum face

images from CASIA NIR-VIS-2.0 [14] dataset.

erogeneous data including VIS-NIR matching. Klare and

Jain [9] proposed a generic heterogeneous face recognition

method and introduced a prototype random subspace to ad-

dress the problem and showed results on different types of

heterogeneous face matching problems. Kang et al. [7] pro-

posed a restoration based approach to address cross distance

and cross spectral face recognition. They used locally linear

embedding to restore face images captured at large stand-

off and then used a heterogeneous face matching algorithm

[9] for recognition. Zhu et al. [22] proposed a transduc-

tion based framework for matching NIR and VIS face im-

ages. Jin et al. [5] proposed a feature learning based method

to extract learned discriminative features for heterogeneous

face matching. Recently, Dhamecha et al. [2] had studied

the problem of visible to near infrared face matching to un-

derstand the effectiveness of histogram of oriented gradient

features for this problem. Lu et al. [16] used an unsuper-

vised feature learning algorithm with pixel difference vec-

tors.

Typically, a VIS-NIR face matching pipeline involves

keypoint extraction on a uniform grid (UG) [2, 8], local

face patches extraction [16], or facial fiducial point (FFP)

detection [18], which is followed by feature extraction,

subspace and/or classifier learning. However, to the best

of our knowledge not much research has been done to

understand/learn and utilize keypiont selection approaches

for VIS-NIR matching. Such understanding and approach

could help unravel the impact of important keypoints and

choose only those keypoints which are meaningful for face

recognition. In order to facilitate this, we propose a key-

point selection approach using fast correlation based filter



Figure 2: Block diagram of pipeline utilizing feature/keypoint selection for matching VIS to NIR face images.

[20]. The proposed keypoint selection approach enables us

to compute a fast approximation of feature selection process

which, at times, is computationally expensive. Experiments

are performed on the CASIA NIR-VIS-2.0 dataset [14] and

it is observed that the proposed algorithm is computation-

ally very fast and yields state-of-the-art results.

2. VIS-NIR Matching Framework

Recently, Dhamecha et al. [2] have studied the effective-

ness of histogram of oriented gradient features on VIS-NIR

face matching. Since they showcase one of the state-of-

the-art results of heterogeneous face recognition on CASIA

NIR-VIS-2.0, we follow a similar recognition pipeline [2].

The matching pipeline is illustrated in Figure 2. First, all

the face images are geometrically normalized and all the

fiducial keypoints and grid keypoints are obtained. Dur-

ing training stage, dense scale invariant feature transform

(DSIFT) [15] features are extracted from all the keypoints.

At the time of training, a model of feature or keypoint se-

lection is learned using this feature representation. Fur-

ther, PCA and LDA subspaces are learned on selected fea-

tures/keypoints. During the testing phase, either only se-

lected features or features extracted from the selected key-

points are retained. The next step is to reduce the dimen-

sionality of retained feature set using PCA, which are fur-

ther projected onto discriminative LDA space. The match

scores are obtained using cosine distance measure.

2.1. Grid and FFP Keypoints

We have used two different ways of defining keypoints.

(a) (b) (c) (d)

Figure 3: (a) Original image, (b) uniform rectangular grid

based keypoints shown on registered image, (c) fiducial

points are extracted on the geometrically normalized face

image, (d) set of fiducial points after discarding keypoints

corresponding to the jawline.

1. Uniform Grid: We use a uniform rectangular grid

(UG) to extract keypoints at specific intervals along

rows and columns as shown in Figure 3(b). Uniform

grid keypoints can be obtained using a grid of p × q

keypoints on the face region of the registered face im-

ages.

2. Facial Fiducial Points: A recent approach that uses a

cascaded deformable shape model [21] is employed to

detect facial fiducial points. Figure 3(c) shows a sam-

ple of FFP obtained on a face image. The approach de-

tects 66 fiducial keypoints, referred to as FFP(66), on

a given face image. As shown in Figure 3(d), a variant

of this FFP detection is also obtained by discarding the

17 keypoints across the jawline. This version of FFP

keypoints is denoted as FFP(49). Each FFP is treated

as a keypoint to extract the DSIFT features.



2.2. Feature Extraction

DSIFT features have been shown to yield good results

for NIR-VIS face matching [2]. Therefore, DSIFT features

[15] are extracted from the defined keypoints. The descrip-

tors for all the keypoints are concatenated to form the fea-

ture descriptor of an image.

2.3. Feature and Keypoint Selection

For heterogeneous face matching, we represent an image

with the concatenation of DSIFT features extracted from

each keypoint. Thus, each element in image descriptor is a

gradient pertaining to a keypoint.

2.3.1 Feature Selection

Due to the availability of large amount of high dimensional

data [1], the research pertaining to feature selection has

gained significant importance within the machine-learning

community [17]. The presence of irrelevant or redundant

features may increase the dimensionality, thereby increas-

ing the computational time for learning and may also affect

the accuracy. Feature selection [3, 17] is often utilized to

reduce the dimensionality of the feature space and to retain

the most discriminative features. The aim of the feature se-

lection is to select the features which are meaningful for

classification.

Feature selection algorithms may be broadly classified

into two major types, namely filter and wrapper models

[20]. Filter models select features by looking into the char-

acteristics of the features and evaluating some basic statisti-

cal objective functions such as correlation and information

gain. Wrapper models [11] are learning based and use a

predefined model to analyze the discriminability of the fea-

tures. In this research, a filter model based feature selection

technique known as fast correlation based filter (FCBF) [20]

is utilized which is suitable for high dimensional data. It op-

erates on two broad objective functions: retaining the fea-

tures that are highly correlated with the class and removing

the features that are highly correlated with other features.

The FCBF algorithm [20] uses information theoretic mea-

sure of information gain to measure the correlation between

two random variables which is defined as

IG(A|B) = H(A)−H(A|B) (1)

Here, H(·) is the entropy, defined as

H(A) = −
∑

i

P (ai) log2(P (ai)) (2)

Similarly, the conditional entropy is defined by

H(A|B) = −
∑

j

P (bj)
∑

i

P (ai|bj) log2(P (ai|bj)) (3)

Using Eq. 1, a normalized measure of information gain,

termed as symmetrical uncertainty, is used as the measure

of correlation between two random variables. The symmet-

rical uncertainty is defined as

SU(A,B) = 2
[

IG(A|B)
H(A)+H(B)

]

(4)

The FCBF consists of two stages:

1. Step 1: Measure the correlation between features and

class labels, and retain the top features with highest

correlation. In this stage, A and B are the features and

class labels respectively.

2. Step 2: Measure the correlation among features, and

discard the ones which are highly correlated. In this

stage, both A and B are the features.

In the first stage, a threshold θ is used as the selection cri-

terion. The features with higher symmetrical uncertainty

(SU) value than θ are retained and the rest are discarded.

In the second stage, a feature is retained if its SU with all

other features is less than its SU with the class labels. This

procedure ensures that the selected features have high corre-

lation with class and are less correlated with each other. For

the recognition pipeline utilized in this research, the feature

selection essentially chooses the important gradient direc-

tions all over the face. It can select few gradients belonging

to a keypoint, while rejecting the other gradients.

2.3.2 Keypoint Selection

Although feature selection has its own importance, it may

be computationally expensive when feature dimensionality

is large. Since face recognition approaches typically deal

with high dimensional features, feature selection may not

be a practical solution. In this section, we propose a key-

point selection approach as an approximation of the feature

selection. The aim of keypoint selection is to obtain key-

points that are most useful for recognition. Tracing the se-

lected keypoints back to their spatial location is expected to

provide insights into regions that are useful for recognition.

Moreover, keypoint selection is computationally faster than

feature selection. In this work, we extend FCBF feature se-

lection approach to perform keypoint selection.

An image representation is obtained as concatenation of

features from each keypoint. In order to perform keypoint

selection, the training matrix is transformed in a way such

that all the features at one keypoint are all either selected

or discarded together. Let n, d and h be the number of

samples, descriptor dimensionality, and the number of key-

points on an image, respectively. Training data matrix T is

of size n×hd and each row of the training matrix represents

one sample. The transformed training matrix T ′ is obtained

by reshaping T into a nd × h matrix by vertically stacking



up features from the same keypoint. In the transformed ma-

trix T ′ the columns corresponds to each keypoint Ki. The

matrix transformation procedure is illustrated in Figure 4.

By utilizing T ′ as the training matrix, feature selection ap-

proach can be modified into a keypoint selection approach.

Operating on this training matrix, Eq. 4 is adapted for key-

point selection as follows. For step 1, symmetric uncer-

tainty between a keypoint Ki and class labels C is obtained

as

SU(Ki, C) = 2
[

IG(Ki|C)
H(Ki)+H(C)

]

(5)

Similarly, for step 2, the symmetric uncertainty between

two keypoints Ki and Kj is obtained as

SU(Ki,Kj) = 2
[

IG(Ki|Kj)
H(Ki)+H(Kj)

]

(6)

2.3.3 Time Complexity

The time complexity of FCBF is O(ND log(D)), where N

is the number of samples and D is the feature dimensional-

ity. If the train set contains n face images, each represented

with d dimensional h keypoints, the time complexity of fea-

ture selection is O(nhd log(hd)), as N = n and D = hd.

However, if the selection is performed at keypoint level, the

time complexity of keypoint selection is O(nhd log(h)), as

N = nd and D = h. Therefore, keypoint selection may

be viewed as faster approximation of feature selection. Not

only does this transform a feature selection problem into a

keypoint selection problem, it also reduces the dimension-

ality of the feature space from hd to h. This enables feature

selection algorithm to run on this transformed feature ma-

trix with reduced time.

2.4. Dimensionality Reduction and Classification

The dimensionality of DSIFT features extracted at the

selected keypoints is large and therefore, it is highly desir-

able to perform dimensionality reduction. Dimensionality

is reduced with the help of Principal Component Analysis

(PCA) [6]. We choose 98% of the eigenenergy preserving

top principal components. Over the reduced dimensional

representation, Linear Discriminant Analysis (LDA) [10]

subspace is learned and the cosine distance is used as a dis-

tance metric for matching a pair of images. The distance

between a gallery sample X and a probe sample Y is ob-

tained as

distance(X,Y) = Cos(x,y) = 1− x′y

|x||y| , where

x = X′WpcaWlda, and y = Y′WpcaWlda

where, Wpca and Wlda are the projection matrices of PCA

and LDA, respectively.
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(b) Training matrix for keypoint se-

lection, N = nd,D = h

Figure 4: The illustration of training matrix transformation

for keypoint selection. Kj and Ij represents the jth key-

point and image respectively. The training matrix of (a) is

transformed in (b) such that it represents nd samples of h

dimensionality.

3. Experiments and Analysis

The experiments are performed on the CASIA NIR-VIS

2.0 [14] dataset using the predefined protocols. This sec-

tion describes the dataset, protocols, and presents the results

along with analysis.

3.1. Dataset and Protocol

The CASIA NIR-VIS 2.0 dataset [14] contains prede-

fined visible and near-infrared images of 725 subjects. The

dataset contains protocols pertaining to two views. View 1

is the development set which can be used for optimizing the

parameters of the algorithm. Here, it is utilized to perform

feature and keypoint selection. The View 2 contains train-

ing and testing splits for 10 times cross validation. Subjects

in the training and testing sets are non-overlapping. The

gallery set contains images acquired in VIS spectrum and

the probes are NIR images. In each experiment the selected

features are fixed from View 1 and results are reported on
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Figure 5: (a) CMC and (b) ROC curve demonstrating the effect of variations in keypoint definition style, number of fiducial

points, feature fusion, feature selection, and keypoint selection.

10 times cross validation of View 2.

3.2. Experiments

The input face images are geometrically normalized us-

ing the eye coordinates provided as part of the dataset and

size of the detected face image is 125×160. This process

fixed the interocular distance and the eyes at a particular

location across all images. For obtaining keypoints on the

rectangular grid, we select keypoints using a grid of 7× 10
(10 keypoints along the column and 7 along the row) on the

face region. 66 FFPs are obtained by employing the fiducial

point detection technique proposed by Yu et al. [21]. The

DSIFT feature obtained at each keypoint is of length 16nr

where nr = 8 is the number of orientations. The features

are obtained with spatial bin size of 8. Thus, for each key-

point a descriptor of size 128 is generated.

Using the predefined protocol of CASIA NIR-VIS-2.0,

evaluation is performed in identification and verification

mode. For identification scenario, the mean and standard

deviation of rank 1 identification accuracy and cumulative

match score curves (CMC) are reported in Table 1 and Fig-

ure 5(a) respectively. For verification scenario, genuine ac-

cept rate at 0.1% and 1% false accept rate (FAR) and re-

ceiver operating characteristics curves (ROC) are reported

in Table 1 and Figure 5(b) respectively. In order to study

the effectiveness of feature and keypoint selection, follow-

ing set of experiments are performed.

• Exp. 1: Uniform Grid vs Facial Fiducial Points:

This experiment compares the recognition perfor-

mance of features extracted from keypoints defined on

uniform grid and facial fiducial points (FFP) [21]. Two

variants of FFP, with and without keypoints on jaw-

line, are explored; they are denoted as FFP(66) and

FFP(49), respectively.

• Exp. 2: Feature Fusion of UG and Facial Fiducial

Points: Since both the kind of keypoints, UG and FFP,

do not exactly overlap in terms of spacial regions en-

coded by them, we explore the effectiveness of con-

catenating the features obtained from these two kinds

of keypoints. The feature concatenation is denoted as

FF1 (or UG+FFP(66)) and FF2 (or UG+FFP(49)).

• Exp. 3: Feature Selection [20]: This set of experi-

ments are performed to study the effectiveness of fea-

ture selection on UG+FPP(66) and UG+FPP(49). The

results are reported with varying the threshold of fea-

ture selection technique.

• Exp. 4: Keypoint Selection: In this experiment, the

performance of the proposed keypoint selection ap-

proach is evaluated. Input to the keypoint selection ap-

proach is the concatenation of features obtained from

UG and FFP. One of the motivations of this experi-

ment is to be able to analyze selected keypoints and

associated facial regions useful for heterogeneous face

recognition.

During keypoint and feature selection training, DSIFT fea-

tures and associated class labels are used as input. For ex-

periments pertaining to feature selection [20], results are re-

ported with three feature selection thresholds, θ = 0.1, 0.2,
and 0.25. As the threshold increases, less number of fea-

tures are selected. For keypoint selection, θ is varied such

that 35, 50, 60, 80, and 95 keypoints are selected.



Table 1: Identification and verification results on View 2 of

CASIA NIR-VIS-2.0 dataset. θ and k represent the thresh-

old of feature selection and number of keypoints selected,

respectively.

Approach
Rank-1 GAR @ f FAR

Accuracy f = 0.1% f = 1%

UG (70) 76.29±1.80 57.90 84.80

FFP(66) w/ jawline 54.82±1.76 41.52 69.19

FFP(49) w/o jawline 53.21±1.99 40.06 67.68

Feature fusion

FF1(136): UG(70)+FFP(66) 80.35±1.54 59.83 86.53

FF2(119): UG(70)+FFP(49) 80.87±1.51 61.61 87.43

Feature selection

FF1

θ = 0.1 81.06±1.42 62.87 87.62

θ = 0.2 81.90±1.58 62.97 87.65

θ = 0.25 81.11±1.30 62.44 87.47

FF2

θ = 0.1 81.90±1.05 63.62 88.17

θ = 0.2 81.87±1.89 63.65 88.09

θ = 0.25 81.59±1.52 63.16 88.00

Keypoint selection

FF1

k = 35 74.03±1.59 55.88 82.90

k = 50 77.26±1.61 56.97 84.91

k = 60 77.62±1.59 58.86 85.37

k = 80 80.27±1.85 58.81 86.33

k = 95 80.24±1.65 59.69 86.65

FF2

k = 35 74.17±1.68 57.20 83.20

k = 50 76.61±1.70 58.01 84.44

k = 60 80.11±1.43 62.43 87.03

k = 80 81.09±1.21 61.32 86.98

k = 95 81.19±1.60 61.98 87.47

State-of-the-art

FaceVACS [2] (2014) 58.56±1.19 - -

Dhamecha et al. [2] (2014) 73.28±1.10 - -

Lu et al. [16] (2015) 81.80±2.30 47.30 75.30

3.3. Observations

The results obtained from the proposed algorithm are

compared with the results reported in the literature on the

CASIA NIR-VIS-2.0 dataset. The analysis of the results

are as follows,

• Dhamecha et al. [2] have used a uniform grid of size

8×8. By utilizing a different uniform grid of 7 × 10,

the results are enhanced by 3%.

• Utilizing the features extracted only from the FFP does

not yield comparable performance. This shows that al-

though, FFP might be good at describing face shape,

it may not be sufficient for improving recognition per-

formance.

• It is observed that the FFP detection approach [21],

which contains a detection module trained for visible

spectrum images, efficiently works on NIR face im-

ages without any fine-tuning.

(a) 35 (b) 60 (c) 80 (d) 95

Figure 6: Visualization of keypoints selected from com-

bined pool of uniform grid and FFP keypoints (with jaw-

line). The selected FFP and grid keypoints are represented

using red dots and green plus signs, respectively.

• Feature fusion: Concatenating DSIFT features ex-

tracted from UG and FFP yields better recognition per-

formance than each of them individually. This indi-

cates that different keypoint approaches should encode

some non-overlapping information, which eventually

improves the performance, in a fusion scheme.

• Feature selection: Not only does feature selection im-

prove the performance over feature fusion, it is also

comparable to existing state-of-the-art results [16] in

terms of rank-1 identification accuracy, while outper-

forming it in verification scenario by 15% GAR at

0.1% FAR.

• Keypoint selection: The best results obtained with the

proposed keypoint selection technique are comparable

to that of the feature selection. The visualization of

selected keypoints is shown in Figure 6.

– Interestingly, an intuitive set of keypoints are

learned and selected. For example, if we are to

select a small number of keypoints (k = 35),

the FFP points retained correspond to two eyes,

two nostrils, two nose bridge points and three

lips points, whereas the retained grid keypoints

broadly encode the chin area. As we increase

the number of selected keypoints, finer details of

fiducial points such as eye corners, overall shape

of eyebrows, and finer points on nose bridge can

be observed in set of retained FFP points; while

the retained grid keypoints become more dense

(See Figure 6). Note that these keypoints are au-

tomatically selected using the proposed keypoint

selection approach, which aligns with intuitive

notion of important facial regions. This analy-

sis pertaining to which keypoints are important

for recognition might help build improved facial

fiducial point detectors.

• Jawline: As shown in Table 1, rows 2 and 3, the pres-

ence of jaw-line fiducial points shows a marginal im-

pact on recognition performance. We also observe that



when jawline keypoints are discarded, the performance

is improved in both feature and keypoint selection ap-

proaches. However, with k = 95, 69.8% (95 out of

136) and 79.8% (95 out of 119) of keypoints are re-

tained in FF1 and FF2, respectively. Therefore, a di-

rect comparison of their corresponding performances

may be unfair.

• Time: It is empirically observed that feature selection

(FF2 θ = 0.2) requires about 8.65 hours, whereas key-

point selection (FF2 k = 60) requires about 3 min-

utes to run on a desktop with 3.4 GHz Intel Core

i7 processor and 16GB RAM. The keypoint selec-

tion achieves 173x speedup over feature selection by

trading-off 1.7% in rank-1 accuracy.

4. Conclusion

This research proposes to utilize keypoint selection ap-

proach in VIS-NIR face recognition pipeline. The proposed

keypoint selection approach is a fast approximation of the

FCBF feature selection algorithm. When provided with a

pool of keypoints, it efficiently selects a set of keypoints

which are highly correlated with the class labels, and least

correlated amongst each other. The evaluation on CASIA

NIR-VIS-2.0 shows that utilizing the proposed keypoint se-

lection approach yields state-of-the-art results both in terms

of verification and identification accuracy. The proposed

keypoint selection approach requires two orders of magni-

tude lesser time than that of feature selection without sig-

nificantly affecting the recognition accuracy. Moreover, the

visualization of keypoint selection technique helps to under-

stand the important facial parts in context of heterogeneous

face recognition.
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