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Abstract

Several mathematical models have been proposed for
recognizing face images with age variations. However, ef-
fect of change in body-weight is also an interesting covari-
ate that has not been much explored. This paper presents
a novel approach to incorporate the weight variations dur-
ing feature learning process. In a deep learning architec-
ture, we propose incorporating the body-weight in terms of
a regularization function which helps in learning the latent
variables representative of different weight categories. The
formulation has been proposed for both Autoencoder and
Deep Boltzmann Machine. On extended WIT database of
200 subjects, the comparison with a commercial system and
an existing algorithm show that the proposed algorithm out-
performs them by more than 9% at rank-10 identification
accuracy.

1. Introduction
It is well understood that body-weight loss or gain affects

the facial appearance of a person. Recently, it has been es-
tablished as a challenge to face recognition algorithms by
Singh et al. [7] and Wen et al. [13]. With time, the changes
in weight are inevitable and unpredictable. There is no def-
inite pattern of these changes and drastic weight variations
are common with an increase in awareness about fitness
and health as well as several other factors, such as genet-
ics, eating habits, and medical conditions. Weight variations
lead to structural variations which affect facial appearance
and lead to decrease in the performance of automated face
recognition systems. Therefore, it is an important and chal-
lenging aspect of automatic face recognition research that
requires significant efforts.

A brief summary of the recent related research is tabu-
lated in Table 1. To the best of our knowledge, there are only
two research threads on face recognition with body weight
variations. Singh et al. [7] propose an algorithm using Ga-
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Figure 1. Sample Images from the eWIT dataset showing weight
variations. Each column corresponds to one subject.

bor features and a combination of three neural networks for
addressing the problem of face recognition with weight and
age variations. They reported the rank-1 identification accu-
racy of 20.34% on the WhoIsIt (WIT) dataset comprising of
atleast 10 images each, of 110 subjects. Wen et al. [13] per-
formed verification experiments on two datasets: synthetic
and real, containing 120 and 242 subjects respectively. The
datasets have two images per subject with weight variations.
They used a Partial Least Squares (PLS) based approach
and reported a verification accuracy of 69.6% using SIFT
and PLS on the real face dataset and 88.7% on the synthetic
dataset.

It is well understood that weight variations are a factor
of age as well. However, as shown in Figure 1, there is no
relation between the two. With growing age, one can lose
or gain any amount of weight. Therefore, in this research,
we attempt to learn the facial features with weight varia-
tions. This research extends the first two research threads
on face recognition with weight variations and proposes a
deep-learning based architecture. The two-fold contribu-
tions of this paper are:

• Deep-learning based algorithm is proposed which sig-
nificantly improves the recognition accuracy with re-
spect to the current state-of-the-art for face recogni-
tion with weight variations. The algorithm utilizes a



Covariate Author Method Dataset Used

Age

Bereta et al. [2]
(2013)

Performance of various local descriptors
with distance measures is evaluated for
age progression. Local descriptors are ap-
plied to Gabor wavelet images

FG-NET Aging dataset

Yang et al. [14]
(2014)

Graph matching on feature encoded in the
local Gabor binary pattern histogram se-
quence projected in the LDA subspace

FG-NET Aging dataset

Weight (and Age)

Singh et al. [7]
(2014)

Deep learning architecture based on neu-
ral networks and Gabor filters.

WIT dataset: 110 subjects, 1109 images cov-
ering age and weight variations

Wen et al. [13]
(2014)

PLS method with LBP and SIFT Synthetic Dataset: 120 subjects, 240 images
Real Dataset: 242 subjects, 484 images. Both
datasets contain weight variation

Proposed (2015) Deep Boltzmann Machine coupled with
regularization incorporating weight vari-
ations

eWIT dataset: 200 subjects, 2036 images
covering age and weight variations

Table 1. Literature Review of recent papers in face recognition with age and weight variations

body-weight based regularization approach to modify
the loss function of deep-learning architecture such as
Deep Boltzmann Machine [6] and Sparse-Stacked De-
noising Autoencoder (SDAE) [11].

• We build upon the existing WhoIsIt (WIT) dataset [7]
(1109 images of 110 subjects) and present extended-
WIT (eWIT) dataset with 2036 images corresponding
to 200 subjects.

In the next section, we explain the proposed algorithm,
followed by details about the dataset used. Section 4
presents the experimental protocol and results.

2. Proposed Algorithm
Since there is no well defined pattern in which the weight

increases or reduces, we propose a representation learning
based algorithm for learning facial features. Deep learn-
ing algorithms have been utilized in encoding facial infor-
mation and recognizing individuals with variations in pose,
expression, and illumination as well as in video sequences
[3], [8], [9], [10]. Applying these algorithms in a straight-
forward manner for age and/or weight variations may not
yield good performance. In order to incorporate these vari-
ations in feature encoding, we propose a modification in the
feature learning process via regularization.

The objective function of any deep-learning based archi-
tecture such as autoencoders and deep Boltzmann machine
is to minimize a loss functionL. The representation is learnt
based on learning the features (or weight matrix) that min-
imize the loss. Traditionally, these unsupervised feature
learning algorithms are optimized using regularizers such
as KL-divergence and lp norm. In the proposed algorithm,
we modify the loss function by adding a regularizer which
is dependent on the body-weight labels of the images. In-
spired from Singh et al. [7], three weight labels are utilized,

namely thin, moderate, and heavy. Since these three cate-
gories are discrete attributes, we have quantified them into
three (approximate) numerical values as 50, 75, and 100 re-
spectively. For a given sample, Sbw with bw as the weight
category, a body-weight parameter αbw is defined as,

αbw =
Sbw
225

(1)

where, bw = {thin, moderate, heavy}, and Sbw can take
one of the three values, depending on the weight category.
For a deep learning architecture, the loss function L with a
network weight matrix W , is then modified by introducing
a lp norm regularization as,

L = L+ λp ‖αbwW‖pp (2)

Here, λp is the regularization parameter which is learnt and
body-weight parameter αbw for each sample is calculated at
the time of training. Based on the three weight categories,
αbw can take three values, thereby producing αthin, αmod
and αheavy. Using different regularization approaches, the
loss function of the network can be modified as follows:

• with l1 norm regularization:

L = L+ λ1 ‖αbwW‖1 (3)

• with l2 norm regularization:

L = L+ λ2 ‖αbwW‖22 (4)

• with l1 + l2 norm regularization:

L = L+ λ1 ‖αbwW‖1 + λ2 ‖αbwW‖22 (5)

Regularization is used to prevent over-fitting, it helps
the learner to converge faster, and prevents convergence at



the local minima. While the loss function drives the deep
learning algorithm to be sensitive to the variations along
with manifold of high density, the regularization influences
the learner to be less sensitive to the input. This helps in
encoding variations on the manifold but disregarding the
orthogonal variations. This means that the regularization
in the proposed modification helps in learning latent vari-
ables representative of different body-weight categories. In
other words, by incorporating the body-weight information
of each sample in the optimization function, the network
is forced to modify the latent variables according to these
variations. Therefore, the feature representation is expected
to be robust towards body-weight variations. The pro-
posed regularization approach is applied in two deep learn-
ing architectures, Deep Boltzmann Machine (DBM) [6] and
Sparse-Stacked Denoising Autoencoder (SDAE) [11].

2.1. Regularized Deep Boltzmann Machine

Deep Boltzmann Machines are stacked Restricted Boltz-
mann Machines (RBM) having undirected edges between
the layers [6]. They are extremely useful for unsupervised
learning of feature representations from a given large unla-
beled data. The energy function of a RBM can be formu-
lated as follows:

E(x, h) = −aTx− bTh− xTWh (6)

where x and h represent the visible and hidden units, respec-
tively. W is the weight matrix where weight wij signifies
weight of connection between the hidden unit hj and visible
unit xi. a represents the bias weights for visible units and b
represents the bias weights for the hidden units. The prob-
ability distribution of a RBM, over the hidden and visible
units is defined as:

P (x, h) =
1

Z
exp(−E(x, h)) (7)

where, Z is the partition function, which is a normalization
constant. This further leads to the formulation of marginal
probability which is the sum of all possible combinations of
the hidden unit configurations, i.e.,

P (x) =
∑
h

P (x, h) =
1

Z

∑
h

exp(−E(x, h)) (8)

Using the training data X, RBMs are trained to minimize
the negative log likelihood, i.e. the loss function Lrbm is
defined as:

Lrbm = −
∑
xεX

log(P (x)) (9)

As explained earlier, we modify this loss function by adding
regularization terms to it. Equations (3), (4) and (5) show
the updated loss functions of RBM:

• l1 norm regularization:

Lrbm = −
∑
xεX

log(P (x)) + λ1 ‖αbwW‖1 (10)

• l2 norm regularization:

Lrbm = −
∑
xεX

log(P (x)) + λ2 ‖αbwW‖22 (11)

• l1 + l2 norm regularization:

Lrbm = −
∑
xεX

log(P (x))+λ1 ‖αbwW‖1+λ2 ‖αbwW‖
2
2

(12)

A layer-by-layer greedy training [1] is used to stack
RBMs and train a DBM.

2.2. Regularized Sparse-Stacked Denoising Autoen-
coder

Sparse denoising autoencoders are stacked to form a
deep learning architecture and greedy layer-by-layer train-
ing is used to train the architecture[11]. The output layer of
the first autoencoder is connected to the input layer of the
second autoencoder and so on. An autoencoder consists of
two components, the encoder and the decoder. The encoder
transforms the input vector into a hidden representation, and
the decoder tries to map it back to the input vector. For a
given input vector, x, the hidden representation, y, is calcu-
lated as:

y = φ(Wx+ b) (13)

where, W is the weight matrix, wij represents the weight
of the connection from the ith input node to the jth hidden
node. φ represents the activation function of the nodes and
b represents the bias. The decoder maps the learnt features
to the data space, using Equation 14.

z = φ(W ′y + b′) (14)

W ′ is the weight matrix, w′
ij represents the weight of the

connection from the ith hidden node to the jth decoder out-
put node. φ represents the activation function of the nodes
and b′ represents the bias. The loss function of an autoen-
coder is formulated as:

Lae = ‖x− z‖2F = ‖x− φ(W ′φ(Wx+ b) + b′)‖2F (15)

Similar to RBM (DBM) formulation, we modify the loss
function of the SDAE by adding regularization terms to it.
Following equations represent the updated loss functions of
SDAE:

• l1 norm regularization:

Lae = ‖x− z‖2F + λ1 ‖αbwW‖1 (16)



• l2 norm regularization:

Lae = ‖x− z‖2F + λ2 ‖αbwW‖22 (17)

• l1 + l2 norm regularization:

Lae = ‖x− z‖2F + λ1 ‖αbwW‖1 + λ2 ‖αbwW‖22
(18)

As mentioned previously, the proposed regularization based
modifications in the loss functions help in incorporating
body-weight variations in the learnt feature space (or la-
tent space). Once the deep-learning based architectures are
trained to represent the face images, Random Decision For-
est (RDF) [4] based classification is used for recognition.

2.3. Random Decision Forest based Identification

Random Decision Forest is an ensemble of decision trees
which is used to solve classification problems [4]. It can
handle the non-linearity in the feature space, is robust to-
wards outliers, and provides stable performance with in-
crease in gallery size [4]. Input to the RDF classifier are the
features extracted using deep learning architecture and out-
put is the class label and probabilistic match score for each
class. RDF training is performed separately using labeled
training data and then used for classifying probe samples
from the test data.

3. eWIT Dataset

The only publicly available dataset that contains weight
as well as age variations for the subjects is the WhoIsIt
(WIT) dataset [7]. It contains 1109 images for 110 sub-
jects. We have extended this dataset and created the extend-
edWIT (referred to as eWIT). The eWIT database consists
of frontal face images of public figures taken from the Inter-
net. The extended database contains a total of 2036 images
of 200 subjects, each subject having at least 10 and at most
14 images. Each face image has been labeled as either thin,
moderate or heavy.

Out of the 2036 images in the database, 437 are labeled
as thin, 1309 as moderate, and 290 as heavy. The age range
of the entire dataset is between 1 to 96 years, with the av-
erage age being 34.29 years. The average age difference
between the youngest and oldest image of each subject is
28.78 years. More details about the dataset are given in
Table 2 which also provides a tabular representation of the
number of images in each of the three weight categories.
The extended dataset will be made publicly available to the
research community. 1

1http://iab-rubric.org/resources/whoisit.html

Attribute Value
Number of Subjects 200
Number of Images 2036
Age Range [1 - 96]
Average Age 34.29
Images per Subject [10 - 14]
Weight category wise distribution of images
Thin 437
Moderate 1309
Heavy 290

Table 2. Description of eWIT dataset

4. Experiments and Results

For all images in the eWIT database, faces are detected
using Viola Jones detector [12], geometric normalization is
performed, and the inter-eye distance is fixed to 90 pixels.
eWIT is partitioned into two subsets, training and testing,
such that 50% images of each subject are in training and the
remaining are in testing. The identification experiments are
performed with 200 classes.

Since the number of images in the eWIT database are
not sufficient to train a DBM or SDAE, we use a trans-
fer learning based approach for training. A DBM/SDAE
is first trained with over 600,000 frontal face images from
multiple datasets to learn the unsupervised feature repre-
sentation of face images. These images and subjects are
non-overlapping with the individuals in the eWIT dataset.
As mentioned by Salakhutdinov and Hinton [6], “high-level
representations can be built from a large supply of unla-
beled sensory inputs and very limited labeled data can then
be used to only slightly fine-tune the model for a specific
task at hand”. The proposed algorithm utilizes this prop-
erty, learns the unsupervised features, and then fine tunes
the trained algorithm on a smaller number of images from
from the eWIT dataset. Using the trained deep-learning al-
gorithm, features are extracted for the training set of eWIT.
A Random Decision Forest is then trained on these features
for identification. The testing partition comprising 50% of
the images from every subject are used for testing.

The results of identification experiments are compared
with the existing algorithm proposed by Singh et al. [7]
and a commercial-off-the-shelf (COTS) system, Verilook
[5]. Table 3 shows the rank-1 and rank-10 identification
accuracies of all the algorithms. Figure 3 shows the CMC
curves for the DBM architectures, Figure 4 shows the CMC
curves for the SDAE architectures, and Figure 5 shows the
comparison of the proposed algorithm with state-of-the-art
algorithm and COTS. Key results of our experiments are:

• Rank-1 accuracy obtained using the existing algorithm
[7] is 17.7% whereas, COTS yields 14.3%. Rank-



Figure 2. Sample images added to the WIT dataset.

Algorithms Rank-1
Accuracy

Rank-10
Accuracy

COTS (VeriLook) 14.3 47.0
Singh et al. [7] 17.7 51.2

SDAE

KL Divergence 19.5 56.2
l1 norm 21.9 58.7
l2 norm 20.1 57.7

l1 norm + l2 norm 23.0 60.3

DBM

No regularization 20.1 57.4
l1 norm 22.3 59.6
l2 norm 20.7 58.4

l1 norm + l2 norm 23.4 61.9

Table 3. Identification accuracies obtained by the existing and pro-
posed algorithms on the eWIT database.

10 accuracies obtained by these two approaches are
51.2% and 47.0% respectively. Rank-1 accuracy ob-
tained using the SDAE with KL divergence is 19.5%
and rank-10 accuracy is 56.2%, whereas, the deep
Boltzmann machine yields the rank-1 accuracy of
20.1% and rank-10 accuracy of 57.4%

• Experiments using SDAE and DBM are performed
with l1 and l2 norm. For SDAE with l1 norm regu-
larization, the rank-1 accuracy is improved to 21.9%,
whereas for DBM, the accuracy is 22.3%. Similarly,
when we apply l2 norm regularization, the rank-1 ac-
curacy for SDAE is 20.1% and DBM is 20.7%. This
clearly demonstrates that l1 norm yields better results.

• On applying l1 norm + l2 norm, the results are
marginally better than the other techniques for both
SDAE and DBM. Rank-1 accuracy obtained for SDAE
and DBM are 23.0% and 23.4% respectively. Rank-10
accuracies obtained with l1 and l2 norm together for
SDAE and DBM are 60.3% and 61.9% respectively.
As shown in Figure 6, the proposed algorithm per-
forms at least 10% better than the existing algorithm

(10.7%) and COTS (14%).

• With l1 norm + l2 norm (elastic net), both grouping ef-
fect and sparsity promoting regularization are applied
and hence improved results are observed.

• For rank-10 accuracy, the variants of the proposed al-
gorithm have the standard deviation of less than 1%
whereas the standard deviation of COTS is 8.13%.
This shows that the proposed algorithm is more stable
as compared to the commercial system.

• Computationally, on a 6C 2.4GHz workstation with
64GB RAM, the regularized DBM and regularized
SDAE based feature extraction followed by RDF based
classifier require less than 1 second for identification.

5. Conclusion and Future Work
The contributions of this research is two-folds: (1)

proposing a novel algorithm to learn latent variables via
body-weight attuned regularization approach, and (2) two
deep learning based algorithms, one with DBM and another
with SDAE are presented to address the problem of face
recognition with weight variations. Results on the extended
WIT database, on 200 subjects, show that the proposed
regularization forces the feature learner to adapt the vari-
ations due to body-weight changes. Results also show that
the regularized DBM and regularized SDAE both perform
better than an existing algorithm and Verilook commercial
matcher. Currently, we are exploring accommodating facial
aging information along with weight variations in the fea-
ture learning process. We also plan to extend the proposed
approach with different regularization and deep learning ar-
chitectures.
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