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Abstract

Authenticating fingerphoto images captured using a
smartphone camera, provide a good alternate solution in
place of traditional pin or pattern based approaches. There
are multiple challenges associated with fingerphoto authen-
tication such as background variations, environmental il-
lumination, estimating finger position, and camera reso-
lution. In this research, we propose a novel ScatNet fea-
ture based fingerphoto matching approach. Effective finger-
photo segmentation and enhancement are performed to aid
the matching process and to attenuate the effect of capture
variations. Further, we propose and create a publicly avail-
able smartphone fingerphoto database having three differ-
ent subsets addressing the challenges of environmental il-
lumination and background, along with their correspond-
ing live scan fingerprints. Experimental results show im-
proved performance across multiple challenges present in
the database.

1. Introduction

Over the past few years, there has been a rapid growth
in the applications a smartphone can provide. Users access
and store a lot of confidential and personal data on their cell
phones. Therefore, the security of such devices is of vital
importance. Existing authentication methods such as pins,
passwords, and patterns are inconvenient for users and sus-
ceptible to attacks as well. Incorporating biometric based
authentication in smartphones can be a suitable alternative.
Among the existing biometric modalities, fingerprint is a
popular biometric requiring minimal co-operation from the
user. In this research, we are exploring the use of fingerprint
based authentication in smartphones. The approaches con-
sidered for smartphone based fingerprint recognition can
be broadly classified into two categories: (i) fingerprint
based authentication and (ii) fingerphoto based authentica-
tion. Fingerprint recognition is performed with the use of
specially designed fingerprint sensors. An embedded sensor
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Figure 1. (a) Sample image showing the fingerphoto capturing
mechanism using a smart-phone camera, and (b) captured finger-
photo image.

(external or attached within the display unit) is used to cap-
ture the fingerprint and minutia based approaches are used
for matching. For example, Samsung S5 and Apple iPhone
5s have fingerprint sensors for authentication [2]. Adding
an optical or capacitive sensor to a smart-phone adds a lot
to the cost of the device. However, with improvements in
technology, almost every smart phone has a good resolu-
tion camera. According to TimAhonen’s Phone Book, in
2014, about 89% of all the cameras in use are on mobile
devices [1]. Fingerphoto based authentication, as shown in
Figure 1, utilizes the camera to capture a photo of the finger
which can be used for authentication. Using smartphone
camera for fingerphoto capture can provide a cost effective
and secure method for user authentication.

Researchers have explored fingerphoto recognition in the
literature and Table 1 summarizes these approaches. The
existing research has primarily focused on fingerphoto pre-
processing techniques such as quality enhancement [14],
pitch correction [19], and foreground segmentation [11].
For matching, only minutia based algorithms have been
explored [11, 14, 19]. Li et al. [13] showed that these
algorithms do not yield good results on fingerphoto im-
ages [13]. The major challenges in fingerphoto matching
can be grouped into three major categories:

∙ Preprocessing and segmentation: As shown in Figure
1, fingerphoto images can be captured at any time and



Table 1. A literature survey of existing fingerphoto recognition algorithms.

Research Capture Type Problems Addressed Database Comments
Lee et al.,
2005 [11]

Mobile camera Segmentation, Ridge orienta-
tion extraction

2 subsets of 400 and
840 images

Database not available

Lee et al.,
2008 [12]

Mobile camera Yaw, roll, pose estimation Samsung DB-I, II, III,
IV

Controlled illumination fingerprints.
Database not available.

Stein et al.,
2012 [19]

Mobile camera Segmentation, pitch correc-
tion, quality enhancement

41 subjects using two
mobiles

Matching performed real time within
the mobile. Database not available.

Li et al.,
2012 [14]

Mobile camera Illumination, resolution varia-
tion

2100 fingerphoto using
three mobiles

Manual segmentation performed.
Database not available.

Li et al.,
2013 [13]

Mobile camera Quality estimation 2100 fingerphoto using
three mobiles

Manual segmentation performed.
Database not available.

Stein et al.,
2013 [18]

Video from mo-
bile camera

Enhancement, fingerprint
spoofing

990 fingerphoto images,
66 finger videos

Uniform background and illumination.
Database not available.

Proposed Mobile camera,
optical sensor

Background, illumination,
segmentation, enhancement,
feature representation

3 sets, 128 classes with
over 5100 images

Database made publicly available, base-
line protocol, and results provided.

at any place. This leads to the challenge of variations
in background and illumination.

∙ Feature representation: Due to the unconstrained na-
ture of image capture, the representation should be in-
variant to translation, rotation, and pose.

∙ Database: Another major challenge faced by the re-
search community is the lack of a publicly available
database. Researchers have reported the results on pri-
vate databases and it is not possible to reproduce the
experiments1.

With the above analysis, this research proposes a three-
fold contribution: (i) propose a segmentation and en-
hancement algorithm for fingerphoto images captured us-
ing smartphones, (ii) propose a novel Scattering Network
(ScatNet) based feature representation [17] and matching
algorithm for fingerphoto images, and (iii) create a public
fingerphoto database to study and analyze the two important
challenges affecting fingerphoto recognition: (a) illumina-
tion variations and (b) complex background information.

2. Proposed Fingerphoto Matching Algorithm
As shown in Figure 2, the proposed fingerphoto match-

ing algorithm consists of three major steps: (i) fingerphoto
segmentation, (ii) fingerphoto enhancement, and (iii) Scat-
Net based feature representation and matching.

2.1. Fingerphoto Segmentation

Fingerphoto images usually contain highly varying back-
ground information. Across the illumination and back-

1HKPU low resolution database [10] is publicly available. However, it
is not captured using smart-phone cameras and has minimal variations in
terms of illumination and background.

ground, we observe that the skin color of the finger is uni-
form and serves as a distinguishing feature. Following this
observation, we propose the adaptive skin color threshold-
ing for fingerphoto segmentation. The RGB image is con-
verted into the corresponding CMYK scale and the Magenta
(M) component is thresholded using the Otsu’s method [16].
This provides a binary mask representing the skin region
of the fingerphoto. The mask contains both false positive
and false negative errors. To remove the false positive er-
rors, the largest connected component is found using the
standard run-length encoding technique [7]. To remove the
false negative errors, image opening operation is performed
twice with a square structuring element.

Once the skin color is segmented, we need to determine
the exact ROI of the binary mask. Starting from the middle
row of the image, the left most true pixel is extracted. This
pixel is traced in both upward and downward directions till
a true pixel of the current row is more than 10 pixels away
from the preceding row. The left top and bottom points of
the ROI are obtained using this trace. The right side bound-
ary is also traced in a similar manner. This provides both
the boundaries and a rectangular ROI is cropped using the
four coordinates. Figures 3 (a), (b), (c) show the output at
different stages of the segmentation algorithm.

2.2. Fingerphoto Enhancement

Fingerphoto enhancement is essential to normalize the
effect of illumination variation, blurriness, and to improve
the contrast between ridge and valley structure in a finger-
print. Segmented image obtained from the previous step is
converted to gray scale and median filtering is applied to
remove any speckle noise introduced during capture. His-
togram equalization is performed to address the illumina-
tion variation and the resulting image is sharpened to im-
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Figure 2. Steps involved in the proposed fingerphoto matching algorithm.

prove the contrast between ridge and valley structures (re-
ducing the blur). Sharpening is performed by subtracting
the Gaussian blurred image (� = 2) from the original image
itself. Thus, the low frequency components are removed
and only the high frequency components (such as edges) are
preserved, making the ridges more prominent. Figure 3(d)
shows a sample of fingerphoto enhancement.

(a) (b) (c) (d)

Figure 3. Demonstrating the output at different stages of prepro-
cessing. (a) original fingerphoto, (b) adaptive skin thresholding,
(c) ROI extraction, and (d) enhanced image showing the ridge-
valley structure.

2.3. ScatNet based Feature Representation

For feature extraction, researchers have explored the rep-
resentation techniques (minutiae) that are well established
for fingerprint matching. It is to be noted that the resolution
and clarity of fingerprint images is significantly high com-
pared to fingerphoto images. Therefore, it is challenging to
accurately extract these features from fingerphoto images.
Li et al. [13] also showed that minutiae based matching does
not perform well for fingerphoto recognition.

As discussed earlier, the challenges in fingerphoto
matching include illumination, noise, translation, and rota-
tion. With the effect of illumination and background noise
being addressed in the preprocessing stage, it is important to
find a feature representation that is translation and rotation
invariant. Many of the feature extraction techniques dis-
card the high-frequency components from an image as high-
frequency components are unstable under deformation [15].
However, as can be observed in Figure 3, the high frequency
band of the enhanced image contains the ridge pattern. To
retain and effectively encode these properties, we propose
feature representation for fingerphoto images using ScatNet
features [4]. It has been shown that the ScatNet features are

good for extracting texture patterns in images [17]. The en-
hanced fingerprint has a good ridge-valley texture and it is
our assertion that ScatNet features can effectively represent
these local patterns.

Scattering Networks (ScatNet)2 is a filter bank of
wavelets that produces a representation which is stable to
local affine transformation. Let x be any signal in ℝ2 (an
image, in this case) and �J(u) = 2−2J�(2−Ju) be a low
pass averaging filter. A locally affine invariant representa-
tion is obtained by the following convolution:

S0x(u) = x ★ �J(u) (1)

This representation is translation invariant upto 2J pixels
and also loses all the high frequency information. To make
additional use of the high information as well, a high fre-
quency wavelet bank  is constructed by varying the ro-
tation parameter � and the scale 2j . The high-frequency,
quadrature phase, complex wavelet filterbank is given as
 �,j(u) = 2−2j (2jr−�u). Thus, the wavelet-modulus
transform for high frequency components are obtained by:

∣W1∣x = (x ★ �(u), ∣x ★  �1
(u)∣) (2)

These high frequency filters provide additional informa-
tion to the features obtained in Equation 1. Convolving
the wavelet transform coefficients with a low pass filter
produces an affine invariant representation of the high fre-
quency components, as follows

S1x(u, �1) = ∣x ★  �1
(u)∣ ★ �J(u) (3)

These coefficients are called the first-order scattering
network coefficients and represent the concatenation of all
the filter responses in the wavelet bank  �1

(u). If four
different frequency bands are chosen in �1, the overall re-
sponse S1 is the concatenation of wavelet responses of all
four filters. Higher-order scattering network coefficients
can be obtained by recursively constructing deeper wavelet
filter banks as follows:

∣W2∣∣x★ �1
(u)∣ = (∣x ★  �1

(u)∣ ★ �, ∣∣x ★  �1
(u)∣ ★  �1

∣)
(4)

2MATLAB toolbox publicly available at http://www.di.ens.
fr/data/software/scatnet/

http://www.di.ens.fr/data/software/scatnet/
http://www.di.ens.fr/data/software/scatnet/
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Figure 4. (a) Original image in natural outdoor environment, (b) segmented image using algorithm in Section 2.1, (c) enhanced image
using algorithm in Section 2.2, and (d) ScatNet feature representation of the enhanced image. R1 to R209 is the second order ScatNet
representation (S2), which is the concatenation of responses obtained from a wavelet filter bank of 209 filters.

These higher order ScatNet coefficients provide a more
stable translation and rotation invariant representation for
the fingerphoto images, as shown in Figure 4. The effec-
tive representation for a fingerphoto is the concatenation of
all n-order responses such as {S0, S1, . . . , Sn}, where n is
chosen as two in this research. Also, as these filters are
pre-designed, calculating a ScatNet representation is con-
volving these filters over the image. Thus, it is easy to ex-
tract ScatNet features using only the computation power of
smartphones.

2.4. Feature Matching

Let P and G represent the 1×N length vectorized Scat-
Net representations of the probe and the gallery fingerphoto
images, respectively. To match these features, we demon-
strate two different matching scenarios.

∙ L1 Distance between the two ScatNet features is given
as follows:

d(P,G) =

N∑
i=1

(Pi −Gi) (5)

∙ Learning based method: A supervised binary classi-
fier g:X → Y can be learnt to classify a pair of Scat-
Net feature representations (P , G) as a match or non-
match pair. The feature set X is the difference of the
two feature representations (P − G) and the classifi-
cation labels Y are {Match, Non-match}. From the
difference of representations, the supervised classifier
learns whether an image pair is a match or a non-match
pair.

3. IIITD Smartphone Fingerphoto Database
Since there is no publicly available fingephoto database,

we prepared a new database. The database consists of 128

classes with over 5100 images and is called as the IIITD
Smartphone Fingerphoto Database3. All the images are
captured using Apple iPhone5 at 8MP resolution. Flash
LEDs are turned off while the auto-focus is kept ON. To
analyze the effect of individual challenges such as illumina-
tion and background, the database is divided into three sub-
sets. A summary of the dataset is provided in Table 2 and
Figure 5 shows sample images corresponding to the three
subsets.

∙ Set I - White Background: Fingerphoto images are
captured in both indoor (controlled illumination) and
outdoor (with uncontrolled lighting) environment with
white background, as shown in Figure 5(a). The two
subsets (WI and WO) show the effect of varying illu-
mination with a constant uniform white background.
Each subset has 8 images of right index and right mid-
dle fingers corresponding to 64 subjects, resulting in
64 subjects × 2 fingers× 2 lighting variations × 8 in-
stances = 2048 images for Set I.

∙ Set II - Natural Background: Fingerphoto images
are captured in both indoor and outdoor environment,
allowing any natural background to be present, as

3The database is made publicly available to the research community to
encourage further research: http://iab-rubric.org/resources/spfd.html

Table 2. A summary of the multiple subsets and their variations in
the IIITD smartphone fingerphoto database.

Background Illumination Classes Images

Set I (White)
Indoor (WI) 128 1024
Outdoor (WO) 128 1024

Set II (Natural)
Indoor (NI) 128 1024
Outdoor (NO) 128 1024

Set III (Live scan sensor) 128 1024
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Figure 5. Sample images showing the challenges of illumination and background variations addressed in IIITD smartphone fingerphoto
database. Multiple samples also show the amount of intra-class variations and blur noise present in the database. (Figure best viewed in
color and under zoom).

shown in Figure 5(b). The subset NI, shows the effect
of background variation under controlled illumination
while the subset NO, shows the effect of varying both
background and illumination together. Set II also has
2048 images.

∙ Set III - Live Scan: In online banking applications,
there can be a scenario where a fingerphoto has to be
matched with a background gallery of live-scan finger-
prints. To evaluate the performance in such scenarios,
a database of live-scan fingerprints is captured using
Lumidigm Venus IP65 Shell fingerprint sensor. Simi-
lar to Set I and Set II, 8 images of right index and right
middle finger are captured for 64 subjects, thereby hav-
ing a total of 64 subjects × 2 fingers × 8 instances =
1024 images.

4. Experimental Results
Since the primary purpose of fingerphoto is verification,

two main experiments are performed:

∙ Fingerphoto-to-fingerphoto comparison (E-I): White
indoor images in WI subset are fixed as gallery while
the other three subsets {WO, NI, NO} are used as probe
images, independently. Assuming WI as the most sta-
ble capture of fingerphoto images, WI-WO matching
shows the impact of illumination, WI-NI shows the im-
pact of background variation, and WI-NO shows the
impact of illumination and background together on the
matching performance. To set a baseline matching, WI
set is split randomly into 50% gallery and 50% probe,
and the results are shown.

∙ Fingerphoto-to-fingerprint comparison (E-II): In this
experiment, all four subsets of fingerphoto {WI, WO,
NI, NO} are independently matched against the gallery
of live scan fingerprints (Set III). An additional exper-
iment is performed where the testing database of WI is
matched against the live scan gallery to compare with
the baseline of E-I.

All the segmented images are resized to a standard size of
400×840. Second-order ScatNet representations are used in
this research, resulting in a feature representation of length
1, 097, 250 per fingerphoto image. Due to the high dimen-
sionality of the representation, PCA is applied, preserving
99% Eigen energy, to get a more succinct representation of
fingerphotos. Two supervised classifiers are used, Neural
Network and Random Decision Forest (RDF) [8]. RDF is
known to yield good results for high-dimensional data [3].
The performance of ScatNet based matching results is com-
pared with (i) minutiae based matching - minutiae are ex-
tracted using VeriFinger SDK and matched using MCC de-
scriptor [5] and (ii) CompCode feature based matching [9].
The results of both fingerphoto-to-fingerphoto comparison
(E-I) and fingerphoto-to-fingerprint comparison (E-II) are
shown in Table 34. The major conclusions that can be drawn
from the results are:

∙ By comparing the performance of multiple algorithms
on both E-I and E-II, it is observed that ScatNet match-
ing performs better than MCC descriptor based minu-

4For more graphical display of results, kindly visit: http://iab-
rubric.org/resources/spfd.html



Table 3. Equal Error Rate (%) of the proposed algorithm and comparison with existing algorithms.
Gallery Probe MCC descriptor CompCode ScatNet + L1 ScatNet + NN ScatNet + RDF

E-I
White Indoor (WI)

WO 22.12 6.90 18.83 7.51 5.07
NI 21.33 5.02 19.75 27.32 7.45
NO 21.52 5.31 18.98 13.12 3.65

WI/2 WI/2 37.25 6.61 28.42 32.89 6.00

E-II Live-scan (LS)

WI/2 31.01 21.07 49.51 20.54 5.53
WI 29.92 14.58 19.38 15.60 7.07
WO 12.92 14.74 18.95 23.34 7.12
NI 18.05 10.60 18.59 17.02 10.43
NO 12.76 11.38 19.18 17.42 10.38
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Figure 6. ROC curves using ScatNet features and RDF based matching method for (a) fingerphoto-to-fingerphoto comparison (E-I) and (b)
fingerphoto-to-fingerprint comparison (E-II).

tia matching and Gabor filter based CompCode match-
ing. While using ScatNet features, learning based
matching provides Equal Error Rate (EER) in the
range of (3 − 10)%, which is much better compared
to distance based matching. The ROC curve for the
best matching scenario of ScatNet + RDF is shown in
Figure 6.

∙ For the first set of experiment E-I, with white indoor
fingerphoto as gallery, natural outdoor images provide
the best matching results, across all the algorithms.
That is, capturing probe fingerphoto images in natu-
ral outdoor setting is observed to be most suitable and
preferred method. Similarly, for experiment E-II, with
live scan fingerprint images as gallery, white outdoor
images are found to be the best matching probe im-
ages.

∙ To study the effect of illumination, it can be observed
that outdoor uncontrolled illuminated images provide
better matching performance than indoor images. This
is due to the reason that outdoor environment provides
a complete surrounding illumination, whereas, indoor

environment creates a shadow of the smartphone over
the finger (due to the position of the camera and hand).
As can be observed in Figure 5(a), this shadow-like
formation reduces the clarity of ridge patterns in those
regions.

∙ All the results using ScatNet show that natural in-
door probe images provide the lowest matching per-
formance. This is because the background informa-
tion in indoor environment are close to fingerprint skin
color, thereby creating challenges in segmentation and
enhancement. Thus, in this dataset, the overall indoor
illumination and background variations pose a stronger
problem to fingerphoto recognition when compared to
outdoor illumination and background variations.

5. Conclusion and Future Work

This research work summarizes the major challenges as-
sociated with matching fingerphoto images captured using
a smartphone camera. A novel ScatNet based affine in-
variant fingerphoto representation is proposed. Matching
is performed using RDF classification based approach and



compared with minutiae based and CompCode based meth-
ods. A fingerphoto segmentation and enhancement algo-
rithm is proposed to aid the matching process. To be able
to study and address different challenges, publicly available
IIITD smartphone database is created. The database con-
sists of three sets having 128 classes with more than 5100
images and is made publicly available for research purpose.
The results show a considerable performance improvement
over the existing algorithms in different experimental set-
tings. Future work could be (i) to create a real-time mo-
bile application for providing user authentication, like the
knuckle-print based user authentication proposed by Cheng
and Kumar [6], and (ii) to develop cross resolution finger-
photo matching algorithm.
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