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Abstract

Mobile biometric approaches provide the convenience

of secure authentication with an omnipresent technology.

However, this brings an additional challenge of recogniz-

ing biometric patterns in an unconstrained environment in-

cluding variations in mobile camera sensors, illumination

conditions, and capture distance. To address the heteroge-

neous challenge, this research presents a novel heterogene-

ity aware loss function within a deep learning framework.

The effectiveness of the proposed loss function is evaluated

for periocular biometrics using the CSIP, IMP and VISOB

mobile periocular databases. The results show that the pro-

posed algorithm yields state-of-the-art results in a heteroge-

neous environment and improves generalizability for cross-

database experiments.

1. Introduction

Mobile devices are ubiquitous and they are used for var-

ious applications such as mobile banking, e-business and

social media. These devices store confidential and critical

data which if lost/stolen can cause harm to the user. There-

fore, secure, convenient and fast authentication methods are

required to unlock the devices. Most of the modern mobile

devices rely on biometric based authentication [17] such as

face and fingerprint recognition to validate the identity of

the user. However, biometric authentication on mobile de-

vices pose several challenges. A primary challenge in ac-

quiring the biometric data from mobile phones is that it is

highly unconstrained. For touch-less sensing (e.g. captur-

ing faces), the quality of the image can be adversely af-

fected by factors such as variation in illumination condi-

tions, distance from the subject, indoor/outdoor scenarios,

quality of the front and back camera, and motion blur due to

movement of the device/subject. Different mobile sensors

for capturing biometric data pose a cross sensor matching

problem, as different camera sensors have different imaging

properties. This introduces heterogeneity in the captured

data (e.g., indoor vs outdoor, front camera vs back camera
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Figure 1: Data captured from mobile devices in indoor and

outdoor conditions result in large variations.

resolution), and it makes biometric recognition on mobile

devices an interesting and challenging problem.

Periocular region as a biometric modality [5, 21] has

been gaining attention. It refers to using the regions around

the eye for identity recognition. The periocular region is

generally available even in unconstrained scenarios with a

non cooperative subject and it can be especially useful in sit-

uations where the other information such as face is partially

occluded. Figure 1 illustrates the use of mobile periocular

recognition in unconstrained environments. It requires no

additional capturing overhead which is useful while captur-

ing using a mobile device. Feasibility of periocular region

as a biometric trait was explored by Park et al. [21]. There-

after, there has been significant research advancements in

this area. Detailed surveys of periocular recognition are

provided by Alonso-Fernandez et al. [2] and Nigam et al.

[20]. A large number of techniques have performed perioc-

ular recognition on data obtained with high quality sensors

in constrained conditions but there has been increasing fo-

cus on the less constrained scenarios as well. Many popular

methods relied on hand crafted features like HOG, SIFT and

LBP for the periocular and iris information [5, 20]. Tan et

al. [32] use filters applied on input data for providing dis-

criminative features for segmentation and recognition. Nie

et al. [19] use convolutional restricted Boltzmann machine



along with handcrafted feature extraction for improved per-

formance.

Recently, deep convolutional neural networks have

gained immense popularity for ocular recognition. Zhao

and Kumar [36] use explicit semantic information to ex-

tract better features and improve performance of the CNN.

Proença et al. [22] generate artificial samples belonging to

multiple classes by interchanging ocular parts from differ-

ent subjects for data augmentation thereby improving the

training process. Several works have also explored the prob-

lem of periocular recognition by capturing data using mo-

bile devices. De Frietas et al. [7] model the inter session

variability in the data from the enrollment time to the test

time. Raghavendra et al. [23] utilize coupled autoencoders

and Maximum Response (MR) based texture features for

mobile periocular recognition. Another approach by Raja

et al. [24] used pooling of sparse filtered features. Zhang et

al. [35] use the fusion of iris and periocular region informa-

tion with weighted concatenation to obtain a joint represen-

tation.

In this paper, a novel heterogeneity aware deep em-

bedding framework for periocular recognition is proposed

specifically for scenarios where the images are captured in

unconstrained settings. The proposed method works by ob-

taining the heterogeneity invariant feature representations

of the periocular images via a deep convolutional neural

network. The deep CNN model is trained via the proposed

heterogeneous aware loss metric based on the identity of

the subjects and tries to enforce a margin between the clus-

ters of images of a particular identity/class in the embed-

ding space. The embeddings of the same subject/classes are

brought close to each other and that of other subjects are

pushed away from each other in the output embedding space

of the deep CNN model. In addition to that, the loss func-

tion ensures that the model produces heterogeneity aware

embeddings. Experiments are performed on three popu-

lar periocular databases and comparison with existing algo-

rithms demonstrate state-of-the-art results. The remaining

paper is arranged as follows: Section 2 contains details of

the proposed algorithm. The database used and experiment

protocols are discussed in Section 3 while the results are

discussed in Section 4.

2. Proposed Algorithm

In mobile periocular recognition, heterogeneity may oc-

cur due to illumination variations, change in subject to cam-

era distances, and sensor variations. In this section, we

illustrate a novel periocular recognition algorithm which

trains a deep convolutional neural network model using the

proposed heterogeneity aware loss metric. This results in a

highly discriminative model producing heterogeneity aware

embeddings suitable for matching periocular images cap-

tured in unconstrained scenarios. Figure 2 illustrates the

steps involved in the proposed pipeline.

2.1. Motivation

In the homogeneous/ideal scenarios, the vanilla Triplet

Loss [28] can be used which enforces a margin α on the em-

beddings for a given set of three images known as a triplet.

Let (Ia1, Ia2, Ib1) be a triplet where Ia1 is the anchor image

of identity/class ‘a’, Ia2 is the positive image which belongs

to the same person (identity/class ‘a’) and Ib1 is a negative

sample of identity/class ‘b’. Let g(Ix) be the feature em-

beddings of image Ix and τ is the set of all triplets and [z]+
is max(0, z). The Triplet loss [28] aims to minimize the

following:

∑

∀T∈τ

[

‖g(Ia1)− g(Ia2)‖
2
2 − ‖g(Ia1)− g(Ib1)‖

2
2 + α

]

+

(1)

∀(Ia1, Ia2, Ib1) ∈ τ

For a model to produce heterogeneity aware embed-

dings, it should learn to discriminate between images of

different identities as well as bring closer the embeddings

of similar identities even in the presence of domain varia-

tion at the image level. Such a model should not work with

just a single negative sample in the particular triplet. In-

stead, if the model learns to differentiate between an image

of ‘a’ and every image of ‘b’ (here ‘a’ and ‘b’ are two dif-

ferent identities) then the model generalizes better because

it has to enforce a margin with all the embeddings of the

negative class as opposed to a single negative sample.

In order to represent all the embeddings of the negative

class, mean embedding of the negative class can be incorpo-

rated in the vanilla triplet loss. This means that essentially

the centroid of the cluster of images of a negative class is

separated from the positive class images. The loss function

for the same is as follows:

L =


‖g(Ia1)− g(Ia2)‖
2
2 −

∥

∥

∥

∥

∥

g(Ia1)−

∑k

i=1 g(Ibi)

k

∥

∥

∥

∥

∥

2

2

+ α1





+

(2)

where, Ia1, Ia2 belong to class ‘a’ and Ibi is the ith image

of class ‘b’ (Ia1 serves as the anchor),
∑

k

i=1
g(Ibi)

k
represents

the mean of all the embeddings of a random negative iden-

tity ‘b’.

2.2. Heterogeneity aware embedding space

Equation 2 only incorporates mean embeddings in the

same domain and there is no factor of domain/covariate

variations. In order to incorporate domain/covariate vari-

ation in the model, images needs to be added from different

domains for both identities ‘a’ and ‘b’.
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Figure 2: Training the proposed model: periocular images pertaining to different identities are utilized to forward pass through

the deep CNN model with shared weights. During training, the loss function (Figure 3) optimizes the feature representations

so that the ones of the same identity are close to each other (i.e. reduce intra-class variations) while others are pushed further

apart in the output embedding space of the deep CNN model. a and b refer to different subjects and domain 1 and 2 refer to

different image capture scenarios such as indoor/outdoor and with flash/without flash.

Let p and q be the factors of domain variation which we

want to incorporate together in the model. Equation 2 with

the covariate can be expressed as:
L1 =



‖g(Ipa1)− g(Ipa2)‖
2
2 −

∥

∥

∥

∥

∥

g(Ipa1)−

∑k

i=1 g(I
p
bi)

k

∥

∥

∥

∥

∥

2

2

+ α1





+

(3)

For multiple domains, we would still like to minimize the

distance between the embeddings for same identities and

increase it for different identities. This implies, minimize

||g(Ipa1)−g(Iqa3)||
2
2 and maximize ||g(Ipa1)−g(Iqb1)||

2
2 where

Iqx is an image in different domain and g(Iqx) is its respective

deep CNN model embedding. This means that the cluster

of embeddings of a particular class is essentially shrunk as

the embeddings are brought closer while the centroid of the

cluster of a negative class is pushed away in the embedding

space. Hence, the loss equation to train a domain invariant

representation can be expressed as:

L2 =
[

‖g(Ipa1)− g(Iqa3)‖
2
2 − ‖g(Ipa1)− g(Iqbi)‖

2

2
+ α2

]

+
(4)

Representing the negative class by the mean embedding,

Equation 4 can be expressed as:

L2 =



‖g(Ipa1)− g(Iqa3)‖
2
2 −

∥

∥

∥

∥

∥

g(Ipa1)−

∑k

i=0 g(I
q
bi)

k

∥

∥

∥

∥

∥

2

2

+ α2





+
(5)

The final loss equation for creating heterogeneity aware em-

bedding space would be (L = L1 + L2):
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Figure 3: Illustrating the proposed heterogeneity aware loss

L =


‖g(Ipa1)− g(Ipa2)‖
2
2 −

∥

∥

∥

∥

∥

g(Ipa1)−

∑k

i=1 g(I
p
bi)

k

∥

∥

∥

∥

∥

2

2

+ α1





+

+


‖g(Ipa1)− g(Iqa3)‖
2
2 −

∥

∥

∥

∥

∥

g(Ipa1)−

∑k

i=0 g(I
q
bi)

k

∥

∥

∥

∥

∥

2

2

+ α2





+

(6)

This loss function can be used to train a domain invariant

representation in a deep CNN model, which can be utilized

to train for both homogeneous (same domain) and hetero-

geneous (cross-domain) scenarios.

2.3. Implementation Details

The CNN architecture used for training is

LightCNN29 [34]. The network consists of 29 con-

volutional layers with 3 × 3 filters. There are 4 pooling

layers and the feature representation (embedding) layer is

256 dimensional. The optimization of the gradient of the

loss function is performed via Adam optimizer [14] at a

learning rate of 1e−5 which is slowly decayed. The values

of both the summations in the loss are clipped to have a

lower bound of 0. The data to be provided to the CNN

is sampled randomly from the data available for training

and composed into the required tuple. For the experiments,

both α1 and α2 have been set to 0.4.

3. Databases and Experimental Protocols

The efficacy of our model is evaluated on two datasets

for unconstrained heterogeneous data captured from mobile

devices: the CSIP database [27] and the VISOB database

[26]. Additionally, we have reported results on the IIITD

Multi-spectral Periocular Database [29] which has data in

different spectrums collected using different sensors includ-

ing a handheld nightvision camera to show the effectiveness

of the proposed algorithm in a general heterogeneous data

acquisition scenario. Figure 4 shows sample images from

these databases.

3.1. CSIP Database

The Cross-sensor iris and periocular dataset [27] con-

tains images captured from 4 different mobile phones- Sony

Ericsson Xperia Arc, Apple iPhone 4, ThL W200 and

Huawei U8510. Images taken from each sensor (mobile

phone camera) is further divided into categories denoting

front/rear camera and flash/no flash. The dataset has 2004

right periocular images pertaining to 50 different subjects.

For this dataset, we carry out two experiments, cross sen-

sor and cross illumination periocular recognition. For cross

sensor tasks, we train the algorithm on one-vs-all setup,

where all images from Apple iPhone 4 serve as one domain,

and all images from the remaining sensors are considered as

second domain. Training and testing partition is done such

that images of subjects 1-40 are used for training and im-

ages of subjects from 41-50 form the testing set. Addition-

ally we test the proposed algorithm on cross-illumination

tasks, such that all the images in the presence of flash form

one domain and images captured without flash correspond

to different domain. Train test split is similar according to

the above protocol. Results for both the experiments are

reported in Tables 1 and 2.

3.2. VISOB Dataset

The VISOB database [26] is a large scale dataset from

the VISOB ICIP2016 Challenge. It consists of images from

550 subjects captured via the front facing camera of 3 dif-

ferent devices - iPhone 5s, Samsung Note 4 and Oppo N1

in 3 different illumination conditions namely, regular office

light, dim light and natural daylight settings. The data was

collected in two visits. Only Visit 1 is publicly available. It

contains a total of 48,250 images as a part of the enrollment

set and 46,797 images as a part of the verification set across

all devices and conditions. We perform two experiments on

the dataset. (a): In the first experiment, for training, all the

images in the enrollment set are used and for testing, the

images in the verification set act as probes for the enrolled

images via which identification is performed similar to [1].

(b): In order to compare with [37], the training and testing

was performed only on the images captured via the iPhone

in day light conditions (as per the protocol used in [37]).

3.3. IIITD Multi­spectral Periocular Database

The IIITD IMP dataset [29] has images captured in three

spectrums - visible, near-infrared and night vision, making
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Figure 4: Sample images from the CSIP [27], VISOB [26],

and IMP [29] datasets.

a total of 1220 images. With 62 subjects in each spec-

trum and 5 different images corresponding to each subject,

the dataset contains 310 images each in the visible and the

NIR spectrum. Resolution of the visible spectrum images is

601 × 301 and the NIR images are of 540 × 260 each. To

demonstrate the effectiveness of the proposed approach, no

training is performed on this database. The proposed algo-

rithm is evaluated by using the model trained on cropped

images of the CASIA NIR-VIS 2.0 face database [16].

This is done in order to keep the protocols consistent (to

perform comparison) with other cross-spectral periocular

recognition methods namely Behera et al [4] and Ramaiah

et al [25].

4. Experimental Results
The proposed model is evaluated on the datasets dis-

cussed in Section 3, and compared with other state-of-

the-art algorithms. For CSIP1 dataset, the performance of

the proposed algorithm is compared with Triplet Loss [28]

trained in the same way described in Section 3. The train-

ing protocol is exactly consistent with the one used for the

proposed algorithm. For the cross-illumination and cross-

sensor experiments (Table 1 and Table 2) the proposed algo-

rithm achieves a Rank 1 Accuracy of 87.33% and 89.53%,

respectively. It outperforms [28] by over 10% and 5%, re-

spectively. This illustrates the superiority of the method in

generating embeddings that are invariant to the large het-

erogeneity in the data. Furthermore, apart from the deep

learning methods, we also show the comparison with hand-

crafted features such as Histogram of Oriented Gradients

(HOG) [6] and Daisy features (similar to SIFT) [33]. The

1Kandaswamy et al. [12] has reported results on this database, but the

protocol used in their work is transfer learning based. Santos et al. [27]

had performed cross-sensor experiments, but evaluated their algorithm on

the entire dataset. Since the proposed method requires training, a direct

comparison with [27] is not feasible. Monteiro et al. [18] have also com-

puted the results on this dataset, however cross sensor experiments were

not performed

Table 1: Results on the CSIP dataset for cross-sensor mo-

bile periocular recognition tasks.

Algorithm
Identification

Verification

GAR@f FAR

Rank-1(%) f=0.1% f=10%

HOG [6] 62.79 2.85 27.84

DAISY [33] 62.40 2.49 33.57

Schroff et al. [28] 84.10 12.87 65.64

Proposed 89.53 18.23 75.15

Table 2: Results on the CSIP dataset for cross-illumination

mobile periocular recognition tasks.

Algorithm
Identification

Verification

GAR@f FAR

Rank-1(%) f=0.1% f=10%

HOG [6] 73.85 3.19 27.21

DAISY [33] 57.26 3.42 29.80

Schroff et al. [28] 77.42 10.17 59.66

Proposed 87.33 14.53 83.19

results presented in Tables 1 and 2 corroborate the effective-

ness of the proposed model.

Table 3 summarizes the Rank 1 accuracies of the pro-

posed method on the VISOB Database [26] for the experi-

ment (a) (described in section 3.2). The proposed method

outperforms the current state-of-the-art for all devices and

lighting conditions, significantly. Table 4 summarizes the

results obtained on the VISOB database for experiment (b).

For comparison with Zhao et al. [37] the same experimental

protocol is followed and the results obtained are reported on

the same fold. The proposed method obtained an improve-

ment of over 10% over the state-of-the-art EER.

The results of the IMP dataset are summarized in Table

5. It is important to note that no training is performed on

this dataset and the reported results are used to illustrate the

effectiveness of the model to generate embeddings which

can match identities irrespective of the heterogeneity. The

method achieves a Genuine Accept Rate of 82.97% at 10%
False Accept Rate. As shown in Table 5, the proposed ap-

proach outperforms the state-of-the-art by a very large mar-

gin. Results are also compared with the deep learning tech-

nique [28] and the proposed method achieves rank 1 accu-

racy of 61.2% as compared to 49.36% obtained by [28].

Apart from the accuracies observed, we have made fol-

lowing observations:

Cross-Database Performance: In order to compare the

performance of the proposed approach with state-of-the-art

algorithms [4, 25] for the IMP dataset, we performed test-

ing on this dataset without training on any image of this

dataset. The deep CNN model was trained on the CASIA

NIR-VIS 2.0 dataset [16]. Periocular images were extracted

from the face images of this dataset for training. This train-
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Figure 5: ROC curves showing verification accuracies on IMP and CSIP databases

Table 3: Rank 1 accuracy on the VISOB Database for ex-

periment 1 with all images.

Rank 1 Accuracy (%)

Ahuja [1] Proposed Ahuja [1] Proposed

Phone Condition Left Right

Samsung

Office 90.45 94.30 91.53 94.71

Day 92.44 97.15 92.97 98.47

Dim 93.12 97.19 93.61 98.04

iPhone

Office 93.54 94.97 93.89 95.88

Day 95.98 96.36 94.82 96.06

Dim 96.09 96.69 96.14 96.54

Oppo

Office 90.79 91.55 90.23 90.75

Day 94.21 97.66 94.81 97.25

Dim 96.31 97.28 96.15 97.07

Table 4: Results on the VISOB Database with iPhone in

daylight

Algorithm Rank 1 Accuracy(%) EER (%)

Texton [32] - 4.80

PPDM [31] - 5.03

SCNN [36] - 3.30

Zhao et al. [37] - 1.47

Proposed 99.41 1.32

Table 5: Results on the IMP dataset for cross-spectrum pe-

riocular recognition tasks.

Algorithm
Identification

Verification

GAR@f FAR

Rank-1(%) f=0.1% f=10%

Ramaiah et al. [25] - - 18.35

Behara et al. [4] - - 25.03

Schroff et al. [28] 49.36 8.23 62.27

Proposed 61.20 12.07 82.97

ing was performed with spectrum as the heterogeneity and

then the trained model was utilized for testing on the en-

tire IMP dataset. This mimics a cross-database train-test

scenario. As shown in Table 5, the proposed algorithm pro-

duces state-of-the-art results, which shows that our model is

generalizable to datasets on which no fine-tuning or training

is performed. It should also be noted that the CASIA and

IMP datasets contain subjects pertaining to different ethnic-

ities and the images are collected using different sensors.

High verification performance with cross-database testing is

a strong indication of the generalizability of the algorithm.

Hard Mining: Most deep metric learning algorithms [11,

28] are heavily dependent on hard mining of samples for

training. However, the proposed method, produces better

results than one of the most popular deep metric learning

algorithms [28] without any hard-mining. This saves a huge

amount of training time and is a testament to the efficacy of

the proposed algorithm.

Testing Time: On Intel Core i7 workstation with 32GB of

RAM and NVIDIA GTX 1080ti GPU, the average time for

matching a pair of images is 50.5 microseconds.

5. Conclusion and Future Research

Mobile periocular recognition requires addressing het-

erogeneity due to illumination variations, subject-to-camera

distances, sensor variations, and indoor-outdoor variations.

To address this research challenge, a heterogeneity aware

loss is proposed to train deep CNN model which helps in

creating domain invariant embedding space. The proposed

algorithm for periocular recognition in unconstrained en-

vironments achieves state-of-the-art results. Although the

results are shown on periocular recognition tasks, the pro-

posed loss metric can also be extended for other recogni-

tion tasks such as recognizing faces with disguise varia-

tions [9, 15, 30], heterogeneous face recognition [8, 10],

and iris/periocular recognition with multiple cameras or co-

variates [3, 13].
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