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Abstract

High performance of deep neural network based systems
have attracted many applications in object recognition and
face recognition. However, researchers have also demon-
strated them to be highly sensitive to adversarial pertur-
bation and hence, tend to be unreliable and lack robust-
ness. While most of the research on adversarial pertur-
bation focuses on image specific attacks, recently, image-
agnostic Universal perturbations are proposed which learn
the adversarial pattern over training distribution and have
broader impact on real-world security applications. Such
adversarial attacks can have compounding effect on face
recognition where these visually imperceptible attacks can
cause mismatches. To defend against adversarial attacks,
sophisticated detection approaches are prevalent but most
of the existing approaches do not focus on image-agnostic
attacks. In this paper, we present a simple but efficient
approach based on pixel values and Principal Component
Analysis as features coupled with a Support Vector Machine
as the classifier, to detect image-agnostic universal pertur-
bations. We also present evaluation metrics, namely adver-
sarial perturbation class classification error rate, original
class classification error rate, and average classification er-
ror rate, to estimate the performance of adversarial pertur-
bation detection algorithms. The experimental results on
multiple databases and different DNN architectures show
that it is indeed not required to build complex detection al-
gorithms; rather simpler approaches can yield higher de-
tection rates and lower error rates for image agnostic ad-
versarial perturbation.

1. Introduction

With the availability of large databases, computing re-
sources, and newer optimization techniques, deep learning
algorithms have seen huge success in several domains rang-
ing from text processing to speech processing to visual un-
derstanding to complex task of autonomous driving. How-
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Figure 1: Visualization of original face image, perturbation
vector, and perturbed image. First row is original face im-
age, second row is the perturbation vector of VGG-16, and
last row is the perturbed image (Better view at magnifica-
tion factor 4).

ever, one of the major criticism of deep neural network
(DNN) algorithms is lack of strong mathematical founda-
tions. This limitation has motivated researchers to exploit
the working of deep learning algorithms to fool the classi-
fier for incorrect prediction. As shown in Figure 1, to fool
a face recognition model (VGG-16 in this case), the input
images are perturbed in such a way that the human can still
predict the actual class but the network will classify it in the
wrong class. This perturbation of the input image is popu-
larly known as an adversarial perturbation.

Adversarial perturbation can be defined as the addition
of a minimal vector 7 such that with addition of this vector
into the input image z, i.e. (x + r), the deep learning model
s misclassifies the input. The impact of adversarial pertur-
bation was first coined by Szegedy et al. [33]. It was shown
that a minimal pixel change in the input image could lead
to misclassification. While the primary objective of creat-
ing adversaries is misclassification, it is equally important
that the changes are imperceptible and undetectable. Due to
the wide spread applicability of deep learning algorithms,



adversarial samples can cause severe damage in real world
scenarios [19]. For instance, in “autonomous” driving, if
the signboard is perturbed, adversarial samples can risk the
car, people walking on the road, and other automobiles.

Several researchers have designed algorithms for ad-
versarial image generation. Goodfellow et al. [12] pro-
posed the generation of adversarial examples by adding
the network gradient to the input image with the aim of
misclassification and referred to it as “fast gradient sign
method” (FGSM). The gradient method can be applied both
using/not-using the sign of the gradient and iterative vs sin-
gle time addition. Carlini and Wagner, and Chen et al. pro-
posed algorithms based on the minimization of DNN loss
function using L1, Lo norms [4], and Elastic-Net (L1+Ls)
[5]. Papernot et al. [29] have shown that in place of modi-
fying every pixel of the input image, it is feasible to achieve
adversarial effect by perturbing highly salient pixels that
have high involvement in the classification task. Another
adversarial approach, termed as DeepFool [27], computes
the adversarial perturbation for each image. While most of
the adversarial example generation algorithms are based on
the minimization of particular optimization function over
each image, recently Moosavi-Dezfooli et al. [26] pro-
posed image-agnostic Universal Perturbation to fool deep
networks. This image agnostic adversarial perturbation is
named as “Universal” because it can successfully perturb
any image. Experiments have shown the generalizability of
the universal perturbation across three different DNN archi-
tectures, viz, VGG-16, GoogLeNet, and ResNet-152. Goel
et al. [10] have developed a toolbox containing various
algorithm corresponds to adversarial generation, detection,
and mitigation.

It is intriguing to see the sensitivity of such accurate deep
neural networks towards adversarial attacks. Therefore, the
focus of this research is on addressing the challenge of ad-
versaries by designing algorithm to detect adversarially per-
turbed samples. On analyzing this phenomenon in detail,
Goodfellow et al. [12] observed that one of the reasons
is the linearity of the hidden layers while Tanay and Grif-
fin [34] highlighted that the sampled data points lie on a
manifold. If the adversarial samples lie close to the sub-
manifold, there is a high chance of misclassification. Since
the adversary generation algorithms utilize the linearity of
deep models, in this research we pose the question, Is Ad-
versarial Perturbation Challenging to Detect? The contri-
butions of this research are:

e The effectiveness of the solution is evaluated using
two perturbation algorithms, Universal Perturbation
[26] and Fast Feature Fool [28] (a variant of Uni-
versal Perturbation). The experiments are performed
with four different DNN architectures, VGG-16 [31],
GoogLeNet [32], ResNet-152 [16], and CaffeNet [18],
and three different face databases namely MEDS [9],

PaSC [2], and Multi-PIE [14].

e The results are reported using different combinations
of the face databases for training and testing both in
same-database and cross-database settings.

e The results are compared using two existing algo-
rithms, Adaptive Noise Reduction [22] and Bayesian
Uncertainty [8]. The detection accuracy is signifi-
cantly better than these approaches with several orders
of magnitude less in the computation requirement.

e Also, detailed analysis has been performed to show-
case the performance of individual color channels in
perturbation detection to select channels to reduce the
computing requirement.

To the best of our knowledge, this is first reported work in
this area with such high accuracy.

2. Related Work

Adversarial detection algorithms in literature can be
classified into these four broad features: (i) measurement of
distribution of original and adversarial class images, (ii) di-
mensionality reduction on the inner feature representations
of Convolutional Neural Network (CNN), (iii) learning the
classifier separately using the original and adversarial im-
ages or on the inner layer features of CNN, and (iv) image
enhancement (enhancing the input image and providing the
enhanced images to the classifier)

To detect the adversarial examples, Grosse et al. [15] in-
troduced extra class label in the network and proposed to
re-train the entire network. In place of retraining the entire
network again, Gong et al. [11] learned a separate neural
network using the examples from both the classes. Metzen
et al. [25] applied the adversary detector at the intermediate
layer outputs of ResNet model. Li and Li [21] presented
two techniques: in the first approach, statistical features are
calculated after applying the PCA on the feature maps of
the CNN layers whereas, in the second approach, image en-
hancement is performed using mean-blur operations before
passing the image to the network for classification. PCA is
applied to each convolutional layers and cascade of linear
Support Vector Machine (SVM) [6] classifiers are learned.
At the test time, if each of the individual SVM classifier
predicts the original class, then the input image is classified
as original else adversarial. Hendrycks and Gimpel [17] ap-
plied PCA whitening to showcase that the variance of the
principal components are much higher for adversarial im-
ages as compared to clean images. Lu et al. [23] quantized
the output of ReLU layer to generate the binary code for the
detection of adversarial examples. Goswami et al. [13] have
presented adversarial detection and mitigation based on the
response of the intermediate layers of deep CNN models.
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Figure 2: Generic overview of the proposed universal ad-
versarial perturbations detection algorithm.

Akhtar et al. [1] have proposed the Perturbation Rectifier
Network (PRN) to detect the image-agnostic adversarial ex-
amples. SVM classifier is learned for the detection on the
Discrete Cosine Transformation of the difference image of
PRN and input image.

In a recent research, Carlini and Wagner [3] reviewed
and listed the limitation of ten existing adversarial detec-
tion algorithms. Further, in literature, most of the defense
techniques for the adversary have focused on adversary gen-
erated from individual images and to the best of our knowl-
edge, there is a lack of detection algorithms for image-
agnostic adversary, i.e. samples generated based on the dis-
tribution of the image dataset.

Another approach to address the adversarial attacks is
defense against the attacks. Lu et al. [24], Papernot et
al. [30], and Kurakin et al. [20] have presented different
defense techniques against an adversary. The method pro-
posed by Kurakin et al. [20] is effective for single step based
adversary but fail for the black-box based adversary. Paper-
not et al. [30] proposed an improvement in the classification
layer with the introduction of one extra parameter. The pro-
posed adversarial defensive model produces both the actual
label and soft label for the image in question. This defensive
model is successful in reducing the success rate of adversar-
ial images generated using simple algorithms form 96% to
0.5%. However, it does not work well for the adversarial
examples generated from C&W’s (Ls) approach [4].

3. Perturbation Detection Algorithm

To understand how easy or difficult it is to detect adver-
sarial perturbation in the images, our hypothesis is that a
linear classifier applied on either the pixel values or the pro-
jections obtained from principal component analysis (PCA)
[35], can efficiently differentiate between perturbed and
non-perturbed samples. Using this hypothesis, in this sec-
tion, we describe two simple image-agnostic perturbation
detection algorithms. The overview of the proposed algo-
rithm is illustrated in Figure 2.

Pixel + SVM Classification: In the first approach, we ap-
ply a two-class SVM classifier on raw pixel values. The
steps involved in detecting universal perturbations using
raw pixel values and SVM classifier are:

1. Images in the training database are flattened to form a

row vector and combined to make one large training
matrix of dimension k x n, where k is the total num-
ber of training images in both the classes and n is the
image vector dimension.

2. Linear SVM classifier is trained for two-class classifi-
cation on the training matrix using label +1 for origi-
nal images and —1 for adversarial images.

3. Similarly, the test image is first converted into a row
vector and then fed into the learned classification
model for classification. The learned SVM model pro-
vides the classification score for each test image.

PCA+SVM Classification: Extending the first approach,
we utilize PCA based dimensionality reduction followed by
SVM classification. The steps involved in the second ap-
proach are as follows:

1. From the training database, images belonging to both
original and adversarial classes are flattened to form
a row vector and combined to make one large training
matrix of dimension k x n, where k is the total number
of images of both the classes and n is the dimension of
the image vector.

2. Linear projection vector on the training matrix is com-
puted using Principal Component Analysis (PCA).
PCA reduces the dimension of training matrix from
k x nto k x p while preserving 99% Eigen energy.

3. Linear Support Vector Machine Classifier is trained
for two-class classification on the reduced dimensional
training matrix using label 41 for original images and
—1 for adversarial images.

4. Similarly, the test image is first converted into a row
vector and then dimensionality is reduced using PCA.

5. The reduced dimensional test vector is then fed into
the SVM classifier to compute the classification score.

4. DNN Architectures, Database, and Evalua-
tion Protocol

The experiments are performed on three databases using
two attack algorithms and three deep neural network mod-
els. The details are discussed below.

DNN architectures: Three different DNN architectures,
viz., VGG-16 [31], GoogLeNet [32], and ResNet-152 [16]
are used to generate universal adversarial images. These
three DNN models are 16, 22, and 152 layers deep archi-
tecture, respectively and yield state-of-the-art accuracies in
face and object recognition challenges.

Attacks: The aim of universal perturbation [26] is to gener-
ate the single adversarial vector which can misclassify any



Table 1: Characteristics of the databases used for detecting
universal adversarial perturbations.

Type | Database | Clean | Adversarial
MEDS 836 2,508

Face | Multi-PIE | 1,680 5,040
PaSC 7,443 22,329

Total | — 9,959 29,877

image. The aim of the perturbation vector can be defined
mathematically as following: k(z + v) # k(x), for most
x ~ p. Where p denotes the data distribution, v denotes
the perturbation vector, and k is the classification function.
The perturbation is bound by the following conditions: (i)
[v][, < & and (i) P(k(x +v) # k(z)) > 1 — é. The mis-
classification ratio of the classifier is controlled by ¢ and x
controls the magnitude of v.

Mopuri et al. [28] presented the data independent ap-
proach to generate the universal adversarial perturbation to
fool the classifier on any image. The perturbation is gen-
erated for general object detection CNN models: VGG-16,
GoogLeNet, and CaffeNet [18]. The data independent ap-
proach namely Fast Feature Fool (F3) is defined as follow-
ing: f(x +d) # f(x), such that ||d]| , < & Here, z € ¥,
x defines the distribution of the images and f defines the
CNN function of classification.

Databases: As shown in Table 1, in this research, we have
used three face databases to showcase the adversarial detec-
tion performance. The face databases used in this research
are: Point and Shoot Challenge (PaSC) database [2], a sub-
set of CMU Multi-PIE database [14] (frontal only view),
and the Multiple Encounters Dataset (MEDS-II) [9]. Table
1 shows the statistics of each of the databases used in this
research.

Protocol: We have performed two different kinds of ex-
periments for the generalizability of the detection algo-
rithms. The first experiment represents the intra-database
scenario where the training and testing sets belongs to the
same database. In the second experiment, referred as inter-
database (or cross-database) where the training and test-
ing sets belongs to two different databases. For the intra-
database experiments, 50% images of each class are used
for training the detector and remaining 50% images are used
for evaluating the classifier. For example, for the experi-
ments on MEDS database, 418 images are used in training
and remaining 418 images are used for testing (418 images
are original and equal number of perturbed samples are gen-
erated). For inter-database experiments, all the images be-
longing to one database (e.g. entire MEDS) are used for
training and all the images of other databases (e.g. Multi-
PIE) are used for testing. We have also reported the detec-
tion performance of individual color channels with the mo-
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Figure 3: Proposed classification pipeline of detecting uni-
versal adversarial perturbations.

tivation that: is there any particular channel which is more
critical in adversarial detection?

Evaluation Metric: In order to report the experimental re-
sults, we first define APCCER (Adversarial Perturbation
Class - Classification Error Rate) and OCCER (Original
Class - Classification Error Rate). APCCER is defined as
the fraction of adversarial images that are wrongly classi-
fied to original class and OCCER is defined as the frac-
tion of original images that are misclassified to the adver-
sarial classes. Mathematically, APCCER = score < T
where score corresponds to original class samples, and
OCCER = score > T where score corresponds to ad-
versarial class images.

To measure the above-mentioned error rates, the thresh-
old (7) is selected at Equal Error Rate (EER) where False
Accept Rate (FAR) is equal to False Reject Rate (FRR).
Using these two, we finally define ACER (Average Clas-
sification Error Rate) which is the average of OCCER and
APCCER, use it for reporting the results. For a meaningful
perturbation detection algorithm, ACER should be as low
as possible.

5. Results and Analysis

In this section, we present the results of adversarial per-
turbation detection on face databases. The results are re-
ported using the protocol defined in section 4 in terms of
ACER (described in section 4). For demonstrating that lin-
ear projection using PCA can easily detect the universal
adversarial perturbation and fast feature fool, extensive ex-
periments are conducted on face databases using intra and
inter (or cross) database protocols. The inter database pro-
tocol is necessary for the real world scenario where it is
possible that detector is trained on one kind of images while
at the time of testing, an input image might be captured in
completely different environment. The steps involved in the
proposed PCA +SVM followed color channel fusion algo-
rithm are illustrated in Figure 3.



Table 2: Individual color channel detection performance of
the proposed algorithm for Universal perturbation attack.
The results are reported in terms of ACER (%) for both
intra-database and inter-database detection experiments.

. Trainin Testing Database

Model | Algorithm | Channel Databasge MEDS Milti-PIE PaSC
MEDS 17.58 19.55 8.41

Red Multi-PIE | 23.98 1839 14.69

s PaSC 11.18 13.07 6.63

= MEDS 17.82 1548 6.66

+ Green | Multi-PIE | 13.10 1845 7.80

3 PaSC 10.94 9.35 3.36

& MEDS 19.14 13.04 8.60

© Blue Multi-PIE | 20.81 1887 13.99
5 PaSC 11.36 9.64 5.92
3 MEDS 12.08 15.27 5.15
> Red Multi-PIE | 16.87 935 9.14
s PaSC 6.28 11.58 3.42

Z MEDS 10.41 10.30 3.15

¥ Green | Mult-PIE | 10.47 10.24 4.27

S PaSC 6.04 4.43 1.48

g MEDS 14.95 11.19 5.48

Blue Multi-PIE | 13.04 10.12 5.90

PaSC 8.13 6.90 3.04

MEDS 19.38 1830 17.01

Red Multi-PIE | 16.62 21.37 8.70

s PaSC 17.04 20.12 9.41

z MEDS 19.01 19.40 13.15

¥ Green | Multi-PIE | 19.32 1857 12.29

3 PaSC 15.19 16.66 5.39

& MEDS 17.82 11.07 6.19

g Blue Multi-PIE | 13.10 21.31 4.69
3 PaSC 12.50 11.81 3.01
& MEDS 11.54 11.28 7.56
3 Red Multi-PIE | 8.85 10.95 4.03
s PaSC 7.95 7.29 345

z MEDS 10.05 9.94 5.77

+ Green Multi-PIE 13.22 7.20 491

S PaSC 7.48 8.13 1.83

g MEDS 10.29 7.02 2.78

Blue Multi-PIE | 4.78 7.08 0.85

PaSC 8.43 6.01 1.83
MEDS 22.85 18.39 10.79

Red Multi-PIE | 22.43 1994 | 24.45

s PaSC 14.05 11.99 6.73

z MEDS 22.01 13.24 9.55
+ Green | Mult-PIE | 20.57 18.99 15.40

e PaSC 10.35 7.05 6.68

& MEDS 1878 12.62 8.93

Q Blue Multi-PIE | 9.15 20.00 8.52
g PaSC 9.92 19.11 6.30
z MEDS 1471 11.82 498
S Red Multi-PIE | 12.92 6.49 10.83
s PaSC 10.23 741 2.50

z MEDS 1328 5.00 4.26

+ Green Multi-PIE | 14.71 7.62 8.06

S PaSC 6.34 357 2.10

-4 MEDS 11.12 8.54 5.22

Blue Multi-PIE | 5.56 911 397

PaSC 6.46 14.11 2.50

5.1. Analysis and Evaluation Studies

As mentioned in Section 4 we have used three differ-
ent face databases and three different DNN architectures to

generate the universal perturbed images. Results for both
intra and inter database experiments are reported in Table
3 for VGG-16, GoogLeNet, and ResNet-152 architecture.
For VGG-16 architecture when training is performed using
MEDS database and testing is performed using Multi-PIE
and PaSC databases, detection algorithm yields 4.79% and
1.79% ACER, respectively. When the universal perturbed
images are generated using GoogLeNet architecture and
perturbation detection training is performed using PaSC,
the ACER is 4.01% and 4.29% on MEDS and Multi-PIE
databases, respectively. The detection performance of indi-
vidual color channels are reported in Table 2. It is evident
that dimensionality reduction using PCA improves the error
rates by atleast 5%, 7%, and 8% for VGG-16, GoogleNet,
and ResNet-152 model respectively. Similarly, as expected
the cross-database error rates are higher than intra-database
experiments for all the DNN models. Analyzing the score
distributions show that “there is minimal overlap between
the scores, which helps in efficiently detecting whether the
image is perturbed or original”.

Detection performance of the proposed color channel fu-
sion algorithm on Fast Feature Fool adversarial algorithm
are reported in Table 4. Similar to Universal adversar-
ial detection performance, the proposed algorithm shows
high detection performance and lower error rates across all
databases and DNN models. The detection error rate in
intra-database experiments on all three DNN models lies in
the range of 3.51%—-11.48%.

Through extensive experiments, we have observed that
the performance of Red channel is comparatively weak in
comparison to Green and Blue channels on face databases
except intra database experiment on Multi-PIE database. In
our experiments, we observe APCCER value of 0% over
all the intra and inter face database experiments, which is
highly desired in the “zero-intruders” passing security sys-
tem. We have also observed that when PaSC database is
used for training, we have achieved lowest ACER value.
The prime reason for this is the number of training images
in PaSC is larger than MEDS and Multi-PIE.

5.2. Effect on Color Channels

To understand the effect of perturbation and detection
on color channels, a channel wise analysis is performed for
both the detection algorithms. For both pixel+SVM and
PCA+SVM algorithms, linear SVM classifier is trained for
each color channel separately. Steps are repeated for each
color channel independently, and the final classification is
obtained by fusing the scores of green and blue channels.
The results pertaining to individual color channels are re-
ported in Table 2. As shown in Figure 1, we have observed
that blue channel is receptive for adversarial detection and
when combined with green channel, yields the lowest error
rate. If we view adding perturbations as image watermark-



Table 3: Universal adversarial detection performance of in-
tra and inter face database experiments in terms of ACER%
for VGG-16, GoogLeNet, and ResNet-152

Table 4: Fast Feature Fool adversarial detection perfor-
mance of intra and inter face database experiments in terms
of ACER% for VGG-16, GoogLeNet, and ResNet-152

ing process, then this is a known information that detecting
watermark in blue and green channels is easier [7].

5.3. Comparison with Existing Algorithms

The proposed color channel fusion algorithm is com-
pared with three recently proposed adversarial detection al-
gorithms: Intermediate CNN Filter Response [13], Adap-
tive Noise Reduction [22] and Bayesian Uncertainty [8].
The comparative results are reported in Table 3. When the
adversarial detector is trained on MEDS database and tested
on MEDS database the Adaptive Noise Reduction [22]
and Bayesian Uncertainty [8] algorithms yields 19.7% and
19.8% detection error where adversarial examples are gen-
erated using VGG-16 model. Similarly, when GoogLeNet
and ResNet-152 model is used to create the adversarial im-
ages, in the intra-database experiments of Multi-PIE and
PaSC, the error rate of the existing algorithms are in the
range 24.2— 30.6%. The algorithm proposed by Goswami
etal. [13] yields 18.4% ACER on MEDS when VGG-16 ad-
versary is used for perturbation. In the inter-database tests,
the error rate of the existing algorithms lies in the range of
22.6%—-34.7%. The error rate of the existing algorithms is
at-least three times higher than the proposed algorithm. On
F3 the error rates of the existing algorithms are in the range
of 30.1%—20.1%. It is interesting to note that the highest

. Training Testing Database Trainin, Testing Database
Algorithm | DNNModel | 1y, ;45 | MEDS | Muli-PIE | PasC Attack | DNNModel | )t oS T MuliiPIE | PasC
= MEDS 19.7 20.7 215 MEDS 10.05 9.23 4.48
p | VOG16 | MuliPIE | 299 | 203 | 274 — | VGG-16  [Mul-PIE | 1041 | 10.12 | 582
e PaSC 61 | 347 | 288 g PaSC 700 | 1119 | 351
E MEDS | 201 | 269 | 259 s MEDS | 1148 | 775 | 804
2 GoogLeNet | Multi-PIE | 29.1 30.2 21.0 = g : : :
2 PaSC 372 347 6.4 § GoogLeNet | Multi-PIE | 10.77 7.44 3.56
_E MEDS 21.6 271 25.0 o PaSC 7.42 7.83 3.54
: ResNet-152 | Multi-PIE | 27.0 297 2938 2 MEDS 9.69 8.15 1.46
& PaSC 348 331 242 B | CaffeNet Multi-PIE | 10.89 8.81 5.14
MEDS 19.8 22.6 20.9 PaSC 5.26 5.95 6.87
) VGG-16 Multi-PIE | 29.1 245 283
= PaSC 347 322 280
Z MEDS 20.8 295 282 . .
> GoogLeNet | Muli-PIE | 29.7 306 30.9 error of the proposed algorithm on any of the experiments
2 PaSC 36.8 37.0 25.8 is 6.82%, whereas the minimum error of the existing algo-
§ MEDS 211 287 | 271 rithms is 19.7%.
Z ResNet-152 | Multi-PIE | 29.5 289 31.0
PaSC 33.2 31.3 23.7
MEDS 6.46 479 | 152 5.4. Computation Complexity
VGG-16 Multi-PIE | 6.52 542 237
3 E/?Igl():s zgi igg g;; Computationally, the proposed approach (PCA+SVM)
g GoogLeNet | Muli-PIE | 4.37 315 0.93 is efficient compared to existing approaches. On a desk-
£ PaSC 4.01 4.29 0.84 top with 3.4 GHz Intel 47 processor and 16GB RAM,
MEDS 6.82 2.83 1.85 PCA+SVM classification requires less than 0.01 seconds to
ResNet-152 | Multi-PIE 5.44 3.99 2.71 .. .
PaSC 383 3.66 0.98 detect adversary, whereas existing algorithms [8], [22] are

computationally expensive and take up to 10 seconds for the
same task.

6. Conclusion

In this research, we focus on how to detect image-
agnostic adversarial perturbation. We present a simple ap-
proach of PCA+SVM for detecting universal perturbations.
Experiments are performed using various face databases
such as MEDS, Multi-PIE, and PaSC. Universal and Fast
Feature Fool adversarial images are generated using VGG-
16, GoogLeNet, ResNet-152, and CaffeNet DNN archi-
tectures. Experiments using both intra and inter (cross)
database settings show that the linear projection features
using PCA are sufficient to detect image-agnostic adver-
sarial perturbations. In addition, we observe that only two
channels are enough to detect the perturbation in the image.
We compare our detection rate and computational efficiency
with the results from two recent research papers to show the
superior performance.
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