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Abstract

Deep learning models are widely used for various pur-
poses such as face recognition and speech recognition.
However, researchers have shown that these models are
vulnerable to adversarial attacks. These attacks compute
perturbations to generate images that decrease the perfor-
mance of deep learning models. In this research, we have
developed a toolbox, termed as SmartBox, for benchmark-
ing the performance of adversarial attack detection and
mitigation algorithms against face recognition. SmartBox
is a python based toolbox which provides an open source
implementation of adversarial detection and mitigation al-
gorithms. In this research, Extended Yale Face Database
B has been used for generating adversarial examples us-
ing various attack algorithms such as DeepFool, Gradi-
ent methods, Elastic-Net, and Ly attack. SmartBox pro-
vides a platform to evaluate newer attacks, detection mod-
els, and mitigation approaches on a common face recogni-
tion benchmark. To assist the research community, the code
of SmartBox is made available'.

1. Introduction

Deep learning models have achieved state-of-the-art per-
formance in various computer vision related tasks such as
object detection and face recognition [18, 24]. However, re-
cent studies suggest that small imperceptible perturbations
can act as adversaries for these models and lead to incor-
rect predictions. As shown in Figure 1, imperceptible ad-
versarial noise can be added in the original image to create
perturbed images such that for humans they are exactly the
same but the algorithms provide different prediction outputs
compared to the original image. Majority of recently pro-
posed face recognition algorithms are based on deep learn-
ing and we have observed that existing adversarial attacks
may impact face recognition algorithms.

Existing research in adversarial perturbation can be clas-
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Figure 1: Original image (left), Added imperceptible noise
zoomed 10 times (middle), Perturbed image (right)

sified into three levels: (i) attacks, (ii) attack detection,
and (iii) mitigation. While some researchers are identifying
the vulnerabilities of deep learning algorithms and creating
newer kinds of attacks, simultaneously efforts are ongoing
towards detecting these attacks and mitigating their effect.
Table 1 summarizes the recent developments in all three ar-
eas.

Perturbations to fool the classification model can be per-
formed either at the camera level or the processing level.
Presentation attacks on face recognition system are per-
formed at camera level, while adversarial perturbations op-
erate at processing level. Recently, adversarial learning to
fool deep learning based algorithms have gained significant
attention [2]. Sharif et al. [30] have proposed a camera level
perturbation algorithm by producing a pair of glasses which
when worn by someone can confuse the target model and
result in impersonation. Further, they also created a pair of
eyeglasses using adversarial generative nets [31] that lead
to misclassification.

Attack Generation Algorithms aim to perturb the input
image in such a way that either the resultant image gets clas-
sified into a target class (targeted attack) or gets misclassi-
fied to any other class except the original class (untargeted
attack). Attack algorithms can further be classified on the
basis of amount of information they need from the trained
network to work. While whitebox attacks such as Elastic-
Net (EAD) [6], DeepFool [28], Ly [5], Fast Gradient Sign
Method (FGSM) [15], Projective Gradient Descent (PGD)
[26], and MI-FGSM [10] have complete access and infor-
mation about the trained network, blackbox attacks such
as one pixel attack [32] and universal perturbations [27]



Table 1: Summary of adversarial examples generation, detection, and mitigation algorithms implemented in the SmartBox

Type Name Author Algorithm

DeepFool Dezfooli et al. [28] Calculates orthogonal distance from nearest separating hyperplane.
Generation EAD Chen et al. [6] Computes perturbations by minimising Elastic Net Loss.

FGSM Goodfellow at al. [15] Computes gradient of the loss function w.r.t. the image vector.

Lo Carlini and Wagner [5] Computes perturbations that have low distortions in Lo metric.

Adaptive Noise Reduction | Liang et al. [23]

Applies scalar quantization and mean filter to the images.

Artifact Learning

Feinman et al. & Gong et al. [11, 14] | Prediction based on the features learned by the network.

Randomization Xie et al. [35]

Detection Conv. Filter Li and Li [22] Features of convolution layers + cascaded classifier.
PCA Bhagoji et al. [3] Applies PCA on input images and feeds them in a Linear SVM.
Adbversarial Training Szegedy et al. [33] Trains a new model on original and adversarial training images.
Mitigation Denoising AutoEncoder Creswell and Bharath [8] Reconstructs original images from perturbed images.

Upsamples, downsamples and pads the input image.

Gaussian Blur Proposed

Applies Gaussian Blur on input images.

have no information about the trained Deep Neural Network
(DNN).

Attack Detection Algorithms focus on the detection of
forged examples presented to the system. The detected im-
ages could be either discarded or can be passed on to the
mitigation algorithm for correct labeling. Carlini and Wag-
ner [4] have shown the limitations of current detection al-
gorithms. Gong et al. [14] and Hendrik et al. [19] learn
a second binary classifier on internal learned features cor-
responding to the original training and adversarial training
data. Li and Li [22], Hendrycks and Gimpel [20], and Agar-
wal et al. [1] applied Principal Component Analysis (PCA)
on internal learned features and image pixels respectively to
detect adversaries. Goswami et al. [16] propose a method
that uses a classifier trained on the differences of the outputs
of the intermediate layers corresponding to original and ad-
versarial images and use it for adversarial detection. Other
detection methods use statistical tests to detect adversarial
images. One such method proposed by Grosse et al. [17]
uses Maximum Mean Discrepancy (MMD) test that statisti-
cally differentiates adversarial images from the original im-
ages. SafetyNet, detection method proposed by Lu et al.
[25], employs a detector along with the original classifier to
detect adversarial images based on the information from the
later layers of the network.

Attack Mitigation Algorithms: Since the realization of the
severity of the problems introduced by adversarial attacks,
many mitigation algorithms have been devised. Mitigation
methods can be based on either modifying the input image
or by changing the network. Modification of the input im-
age can be seen as image enhancement while modification
of the system can be seen as increasing the robustness to-
wards adversaries. The mitigation methods by Das et al.
[9] and Wang et al. [34] modify the input data before feed-
ing it to the neural network. This approach removes the
adversarial perturbation from the image and improves the
performance of the model. Other methods such as Papernot
et al. [29], Gao et al. [12], Cisse et al. [7] and Goswami

et al. [16] modify the network to make it robust against
adversarial attacks.

Since this is a fairly recent area, it currently lacks stan-
dardization in terms of evaluation and it is generally ob-
served that they lack a common benchmarking approach. It
is our hypothesis that the availability of a unified platform
to benchmark the results can promote the research activi-
ties related to this important problem. Therefore, in this
research, we have developed a Python toolbox, termed as
SmartBox, to fill this gap. It contains a variety of algo-
rithms to attack, detect, and mitigate the effects of adver-
sarial perturbations on images. The tool also provides the
functionalities to provide details analysis with respect to
face identification and verification. It can analyze the re-
sults in terms of Rank 1 identification accuracy, verification
accuracy, Receiver Operating Characteristic (ROC) curve,
and Cumulative Match Characteristic (CMC) curve. It also
has the flexibility to add new algorithms for analyzing the
impact on face recognition. To the best of our knowledge,
this is the first work and toolbox of its kind in adversarial
learning towards face recognition.

2. SmartBox: Structure and Functionalities

SmartBox consists of all three important modules for
adversarial perturbation: attack generation, detection, and
mitigation. Table 1 summarizes the algorithms used for ad-
versarial generation, detection, and mitigation in the pro-
posed toolbox. Each of these modules is explained in detail
below along with other functionalities available in Smart-
Box.

2.1. Attack Generation Module

SmartBox includes implementation of existing targeted
and un-targeted attack algorithms to generate adversarial
images from a set of input images. Their purpose is to
decrease the performance of a DNN classification model.
Currently, SmartBox includes the implementations of the
following attacks:



EAD [6]: EAD attack is based on elastic net regulariza-
tion, which uses a linear combination of L; and Lo penalty
functions. Let (Zopig; torig) and (Tadv,tady) be the orig-
inal image-label pair and adversarial image-label pair, re-
spectively. To craft the adversarial examples the formula
used by this attack method is:

gnin a'f(xadv7 tadv)"’ﬁ' ‘ |xadv —Zorig ‘ |1 +| |xadv _xorig| |%
(1)
subject to xaqy € [0, 1]d

where, o and [ are the regularization parameters.
f(@adv, t) is the loss function which differs for targeted and
un-targeted attacks. The attack method is able to generate
an adversarial image that is classified to the target class ¢4,
while minimizing the elastic net loss.

DeepFool [28]: DeepFool is an un-targeted attack tech-
nique. It iteratively calculates the minimum noise to fool
the system. The minimum noise is defined as the orthog-
onal distance from the nearest separating decision hyper-
plane, assuming the underlying classifier to be linear.

C&W L, [5]: This attack is one of the strongest adversarial
attacks currently available. It can be used in targeted or un-
targeted forms. It tries to find adversarial samples that have
low L, distortion metric by considering the logits layer of
the model. This method attempts to minimize following
equation to generate adversarial images.

minimize“%(tanh (w) + 1) — z||5+
(2)
c- f(%(tanh (w) + 1))

where, f(x) = max(max{Z(x); : i # t} — Z(x)t, —K)
Z is the logits layer, ¢ is the target class, « is the parameter
that controls the confidence of mis-classification and w is
the adversary that minimizes the above expression.

FGSM [15]: It computes the gradient of the loss function of
the model concerning the image vector to get the direction
of pixel change. FGSM perturbations can be computed by
minimizing either the Ly, Lo or L., norm.

2.2. Detection Module

This module has implementations of various adversar-
ial perturbation detection methods which aims to detect the
fake images before passing them to the network. Following
are the detection methods included in SmartBox:

Detection using Convolution Filter Statistics: In this
method as proposed by Li and Li [22], we extract the sta-
tistical features which include normalized PCA coefficients
and minimal and maximal values from the output of the
convolution layers and feed it to a cascaded classifier for
adversarial detection. The cascaded classifier consists of a

sequence of base classifiers which are then used to detect
adversarial images from a set of input images.

PCA based detection: This method, as proposed by
Bhagoji et al. [3], first computes the projection matrix by
applying principal component analysis on the training data.
The projection matrix is then used to project images to a
linear space. The features obtained through this are used to
train an SVM classifier to detect adversarial images from a
set of input images.

Artifacts Learning: This method follows an approach sim-
ilar to the one followed by Feinman et al. [11] and Gong et
al. [14]. It uses the features learned by the DNN model to
distinguish between original and adversarial images. More
specifically, in this method, original and adversarial training
images are passed through the trained network. After that,
features corresponding to desired layers are fetched and a
new binary classifier (a binary neural network) is trained on
these features.

Adaptive Noise Reduction: Unlike the previous method,
this technique, as proposed by Liang et al. [23], is indepen-
dent of the nature of noise added. Based on the entropy of
the image (the amount of information), image modification
techniques such as scalar quantization and smoothing spa-
tial filters are applied. Animage is classified as an adversary
if modification changes its classification.

2.3. Mitigation

Mitigation module in the SmartBox has methods that at-
tempt to mitigate the embedded perturbations in the pro-
vided image. Following are the implemented methods:

Adversarial Training: In adversarial training [33], a new
model is trained using the original dataset and adversarial
examples with their correct labels. The intuition behind the
technique is that the new model obtained is robust to adver-
sarial images.

Randomization: This approach is similar to the method de-
scribed by Xie et al. [35]. The images are first up-sampled
and then down-sampled to a random size through interpola-
tion methods. The down-sampled images are padded with
zeros. The images are padded in such a way that the size
of a padded image is same as the original size of the image.
From the images obtained after padding, an image is ran-
domly selected and passed to the model. The interpolation
operation in this approach “removes” the adversarial noise.

Gaussian Blurring: Gaussian Blur is an effective image
processing technique that blurs and reduces intricate details
of an input image by convolving the image with a kernel
whose weights are derived from a Gaussian distribution,
ie.,
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Figurg 2: Illustrating the effects of adversarial generation and mitigation algorithms on two face examples (a) and (b).

Here, 1 is mean, and o is the standard deviation of the
distribution. The intuition behind the proposed Gaussian
blurring as a mitigation technique lies behind the fact that
convolving with a kernel with reasonable deviation along
the axes may result in diminishing the effect of the added
perturbations.

Denoising Autoencoder: This method is similar to the
one proposed by Creswell and Bharath [8] which learns
the weights of a denoising autoencoder through adversarial
training examples. While training, the autoencoder learns to
recreate the original images from the perturbed images. In
other words, an input image is “denoised” using the training
autoencoder.

2.4. Other Functionalities

Apart from providing implementations of existing at-
tacks, detection and mitigation algorithms, SmartBox also
provides the following features: (i) A sample model for
experiments, (ii) Provision to add a custom facial database
for experiments, (iii) Functions to visualize the results us-
ing ROC and CMC curves, (iv) Support to pre-train mod-
els for adversarial training, artifact learning, and denois-
ing autoencoders, (v) provision to choose model train-
ing/attack/detection/mitigation algorithm parameters from
command-line, and (vi) Provision to select evaluation met-
rics to assess attack generation/detection/mitigation perfor-
mance from the command line.

3. Experiments and Results

Experiments were conducted on the Extended Yale face
Database B [13] [21]. The dataset consists of cropped im-
ages of 38 individuals under different illumination condi-
tions. The dataset is randomly divided into training (80%),
validation (10%), and testing (10%). Each testing probe is

randomly allotted a target (for targeted attacks) and is ran-
domly classified as genuine or an imposter (for verification).
Experiments were carried out in a network with following
specifications : 2 Conv layers each having 16 filters and 3x3
kernel - maxpool layer with strides set as 2 - Conv layer with
32 filters and 3x3 kernel - maxpool layer with strides set as
2 - Conv layer with 32 filters and 3x3 kernel - maxpool layer
with strides set as 2 - Dense layer with 100 units - Dropout
with 50% drop rate - Dense layer with 100 units - Dense
layer with 1024 units - Logits layer. The model was trained
using Stochastic Gradient Descent.

3.1. Attack Generation

On the extended Yale B database [13] [21] attack Gen-
eration results are summarized in Table 2. Targeted Lo,
EAD-EN and EAD-L; are the most successful in fooling
the model by bringing both Rank 1 identification and ver-
ification accuracy to 0%. Un-targeted DeepFool decreases
Rank 1 identification by more than 90% and verification ac-
curacy by around 45%.

3.2. Attack Detection

Attack detection results on several different perturbation
algorithms are summarized in Table 3. Adaptive Noise Re-
duction performs well with network loss based attacks but
fails with gradient-based attacks. In attacks such as Ly and
EAD, it scores the maximum recall value. Artifact learning
consistently performs well on all attacks achieving highest
detection accuracy in all the cases. Conv Filter and PCA, on
the other hand, perform well with gradient-based attacks but
their performance with network loss based attacks is poor.

3.3. Attack Mitigation

Attack mitigation results of proposed and existing al-
gorithms are summarized in Table 2 and Figure 2. From



Table 2: Effect of attack generation and mitigation algorithms on face verification and identification accuracies.

Attacks Mitigation Algorithm Verification Identification
Before Attack | After Attack | After Mitigation | Before Attack | After Attack | After Mitigation
Adversarial Training 98.48 % 97.34%
Gaussian Blur 93.56% o 86.74%
DeepFool Randomization S0% 73.43% 3.4% 45.07%
Denoising AutoEncoder 93.18% 87.50%
Adversarial Training 98.86 % 97.72%
Gaussian Blur 92.80% 85.22%
EAD-LI Randomization 0% 68.56% 0% 38.25%
Denoising AutoEncoder 93.93% 85.98%
Adversarial Training 99.24% 99.24%
Gaussian Blur 92.04% 83.33%
EAD-EN Randomization 96.96% 0% 68.56% 93.07% 0% 36.36%
Denoising AutoEncoder 93.18% 85.60%
Adversarial Training 79.92% 57.19%
Gaussian Blur 67.42% 32.57%
FGSM Randomization 67.04% 57.95% 29-92% 18.18%
Denoising AutoEncoder 88.25% 75.37%
Adversarial Training 99.62 % 99.62 %
Gaussian Blur 92.80% o 85.60%
L2 Randomization 0% 70.07% 0% 39.39%
Denoising AutoEncoder 93.18% 85.98%

Table 3: Detection performance of adversarial detection al-
gorithms available in SmartBox, in terms of precision, re-
call and accuracy (%).

Attacks Algorithms Precision Recall Accuracy
Adapt. Noise Reduction 77.48% 93.22% 83.06%
DeepFool Arlifact' Learning 84.33% 95.83% 89.01%
Conv Filter 52.13% 64.77% 52.65%
PCA 58.84% 61.74% 59.28%
Adapt. Noise Reduction 78.41% 98.40 % 85.65%
EAD-Ly Artifact Learning 89.27% 97.72% 92.99%
Conv Filter 56.77% 74.62% 58.90%
PCA 61.06% 56.43% 60.22%
Adapt. Noise Reduction 78.48% 98.80% 85.85%
Artifact Learning 86.44% 96.59% 90.71%
EAD-EN Conv Filter 53.79% 64.39% 54.54%
PCA 56.86% 54.92% 56.62%
Adapt. Noise Reduction 55.17% 46.24% 54.33%
FGSM Artifacl' Learning 89.41% 86.36 % 88.06%
Conv Filter 95.54% 73.10% 84.84%
PCA 95.42% 63.25% 80.11%
Adapt. Noise Reduction 78.54% 99.20% 86.05%
L Artifact Learning 85.04% 96.96% 89.96 %
2 Conv Filter 54.19% 63.63% 54.92%
PCA 56.55% 57.19% 56.62%

the table, it is evident that adversarial training consistently
performs better than the remaining algorithms, simple rea-
son being that it has been exposed to both original and
adversarial training data. Gaussian Blur effectively miti-
gates the perturbations produced by Ly, EAD and Deep-
Fool, and fails on gradient-based attacks. Denoising au-
toencoder is effectively able to mitigate the perturbations
produced by all tested attack generation algorithms. Ran-
domization algorithm, on the other hand, performs consis-
tently poor for all attack algorithms. This analysis is sup-
ported by the Receiver Operating Characteristic curve and
Cumulative Match Characteristic curve in Figures 3 and 4.

4. Conclusion

Adversarial examples have been demonstrated to be suc-
cessful in fooling various deep learning based object and
face recognition algorithms. In this research, for the first
time, we have developed a Python toolbox namely Smart-
Box consisting of multiple adversarial examples generation,
detection, and mitigation algorithms. The SmartBox tool-
box can be used as the benchmark to analyze the effect of an
adversary on face recognition systems. In future, we plan to
add the algorithms which can fool other biometrics modali-
ties such as iris and fingerprint.
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