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Abstract

Latent fingerprints recognition is very useful in law en-
forcement and forensics applications. However, automated
matching of latent fingerprints with a gallery of live scan
images is very challenging due to several compounding
factors such as noisy background, poor ridge structure,
and overlapping unstructured noise. In order to efficiently
match latent fingerprints, an effective enhancement module
is a necessity so that it can facilitate correct minutiae ex-
traction. In this research, we propose a Generative Adver-
sarial Network based latent fingerprint enhancement algo-
rithm to amplify the ridge structure quality. Experiments on
two publicly available datasets, IIITD-MOLF and IIITD-
MSLFD show that the proposed enhancement algorithm im-
proves the quality of fingerprint images while preserving the
ridge structure. Using the enhanced images with standard
feature extraction and matching algorithms further boosts
latent fingerprint recognition performance.

1. Introduction

Fingerprints are one of the most reliable biometric
modalities since they can uniquely identify a person. They
have been widely used in criminal identification and vari-
ous access control applications. Unlike civilian applications
where live scans are used, forensic applications require pro-
cessing latent fingerprints lifted from crime scenes [20].
These impressions are left unintentionally when the subject
touches an object and hence are usually of poor quality due
to noise, overlapping background and sometimes overlap-
ping fingerprints.

As shown in Figure 1 (a), latent fingerprints generally do
not have a clear ridge structure. As a result, most of the
standard fingerprints feature extractors often fail to accu-
rately extract features (Figure 1 (b)) [19]. One of the impor-
tant factors in successfully identifying latent fingerprints is

(a)

(b)

Figure 1: (a) Sample latent fingerprint images showcasing
challenging factors such as background noise, poor ridge
structure, textured background and overlapping fingerprints
in the background. (b) sample cases illustrating the effect
of (the proposed) enhancement step to improve minutiae
detection. The first row shows the original latent impres-
sions and minutiae detected using NBIS tool [1]. The sec-
ond row shows that after enhancement, correct minutiae are
detected.

reliable enhancement so that minutiae can be extracted ef-
ficiently and matching can be performed reliably. This pa-
per focuses on latent fingerprints enhancement to facilitate
efficient feature extraction for improved matching perfor-
mance.
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Figure 2: Proposed Latent fingerprints enhancement model. The dashed lines represent the backpropagation of losses while
training the Enhancer and the Discriminator networks.

1.1. Related Work

Various latent fingerprints enhancement techniques have
been explored in the past. Several of these enhancement
methods use the knowledge of orientations to enhance the
fingerprint quality. Feng et al. [10] proposed a patch based
dictionary approach for orientation estimation. Yang et al.
[24] claimed that only a certain class of orientations can lie
at a particular location and introduced localized dictionar-
ies. Chen et al. [9] created multiscale dictionaries to handle
varying level of noise in latent impressions. Cao and Jain
[5] posed orientation estimation as a classification problem
and used the convolutional neural network for orientation
estimation. Recently Li et al [15] proposed FingerNet, a
deep convolutional neural network to enhance latent finger-
prints.

Another interesting line of approach for latent enhance-
ment is through reconstruction of the ridge structure. Svo-
boda et al. [22] recently proposed to utilize convolutional
autoencoder for reconstructing latent impressions. How-
ever, the convolutional autoencoders had an explicitly de-
fined objective function which aimed at minimizing the ori-
entation and gradient difference between reconstructed and
target enhanced image. This model was trained to simply
minimize a l2 loss and did not accommodate perceptual
quality. Further, the generated images had blurriness which
affected the performance of fingerprint feature extraction.
Thus, the resulting matching accuracy was not very high.

Generative Adversarial Networks (GANs) offer the flex-
ibility to optimize the objective function for the problem at
hand [13]. The optimization function can include adversar-
ial loss along with other loss functions as per the require-
ments. Inspired by their success in generative applications,
we propose a novel algorithm which leverages GANs for
latent fingerprint enhancement.

1.2. Research Contributions

Generative Adversarial Networks have been successfully
used in various applications such as synthetic image gener-
ation, image inpainting, and image denoising [13]. GANs
generate sharper and enhanced images compared to other
generative models including autoencoders. In this research,
we propose a GANs based algorithm for latent fingerprint
enhancement which improves the quality of fingerprints. It
is our hypothesis that using the high quality fingerprints
generated via GANs would improve the fingerprint match-
ing performance of existing recognition algorithms, which
otherwise do not yield very high performance on latent fin-
gerprints. To the best of our knowledge, this is the first work
which introduces Generative Adversarial Networks in the
domain of latent fingerprints. We have evaluated the pro-
posed algorithm on IIITD Multisurface Dataset [21] which
has latent fingerprints extracted from eight different sur-
faces as well as the IIITD MOLF Datatset [17] which has
over 4000 latent impressions. Evaluation on such challeng-
ing datasets demonstrates the effectiveness and generaliza-
tion ability of the proposed algorithm.

2. Proposed Algorithm
Latent fingerprint enhancement involves generating fin-

gerprint images with clear ridge structure so that it can fa-
cilitate accurate feature extraction and improved matching
performance. In this paper, latent fingerprint enhancement
is posed as a conditional image generation problem where
the enhanced image is conditioned by the given latent. The
mapping has to be learned in such a way that the ridges, val-
leys and other fingerprint features including minutiae are
preserved. In order to achieve this, we have proposed to
use an image to image translation model [14] which utilizes
conditional GAN [16] for generating images. Figure 2 sum-
marizes the steps involved in the proposed algorithm.

The proposed model consists of two networks: a latent
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Figure 3: Architecture of Enhancer (EnhL) and Discriminator (DisE)

enhancer network (EnhL) and an enhanced fingerprint dis-
criminator network (DisE). EnhL is trained to produce
an enhanced version of the given latent fingerprint x while
DisE is trained to classify whether the input image y is a
real enhanced image or generated by EnhL.

2.1. Objective Function of GAN

In the proposed GAN model, there are two loss func-
tions: (i) adversarial loss and (ii) enhanced fingerprint re-
construction loss.

Adversarial Loss: Both EnhL and DisE minimize the ad-
versarial loss. Thus, the discriminator is penalized if it mis-
classifies the generated enhanced fingerprints as real. Sim-
ilarly, the enhancer is penalized if the generated enhanced
image is correctly classified as fake by the discriminator.

Ladv = E(x,y)∼p(x,y)[logDisE(x, y)]
+ Ex∼px(x)[log(1−DisE(x, EnhL(x)))]

As a result, the enhancer learns the features required to
generate enhanced fingerprints and the discriminator learns
the discriminating features to distinguish between a real and
a fake enhanced fingerprint image.

Note that the discriminator takes both image EnhL(x)
and x. Hence, it ensures that the enhancer must learn to
preserve the ridge structure while generating the enhanced
fingerprints. Thus, the enhanced fingerprints generated by
the enhancer network have the same fingerprints features as
the given input latent image.

Enhanced Fingerprint Reconstruction Loss:

Lrec = ||y − EnhL(x))||1

This loss term ensures that EnhL receives a penalty if
the generated enhanced image EnhL(x) deviates from the
paired image y for the sample x in the training set. This loss
thus helps the enhancer to better learn the global structure
of the target binarized image. The motivation of using l1
norm is to generate sharp enhanced images unlike l2 norm
which causes blurring.

Overall Loss: Using these two loss functions, the final ob-
jective function can be defined as:

minαminβ [E(x,y)∼p(x,y)[logDisE(x, y)]+

Ex∼px(x)[log(1−DisE(x, EnhL(x)))] + λ||y − EnhL(x))||1]

where, α represents the parameters of EnhL, β are the pa-
rameters ofDisE , and λ controls the weight for reconstruc-
tion loss. Note that, in this research, we have used Patch-
GAN based strategy. The discriminator is trained to distin-
guish whether each 8×8 patch in the enhanced fingerprints
image is real or fake. Discriminator takes both the latent fin-
gerprint and the enhanced image, and classifies each patch
as real or fake.

2.2. Network Architecture

The enhancer has an encoder-decoder architecture, En-
coder part of the enhancer with Conv1, Conv2 and Conv3
blocks extract the coarse to the fine level of details in the
latent fingerprint image. The nine Resnet blocks in the en-
coder part help the enhancer to better understand the local
and global structures and also help in encountering the van-
ishing gradient in a deeper network and thus, help in gen-
erating more realistic enhanced images. On the other hand,
the decoder part has Deconv1, Deconv2, and Conv4 blocks.



Table 1: Architecture of EnhL and DisE .

Layer Kernels Size Stride Padding
Conv11 64 7 1 3
Conv21 128 3 2 1
Conv31 256 3 2 1
ResNet Block2 256 3 2 1
Deconv12 128 3 2 1
Deconv22 64 3 2 1
Conv43 1 7 1 3
Conv54 64 4 2 1
Conv65 128 4 2 1
Conv75 256 4 2 1
Conv85 512 4 1 1
Conv96 1 4 1 1

These blocks learn to transform these features into a bina-
rized/enhanced latent.

In Discriminator’s architecture, enhanced image and la-
tent are first concatenated along the input channel dimen-
sion and then passed through the network. The network
architecture and its various parameters are given in Figure
3 and Table 1.

2.3. Training

For training the proposed model, the paired training ex-
amples i.e. latent fingerprints and the corresponding en-
hanced images for the same latent fingerprint image are re-
quired. All the publicly available datasets have latent finger-
print and good quality fingerprint of the same finger. How-
ever, none of the publicly available datasets have latent fin-
gerprint and the enhanced fingerprint corresponding to that
exact latent impression. Therefore, we have synthetically
generated latent impressions by adding varying levels of
Gaussian noise and different background into good quality
fingerprints, to simulate the conditions in which a latent is
typically acquired i.e. overlapping text, overlapping finger-
print, and varying surfaces. This step helps in training the
proposed GAN model for latent fingerprint enhancement.
Ground truth enhanced images corresponding to the latent
images taken as the binarized images corresponding to the
original good quality fingerprints from which the latent im-
pressions are simulated.

1. For the proposed model to be invariant towards over-
lapping background text, fingerprints are blended with
text images of varying font size and style.

1Conv layer + BatchNorm + ReLu
2Conv layer + BatchNorm + ReLu + Conv layer + BatchNorm
3Conv layer + Tanh
4Conv layer + LeakyReLu
5Conv layer + BatchNorm + LeakyReLu
6Conv layer

2. While simulating latent impressions, different levels of
noise is added into different patches of fingerprints.
This is incorporated to learn invariance from smudg-
ing that might be present in a latent impression due to
non-uniform powder content in various patches of la-
tent. Good quality NIST SD4 [2] images with NFIQ2
[23] value greater than or equal to 70 are used as the
training samples. Since these fingerprints are cap-
tured using ink, they also face a similar issue of non-
uniformity. Further, many of these fingerprints have
background text, these samples are good examples for
the model to learn.

3. In order to make the model invariant to the surface
from which the latent impression is extracted, different
background images with varying textures are blended
with the fingerprints. The samples of these surface
include glass surface, wood-like texture, plastic and
cardboard surface.

4. Finally, to eliminate line-like noise from latent images
during enhancement, horizontal and vertical lines of
varying width are added into the fingerprints.

The training set thus prepared is a representative sample of
the conditions under which the latent fingerprints are typ-
ically acquired. Synthetic fingerprints obtained from an
open source implementation [4] of SFinGe [8] are used to
obtain the ground truth. Later, noise is added into them to
simulate latent impressions. All the latent impressions ob-
tained from a single good quality synthetic fingerprint had
the same ground truth binarization, obtained using NBIS
[1]. These binarized images serve as the enhanced image
for learning the mapping.

The model is trained on 8423 fingerprints and their corre-
sponding ground truth binarized images. Adam optimizer is
used to train the network with learning rate 0.002, λ = 10,
β1 = 0.5 and β2 = 0.999. The batch size is set to 2. The
model is trained on two GPUs and each GPU is 2x NVIDIA
K40 with 12 GB RAM and 2880 CUDA cores.

During training, the parameters of the enhancer and the
discriminator networks are fine-tuned to generate the en-
hanced fingerprints. After the model is trained, the discrim-
inator is discarded. Since the model is not trained on any
real latent dataset, there is no limitation on the size of the
training set. Moreover, the model is trained on binarized
images, so it automatically learns the binarization of a given
latent image.

3. Database and Experimental Evaluation

This section describes the databases and experimental
setup used for evaluating the proposed algorithm.



Figure 4: Sample training images: All seven fingerprints
starting from top left have same binarized target image (bot-
tom right). Different backgrounds with varying textures
have been used during training to simulate the conditions
under which a latent is typically acquired.

3.1. Dataset

The performance of the proposed algorithm has been
evaluated on two publicly available datasets: IIITD-
Multi-Optical Latent Fingerprint (MOLF) database [21]
and IIITD-Multi-Surface Latent Fingerprint Database
(MSLFD) [17].

1. IIITD-MOLF comprises of optical and latent finger-
prints of 10 fingers pertaining to 100 different subjects.
Fingerprints are acquired from different sensors. This
dataset has a total of 4400 latent fingerprint samples.

2. IIITD-MSLFD has latent fingerprint impressions of 51
subjects acquired from 8 different surfaces such as ce-
ramic mug, compact disc, hardbound book cover, and
transparent glass. In total, the database contains 551
latent fingerprint samples.

Since the network is trained on images of size 512 ×
512, the images from the two databases are preprocessed to
obtain the regions of interest of size 512× 512.

3.2. Experimental Setup

Two experiments are performed to demonstrate the ef-
fectiveness of the proposed algorithm towards latent finger-
prints recognition.

1. Matching latent impressions to Multi-Sensor Finger-
prints

2. Matching latent impressions to Multi-Surface Finger-
prints

In the first experiment, latent impressions from the
IIITD-MOLF database are matched with images across
different galleries (DB1 and DB2) of the IIITD-MOLF
database. Each gallery has fingerprints acquired from a
different sensor. This experiment demonstrates the robust-
ness of the proposed algorithm towards different finger-
prints sensors.

The second experiment is designed to evaluate the ro-
bustness of the proposed enhancement algorithm towards
different backgrounds and kinds of structured noise which
are generally present in a latent fingerprint impression. In
this experiment, the latent fingerprints of IIITD-MSLFD
have been matched with the fingerprints acquired through
a sensor. These latent images are captured from varying
surfaces, have an overlapping background and are therefore
very challenging to match.

3.3. Evaluation Metrics

The objective of fingerprint enhancement algorithm is
not only to improve the quality of fingerprint image but also
preserve the ridge structure thereby improving the recogni-
tion performance. Therefore, the performance is evaluated
using three different metrics.

1. Fingerprint Quality Analysis: To demonstrate that
the proposed enhancement algorithm improves the
quality of latent fingerprint image, the NFIQ module
of NBIS [1] has been utilized. It gives a value be-
tween 1 − 5 where one denotes the best quality and
five denotes the worst quality. The performance has
been evaluated based on the score distribution before
and after the proposed enhancement algorithm, on the
IIITD-MOLF latent images.

2. Ridge Structure Preservation: A key feature of any
fingerprint enhancement algorithm is to preserve the
ridge structure while enhancing the fingerprints. Struc-
tural Similarity Index metric (SSIM) [25] has been cal-
culated on the reconstructions of synthetic data and
their corresponding ground truth binarization. A high
SSIM demonstrates that the structural similarity be-
tween the ground truth and reconstruction is indeed
preserved, and thus the ridge structure is also pre-
served.

3. Matching Performance: In order to perform fea-
ture extraction and matching from latent fingerprints,
two publicly available state-of-the-art feature extrac-
tors: ABR11 [3] and MINDTCT [1], and two pub-
licly available matching algorithms: Bozorth [1] and
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Figure 5: Fingerprint image quality evaluated via the NFIQ
module of NBIS [1] for latent fingerprint images of the (a)
IIITD-MOLF database and (b) IIITD-MSLF database.

Table 2: Average NFIQ scores of the images from the
IIITD-MOLF and IIITD-MSLFD datasets. Lower scores
of the enhanced algorithm showcase that the proposed al-
gorithm improves the fingerprint image quality.

Dataset Enhancement NFIQ Score

IIITD-MOLF Raw Image 4.96
Proposed 1.88

IIITD-MSLFD Raw Image 4.48
Proposed 2.36

MCC [6, 7, 11, 12] have been used. The performance
has been reported in terms of the Rank-50 accuracies
obtained by raw images and those enhanced by the
proposed algorithm. The performance has also been
compared with previously proposed enhancement al-
gorithm by Svoboda et al. [22].

4. Results and Analysis
This section summarizes and analyzes the results based

on the three metrics discussed above.

4.1. Fingerprint Quality Analysis

Figure 5 shows the histogram of NFIQ scores on the
MOLF and MSLF databases. It can be observed that after
enhancement, the distribution of fingerprint quality scores
has shifted towards lower values (better quality). Further,
Table 2 summarizes the average score across the entire
database, before and after enhancement. The NFIQ score
of original images is 4.96 and 4.48 on MOLF and MSLF
databases, respectively. After applying the proposed GANs
based image enhancement algorithm, the average quality
score has significantly decreased (better quality) and the
NFIQ scores of enhanced images are 1.88% and 2.36%, re-
spectively. The improved quality signifies that the proposed
algorithm enhances the ridge structure of the latent images
which leads to the better quality scores.

Figure 6: Left column: synthetic test latent, middle column:
images generated using the proposed algorithm, Right col-
umn: ground truth. SSIM value is calculated between the
proposed and ground truth. High SSIM values show that the
proposed algorithm is able to preserve the ridge structure of
latent images while enhancing them.

4.2. Ridge Structure Preservation

Figure 6 presents sample cases illustrating the effect of
the proposed enhancement algorithm on the ridge structure
and SSIM values. It can be observed that the SSIM values
between the enhanced images generated by the model and
the ground truth binarization for the synthetic latent test ex-
amples is very high. This demonstrates that the proposed
model preserves the ridge structure and other fingerprint
features like fingerprint pattern class, ridge orientation, and
minutiae while enhancing the latent images. Additional
successful examples of latent fingerprint enhancement by
the proposed model are shown in Figure 9.

4.3. Matching Latent to Multi-Sensor Fingerprints

Tables 3 and 4 summarize the rank-50 accuracies ob-
tained by matching latent impressions to fingerprint images
captured by different sensors and Figure 7 showcases the
CMC curves obtained across DB1 and DB2 from the IIIT-
D MOLF database. It can be observed that the proposed
algorithm leads to significant improvements in the match-
ing accuracy. Matching raw images with MINDTCT+MCC
yields 12.59% accuracy whereas, after enhancement, the
performance with the same feature extractor and matcher
improves to 35.66%. The comparison with existing algo-
rithm shows that applying Svoboda et al.’s algorithm also



Table 3: Results of matching latent images of IIITD-MOLF
across its DB1 fingerprints gallery.

Enhancement Features + Matcher Rank-50
Algorithm Accuracy

Raw Image
ABR11+MCC 5.45
MINDTCT+BOZORTH 6.06
MINDTCT+MCC 12.59

Svoboda ABR11+MCC 22.36
et al. [22] MINDTCT+MCC 18.36

Proposed
ABR11+MCC 28.18
MINDTCT+BOZORTH 30.16
MINDTCT+MCC 35.66

Table 4: Rank-50 accuracy (%) of matching latent images
of IIITD-MOLF across its Lumidigm (DB1) and Secugen
(DB2) fingerprints. Feature extraction and matching is per-
formed using MINDTCT+MCC.

Enhancement Algorithm DB1 DB2
Raw Image 5.45 5.18
Svoboda et al. [22] 22.36 19.50
Proposed GAN 35.66 30.16

improves the accuracy, however, the magnitude of improve-
ment is much more by using the proposed algorithm. These
results could be attributed to the fact that the proposed algo-
rithm enhances the ridge structure of latent fingerprint im-
ages which helps in more accurate feature extraction and
matching from enhanced fingerprints than the raw latent im-
pressions.

4.4. Matching Latent Images to Multi-Surface Fin-
gerprints

As mentioned earlier, the experiments are also per-
formed to evaluate the performance with respect to multi-
surface fingerprint matching. The CMC curves pertaining
to this experiment are shown in Figure 8. It is interesting to
observe that after the proposed enhancement, rank-50 iden-
tification accuracy increases from 11.43% to 15.24%. The
accuracy on IIITD-MSLF database is lower than the IIITD-
MOLF database, this can be attributed to varying and com-
plex backgrounds in IIITD-MSLFD compared to the IIITD-
MOLF. Moreover, in several images, the background has
similar distribution of intensity values as the foreground fin-
gerprints. This leads to spurious patterns in the enhanced
images which adversely affects the feature extraction and
thus the matching performance.

4.5. Challenges Observed

Across different experiments, we have observed that the
proposed GAN based enhancement algorithm improves the
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Figure 7: CMC curve for matching GAN enhanced im-
ages using MINDTCT+MCC on the IIITD-MOLF DB1 and
DB2 galleries.
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Figure 8: CMC curve for matching (using
MINDTCT+BOZORTH) IIITD-MSLFD before and
after enhancement by the proposed algorithm.

performance. However, as shown in Figure 10, we have
encountered several challenging cases where the algorithm
fails to yield good results. Here, we present an analysis of
these cases.

• Analyzing the input images shown in Figure 10 reveals
that if there is no ridge information in the input latent
images, the algorithm is unable to reconstruct the en-
hanced fingerprints. Referring to the second and third
samples of Figure 10, it can be observed that the pro-
posed algorithm is able to enhance those portions of
the fingerprints where there is some ridge information.
We believe that in complete absence of ridge patterns,
it will be challenging for any algorithm to meaning-
fully enhance the ridge patterns.

• For latent fingerprint matching, forensics experts first
manually mark the region of interest and then perform



Figure 9: Samples of successful enhancement of latent fingerprints by the proposed model.

Figure 10: Some challenging cases for the proposed model.

matching. However, the proposed algorithm does not
use ROI masks, rather it learns to identify the fore-
ground and background and then enhances the fore-
ground fingerprints. As a result, the algorithm some-
times misinterprets background as foreground when
the background pixels have similar distribution of in-
tensity values as the foreground fingerprints.

5. Conclusion
GANs are one of the most popular and promising archi-

tectures in image generative applications. Inspired by their
success, we have posed latent fingerprint enhancement as an
image-to-image translation problem and explored the pos-
sibility of using GANs to generate enhanced fingerprints
which can facilitate accurate feature extraction. The pro-
posed model has been trained using the enhancer and the
discriminator as an adversarial network. Training is per-
formed on both synthetic and real fingerprints. As a result,
the model is not “fine-tuned” for a particular latent dataset
and its utility is not limited by the availability of a large
latent dataset. The proposed model has achieved state-of-
the-art results on two challenging publicly available latent
databases. While analyzing the enhanced fingerprint images
few challenging cases are observed in which the algorithm
generates spurious features when the ridge information in
the latent image is insufficient. To address these limitations,
the future work can explore the possibility of developing an
algorithm that can decide the feasibility of reconstruction

hence minimizing generation of spurious features. Further-
more, training the algorithm with larger texture and back-
ground variability in the database can help further improve
the performance of the proposed model. Further, this al-
gorithm can also be utilized in challenging scenarios like
latent to latent fingerprint matching [18].
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