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Abstract

The paper proposes a novel approach for learning kernel Support Vector Machines (SVM) from

large scale data with reduced computation time. The proposed approach, termed as Subclass

Reduced Set SVM (SRS-SVM), utilizes the subclass structure of data to effectively estimate

the candidate support vector set. Since the candidate support vector set cardinality is only a

fraction of the training set cardinality, learning SVM from the former requires less time without

significantly changing the decision boundary. SRS-SVM depends on a domain knowledge related

input parameter, i.e. number of subclasses. To reduce the domain knowledge dependency and to

make the approach less sensitive to the subclass parameter, we extend the proposed SRS-SVM to

create a robust and improved hierarchical model termed as the Hierarchical Subclass Reduced Set

SVM (HSRS-SVM). Since SRS-SVM and HSRS-SVM splits non-linear optimization problem into

multiple (smaller) linear optimization problems, both of them are amenable to parallelization.

The effectiveness of the proposed approaches is evaluated on four synthetic and six real-world

datasets. The performance is also compared with traditional solver (LibSVM) and state-of-the-art

approaches such as divide-and-conquer SVM, FastFood, and LLSVM. The experimental results

demonstrate that the proposed approach achieves similar classification accuracies while requiring

fewer folds of reduced computation time as compared to existing solvers. We further demonstrate

the suitability and improved performance of the proposed HSRS-SVM with deep learning features

for face recognition using Labeled Faces in the Wild (LFW) dataset.

Keywords: Support vector machines, subclass, subcluster, piece-wise linear solutions, large

scale learning.

Email addresses: tejasd@iiitd.ac.in (Tejas Indulal Dhamecha), afzel.noore@tamuk.edu (Afzel Noore),
rsingh@iiitd.ac.in (Richa Singh), mayank@iiitd.ac.in (Mayank Vatsa)

Preprint submitted to Pattern Recognition March 18, 2019



1. Introduction

Currently, the size of the largest biometric database is more than a billion, the number of

individuals with bank accounts has increased by more than 700 million in the last three years,

and YouTube generates billions of views everyday. The availability of similar large volumes of

diverse data has lead to an ever-growing popularity and importance of machine learning and5

pattern classification algorithms, particularly scalable machine learning models. Traditionally,

the most important parameter in selecting a classification model, for a given problem, has been

the accuracy of the classifier ; however, due to rapid growth in the size of the databases, scalability

of the classifier is now another important factor.

A large number of classification techniques exist in the machine learning literature; each with10

their own advantages and limitations. Support vector machine (SVM) [1] has been one of the

widely used classification algorithms in a variety of domains and has shown excellent results in

various applications including computer vision related problems (e.g. object classification [2],

face recognition [3], and pedestrian detection [4]). The applicability and efficacy for real world

applications has lead to numerous variants of SVM being proposed in the literature to make large15

scale training efficient [5, 6, 7, 8, 9]. However, there are two major limitations of SVM in context

to large data:

• Computational complexity: The core optimization function of SVM is a quadratic

programming (QP) problem. Therefore, the training time complexity of standard SVM is

O(n3) [10], where n is the number of training instances.20

• Space complexity: Training an SVM has space complexity of O(n2) [10]. This estimate

is, typically, dominated by the space required for storing the kernel matrix.

To better understand the role of high time and space complexities, we show an example with

a synthetic dataset termed as two concentric circles (2CC). As illustrated in Table 1, it is

a 2D two-class dataset where the samples of each concentric circular band corresponds to one25

class. Computing the nonlinear hyperplane to separate the two concentric circles requires learning

kernel SVM models. As shown in Table 11 experiments are performed with varying number of

data points in each circle. The results in Table 1 show that depending on the number of points

in the two circular bands, the training time of SVM changes significantly. With 20 data points,

LibSVM requires 1.6×10−2 seconds whereas, with 20,000 data points, i.e., increasing the number30

1The training time is computed with LibSVM.
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Table 1: Training time as a function of the number of training instances for a synthetic two-dimensional dataset

two concentric circles (2CC). Super-linear computational requirements of SVM training is evident from figures

suggesting a need for efficient large scale kernel SVM.
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Number of instances 20 200 2000 20,000

Training time (sec.) 1.6×10−2 3.6×10−1 1.9×101 3.3×103

by three orders of magnitude, the training time increases to five orders of magnitude. This shows

that traditional SVM solvers are not optimized for large scale learning.

To learn a large scale kernel SVM, this paper introduces Subclass Reduced Set (SRS) SVM2.

It focuses on splitting the nonlinear optimization problem into multiple linear optimization sub-

problems each operating on a significantly smaller fraction of the training data. Since the SVM35

solvers typically have super-linear time complexity, applying solver on such small sized candidate

set yields significant time improvements. This proposed SRS-SVM leverages subclass 3 structures

of data in order to reduce the time complexity of obtaining the decision boundary. In order to

compute the subclass structure of data, the proposed SRS-SVM relies on number of subclasses

(parameter h). The benefit of SRS-SVM can be limited (time saving or accuracy) if h is inap-40

propriately high (e.g. each sample is a subclass) or low (e.g. only one subclass). In real world

datasets, it may be difficult to set a balanced value for h due to unknown distribution. To address

this issue, we propose an extension that relaxes the dependency on exact parameter value and can

operate with reasonably high value of h. This extension is manifested in a tree-like generalized

hierarchical version of the proposed SRS-SVM termed as Hierarchical SRS (HSRS)-SVM. Due to45

the inherent property of solving small sub-problems, the proposed approaches are parallalizable

and computationally fast, while maintaining the classifier accuracies. To show the effectiveness of

SRS-SVM and HSRS-SVM, experiments are performed on four synthetic nonlinear datasets and

2Code available at http://iab-rubric.org/resources/srs-svm.html
3 In the literature, the term subclass [11, 12] is often used to describe a subset of samples of a class with certain

shared characteristics. In a statistical learning sense, subclasses do not necessarily correspond to subclusters, as a

subclass may contain multiple subcluster or vice-versa [13]. For example, on fitting Gaussian mixture model to a

class, more than one mode may be considered as a single subclass if they are close enough to each other. However,

to follow the vocabulary of other SVM specific related works [11, 12], the term subclass is used to mean subcluster.

3
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Figure 1: Illustrating four categories of approaches designed for scalable SVM learning.

six real-world datasets, namely adult [14], IJCNN1 [15], CIFAR-10 [16], forest cover (covertype)

[17], face detection dataset from the Pascal Large Scale Learning Challenge (LSL-FD) [18], and50

Labeled Faces in the Wild (LFW) dataset [19]. The results are shown in comparison to LibSVM

and state-of-the-art SVM variants proposed for handling large scale data.

2. Literature Review

The approaches proposed for scalable SVM can be grouped into four categories: (i) reduced

training set size, (ii) incremental learning, (iii) improved solver, and (iv) leveraging hardware.55

As shown in Figure 1, these algorithms either operate at one of the steps involved in the SVM

pipeline or incrementally update the learned model. We next review some of the algorithms in

each of the four categories.

2.1. Reducing Training Set Size

The approaches that operate at data/input stage, generally, propose to reduce the size of the60

training set by either dividing or reducing the training set into subsets. Since all the subsets

are operated independently, the process is inherently parallelizable. Moreover, these approaches

operate at the first stage of training, therefore their benefits are observed into the subsequent

solver and execution stages as well. From all the subsets, the required information is extracted,

for instance, Lagrange multipliers and candidate support vectors. Later, the information from65

individual subsets is combined to obtain the final model.

Among one of the first such approaches, Yu et al. [20] proposed a top-down hierarchical

clustering approach. At first samples are clustered, followed by clustering of the centroids; the
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procedure is repeated recursively producing a hierarchical clustering. Intuitively, going from root

to leaf level clusters is akin to exposing the model to finer details of decision boundary step-70

by-step. The initial model is learned from the centroids of the top (biggest) clusters. In the

subsequent stages, the model is updated based on the children (smaller) clusters. A similar top-

down approach is proposed by Boley and Cao [21]. Graf et al. [22] proposed Cascade SVM to

learn models on disjoint subsets of the training set in parallel. The final SVM model is learned

on a cumulative set of SVs obtained after iteratively processing the subsets.75

Another set of techniques has focused on reducing the training set size in order to formulate

scalable SVM models. In the ideal case, the reduced training set should consist of only those

samples which are support vectors of the global solution. The reduced SVM and its variants

[23, 24] include a candidate SV set selection stage followed by learning standard SVM model on

it. Similarly, Ilayaraja et al. [25] aimed at estimating concise candidate SV set in the multi-class80

scenario by exploiting the redundant nature of SVs amongst individual binary classifiers. Wang

et al. [26] explored the geometric interpretation of SVM to obtain the candidate SV set. Nath

and Shevade [27] utilized clustering based approach to eliminate parts of training data. Recently,

Hsieh et al. [28] proposed a divide-and-conquer SVM (DCSVM). Kernel k-means is first employed

to divide the training set into subsets and a set of support vectors (SV) is obtained from each85

subset. The SVs are pooled and considered as the refined training set. Iteratively, the subsets are

created using kernel k-means and the models are learned. The number of subsets is reduced in

each subsequent iteration. DCSVM is currently one of the fastest SVM variants. Although not

with the focus on scalability, Tong and Koller [29] proposed an active learning based approach to

mitigate the need for large dataset.90

2.2. Incremental Learning

A set of approaches inspired from incremental learning paradigm are also explored in the

literature. These approaches learn from incremental data streams and do not require to operate

on the whole training set. This inherently results in reduced space requirements. Incremental

SVM [30, 31] variants have been introduced for more than two decades now and have been utilized95

for various applications including biometrics. Since incremental SVM approaches do not require

to keep the whole training set in the memory, their space complexity, typically is scalable for

large training sets. Syed et al. [30] empirically showed that to incrementally update an existing

SVM model, it is sufficient to learn a model from the combined pool of existing SVs and the

SVs of the incremental batch. As an offshoot, it provides an empirical basis for utilizing SVs as100

the representative of the decision boundary. Ralaivola and dAlché Buc [32] proposed using the
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locality information to update an SVM model with a new sample. Poggio and Cauwenberghs

[33] provided a theoretical framework to increment or decrement the existing SVM model with a

sample. Karasuyama and Takeuchi [34] extended the framework for incrementing existing SVM

model with multiple samples. Recently, Mehrotra et al. [35] proposed a variant that explores the105

granular structure of data for efficient incremental learning.

2.3. Improved Solver

This category focuses on making the quadratic programming solver of SVM more efficient

to handle large datasets. They can be grouped into either improving the gradient descent or

obtaining the piece-wise linear solutions.110

• Improved Gradient Descent: One of the earliest research for addressing the compu-

tationally highly complex constrained QP focuses on reformulating the objective function

in an unconstrained optimization function [36]. The proposed least square SVM classifier

operates on the primal formulation by reformulating the optimization function into a set of

linear equations. Other research efforts in similar directions are by Shalev-Shwartz et al. [8],115

Bottou and Lin [37], and Langford et al. [38] that use iterative algorithms such as stochastic

gradient descent. Although extremely efficient for learning linear SVMs, the major limita-

tion is that the approaches in this category may be difficult to apply with kernel SVMs due

to their primal formulations and/or large kernel matrix computations.

• Piece-wise Linear Solutions: These techniques operate by approximating the actual120

optimization problem. Such approaches focus on utilizing the intuition that even a nonlinear

decision boundary is linear in small sections/local regions [12]. Huang et al. [39] proposed

a piece-wise linear SVM approach via piece-wise linear feature mapping. Similarly, Fornoni

et al. [40] proposed an approach that can leverage the piece-wise linear structure in the

multiclass scenario with class specific weights. Ladicky and Torr [41] proposed to obtain125

local coding of each data point based on its local neighborhood. However, this approach is

not aimed for large scale learning. Kecman and Brooks [42] proposed to use the training

samples in the vicinity of a query sample to obtain the final classification. Recently, Johnson

and Guestrin [43] modeled the piecewise linearity property in terms of working set selection

for improved scalability. It is to be noted that the locally linear SVM variants are not130

necessarily developed with the focus on large scale learning. However, they provide the

basis for utilizing the locally linear structure of complex decision boundaries for nonlinear

classification.
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2.4. Leveraging Hardware

This category is motivated by the availability of parallel computing hardware. The focus is135

to modify the solver algorithms for execution on multicore or multiprocessor environment. The

research direction exploring the use of parallel processing and the hardware technology such as

multicore processors [10] and distributed computing environments [44, 45] has resulted in various

SVM variants for large scale learning. Zanni et al. [46] proposed parallelization of stochastic

gradient descent to exploit the multicore architecture of processors. Tsang et al. [10] proposed core140

vector machine that is specifically designed for utilizing multiple cores of processors. In order to

efficiently leverage distributed and parallel processing environment, Do and Poulet [47] proposed

a variant of least square SVM. Moreover, the inherently incremental nature of the approach

makes its space complexity more suitable for large scale learning. Caragea et al. [48] and Forero

et al. [49] proposed approaches that rely on exchanging support vectors among sites (processing145

units) to learn the model in distributed computing environments. Do and Poulet [50] proposed to

partition the training data and to learn parallel local SVM models on each of them. In a similar

partitioning-based approach, Guo et al. [51] proposed to leverage map-reduce framework for

training SVM in heterogeneous parallel computation infrastructure. Other approaches proposed

for efficient large scale learning include utilization of semi-supervised training data [52], leveraging150

the sparse nature of training data [53], and approximating the kernel equivalent high dimensional

representation [54].

In view of the literature, the proposed Subclass Reduced Set (SRS) SVM is positioned at the

intersection of subset-based and piece-wise linear approaches. By exploiting piece-wise linearity of

decision boundary between subclass-pairs, we divide the large scale kernel SVM learning problem155

into easier linear SVM learning problems. Further, these linear solutions form the basis for

obtaining reduced training. Thus, the proposed research improves upon literature by proposing

novel computationally efficient approaches by marrying the concepts of training set reduction and

piece-wise linearity.

3. Preliminaries of SVM160

This section briefly summarizes the basic formulation of support vector machine and defines

some terms to facilitate explanation of the proposed approach.

SVM [1] is one of the widely used classification technique which falls under the category

of discriminative classifiers. Let xi, i = {1, 2, . . . , n} be n training samples and yi = ±1 be

their corresponding class labels. A part of the objective of linear SVM is to obtain a projection165

7



direction w and a bias b such that samples of each class are on different sides of the separating

plane. i.e. yi(w · xi + b) ≥ 1. Further, practically useful formulation of SVM utilizes soft margin

that tries to obtain as much cleaner decision boundary as possible by allowing misclassification of

training samples to a certain degree (represented by slack variable ξi), i.e. yi(w ·xi + b) ≥ 1− ξi.
Correspondingly, the optimization problem takes the form of170

arg minw,b,ξ
1
2 ||w||2 + C

n∑
i=1

ξi s.t. yi(w · xi + b) ≥ 1− ξi, ξi ≥ 0 (1)

where, C is the misclassification cost. Eq. 1 is called the primal form of the (soft-margin) SVM

optimization function. By utilizing the Lagrangian multipliers α, the equivalent dual form of the

optimization becomes

arg max
α

n∑

i=1

αi −
1

2

∑

i,j

αiαjyiyjxi · xj, s.t. 0 < αi ≤ C (2)

Having obtained the optimal multipliers α, the projection direction w is obtained as, w =
∑
i αiyixi. As w and b define the hyperplane separating samples from two classes, and that175

w is defined as a linear summation of xi makes it intuitive that only the αi corresponding to the

samples near the decision boundary are non-zero. Only these samples with non-zero multipliers,

that contribute in defining w, are called Support Vectors (SVs). All the points that are outside

the margin get zero coefficient value assigned. In other words, αi = 0, i ∈ {j|yj(w · xj + b) > 1}.
180

4. Reduced Set and Variants

We present the definitions and propositions associated to reduced set with respect to SVMs.

Definition 1. Reduced Set (RS) is a subset of the training set indices. For a training set with

n samples, the index set TRS ⊂ {1, 2, . . . , n} defines a Reduced Set.

Definition 2. Representative Reduced Set (RRS) is a reduced set that yields the same de-185

cision boundary as the whole training set. Let α and α̂ represent the Lagrangian coefficients for

the optimization functions of the whole training set and its reduced set TRS, respectively. TRS is

a representative reduced set if
∑n
i=1 αiyixi =

∑
j∈TRS α̂jyjxj.

Definition 3. Minimal Representative Reduced Set (MRRS) is the smallest possible RRS.

TRRS is an MRRS of the train set if there exists no other RRS with less cardinality than TRRS.190

Proposition 1. Representative Reduced Set (RRS) contains all the support vector indices.
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Proof. Let TSV and TnSV be the index sets of support vectors and non-support vector samples, respec-

tively. The direction w can be written as,

w =

n∑
i=1

αiyixi =
∑

j∈TSV

αjyjxj +
∑

k∈TnSV

αkykxk (3)

Since, ∀k ∈ TnSV , αk = 0, w =
∑n

i=1 αiyixi =
∑

j∈U αjyjxj, such that TSV ⊂ U and U ⊂ {1, 2, . . . , n}.

Therefore, every RRS (set U) contains all the support vector indices, i.e. TSV ⊂ TRRS .195

Proposition 2. Minimal Representative Reduced Set (MRRS) contains only the support vector

indices and maximum cardinality of MRRS is |TSV |.

Proof. From Proposition 1, TSV ⊂ TRRS .

The reduced representative set TRRS can further be written as TRRS = TSV ∪M , where M contains only

the non-support vector indices, i.e. M ⊂ TnSV .200

Since the non-support vectors have no impact on the value of w, all of them can be discarded to reduce

the cardinality of TRRS .

Therefore, if a TRRS is an MRRS, at most, it can contain all the support vector indices and no other

indices; i.e. |TMRRS | ≤ |TSV |.

Based on these definitions and propositions, it can be inferred that 1) RRS would contain all205

the support vector indices and 2) MRRS would contain only the support vector indices. In the

proposed approach, we focus on obtaining the best possible estimate of MRRS in order to reduce

the computational time without affecting the classifier performance.

5. Proposed Subclass Reduced Set SVM

Proposition 1 implies that if we can estimate the candidate SV set, it can be utilized to obtain210

the same decision boundary as obtained from the whole train set. If the estimated candidate

set contains m samples and m � n, then the optimization function can be solved with reduced

computation and space requirements. In other words, the training time can be reduced signifi-

cantly, as (1) the number of support vectors is typically very small compared to the total number

of training samples, i.e. (|TSV | � n) and (2) the SVM solvers, typically, have quadratic time215

complexity. Further, leveraging this property is well suited in large datasets, as the inequality

|TSV | � n is held strongly in densely sampled datasets. Based on this premise, we propose an

approach, termed as Subclass Reduced Set SVM (SRS-SVM), to learn SVM with lower training

complexity compared to a traditional solver. As illustrated in Figures 2 and 3, the proposed SRS-

SVM has two stages: (1) estimating the MRRS (|TMRRS | � n) and (2) solving the optimization220
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Figure 2: Abstract illustration explaining the core concept of the proposed approach, Subclass Reduced Set SVM.

Approaches, such as SRS-SVM, that fall under the categorizations of the subset based and piece-wise linear

approaches, operate on this basic intuition.

1.	SVM	
Solver

Learned	
Model

(a) Standard SVM

2.	SVM	
Solver

1.	MRRS	
Estimation

Learned	
Model

(b) Proposed SRS-SVM

Figure 3: Traditionally SVM solver is applied on the complete training set. The proposed SRS-SVM operates in

two stages: estimating MRRS and applying SVM solver on the obtained reduced set. For a detailed illustration

of MRRS estimation block, refer to Figure 4.

function on the estimated MRRS. Stage-2 requires less training time as opposed to solving the

optimization function on the whole training set; however, a significant training time improvement

is achievable only if MRRS is estimated efficiently in Stage-1. Therefore, the proposed approach

relies on the efficient estimation of MRRS in order to reduce the overall computational cost.

5.1. Estimating Minimal Representative Reduced Set225

The detailed concept of the proposed subclass reduced set SVM is illustrated in Figure 4. We

use piece-wise linearity of nonlinear solutions and the subclass structure of data for estimating

MRRS. Details of the MRRS estimation approach are explained below.

5.1.1. Leveraging subclass structure of data

It is well understood that real-world data may form subclasses within a class [20, 11]. Samples230

sharing some common property may create a subclass within a class. Since, the variation between

subclasses is smaller than the variation between classes, subclasses may provide a fine-grained
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+1 Class

-1 Class

Subclasses

Subclasses
Pair #1
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Pair #2

Subclasses
Pair #h2

Candidate 
Set
of

Support
Vectors

Union or 
Hierarchical

SV 
Aggregation

1 5 ---- h2 3 4

1 5 ---- h2 3 4

Finding subclasses (using k-means) Pairing subclasses Finding support vectors of each 
subclass pair and aggregating𝜙"#	and 𝜙%& 𝜙"# 	∪  𝜙%&

Figure 4: Block diagram of MRRS estimation procedure of the proposed Subclass Reduced Set SVM. Each class

is divided into h subclasses. (Here, subclasses are obtained using k-means clustering) Each subclass of +1 class

is paired with each subclass of −1 class, thus resulting in a total of h2 subclass-pairs. Support vectors from each

subclass-pair are retained as the candidate global support vectors. They are combined either using union operator

(in SRS-SVM) or using a further hierarchical aggregation (in Hierarchical SRS-SVM).

Dog breeds not useful in defining hyperplane
Dog breeds useful in defining hyperplane
Cat breeds not useful in defining hyperplane
Cat breeds useful in defining hyperplane

Figure 5: Illustrating the applicability of subclass structure in modeling decision boundary for Dog vs Cat clas-

sification problem. Out of a vast variety of dog and cat breeds, there are only limited breeds (subclasses) that

contribute to the decision boundary. Localized decision boundaries between breed-pairs of dogs and cats can be

seen as constituents for the overall decision boundary.
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information of the data distribution within a class. Let us consider an example of Dog vs Cat

classification problem as shown in Fig 5. There are certain ways in which dogs differ from cats,

however, there are certain ways in which one breed of dog (e.g. German Shepherd) would differ235

from another breed of dog (e.g. Doberman Pinscher). In this example, dogs and cats represent

classes whereas various breeds represent the subclasses. Researchers have attempted to exploit

the notion of subclasses for different classifiers [12, 11, 55]. In this research, we explore the

subclass notion for fast estimation of MRRS.

Clustering to find subclasses: As illustrated in Figure 5 subclasses represent a finer catego-240

rization of a class based on some shared characteristics (in this case, breed of dog). However,

the subclass labels are typically not available, therefore, we have to estimate the (pseudo) sub-

class labels. As each subclass encompasses samples sharing some characteristics, naturally, its

estimation is a clustering problem.

K-means clustering and approximation: Subclasses can be obtained with existing ap-245

proaches such as k-means. Although more sophisticated approaches such as Gaussian mixture

models [56], DBSCAN [57], and agglomerative clustering [58, 59] may be applied, we have ob-

served that simple k-means suffices to efficiently estimate MRRS in the proposed framework.

Note that exact solution of k-means clustering has a computational complexity of O(ndh+1),

which is usually inappropriate to be used practically. To address this, we use Lloyds algorithm,250

which provides a heuristic solution [60]. Since k-means using Lloyds algorithm is an iterative

approach, by restricting the maximum number of iterations, the subclasses can be obtained in

significantly less time. With this, the subclasses can be obtained with O(n+dhp) and O(n−dhp)

time complexities for class +1 and −1, respectively. n+, n−, d, h, and p represent the number

of samples in +1 class, the number of samples in −1 class, feature dimensionality, the number of255

subclasses, and the number of iterations, respectively.

5.1.2. Piece-wise linear solution to a nonlinear problem

It has been suggested in the literature that a nonlinear decision boundary can be achieved

with the help of several piece-wise linear solutions (PWL) [39, 61, 62]. This notion also suggests260

that every piece-wise solution encodes discriminative characteristics of a slice of dataset lying in

its vicinity. Since the decision boundaries are described using support vectors, it implies that the

SVs obtained for each local region, jointly, can represent the overall nonlinear decision boundary.

Thus, the SVs of piece-wise linear solutions can be utilized to estimate the representative reduced

set. It is important to accurately define the local regions for obtaining the linear solutions and265
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subclass structure of the data can be leveraged for this purpose. Proposition 3 shows that local

regions defined as the subclass-pair can be useful in obtaining the global nonlinear solutions.

Proposition 3. If a sample is a support vector in the global nonlinear solution, it is a support

vector in at least one of the subclass pair-wise solutions.

Proof. If a sample xi is a support vector in the global nonlinear solution, it is within the margin270

of the solution. Therefore, the sample xp is on the boundary (hull) of its class. [63]

Let xq be its nearest support vector in the opposite class (yp 6= yq). Since xq is also a support

vector, it is on the boundary (hull) of its class.

Without loss of generality, we can assume that xp and xq belong to ith and jth subclasses respec-

tively, i.e. p ∈ φ+
i and q ∈ φ−j .275

Therefore, xp is on the boundary (hull) of the ith subclass of +1 class and xq is on the boundary

(hull) of the jth subclass of −1 class, and

xp is a Support Vector in the solution learned for the subset φ = φ+
i

⋃
φ−j

Proposition 3 brings together the notion of piece-wise linear solutions and the subclass struc-

ture of data by providing the basis for utilizing the subclass structure to obtain the PWL solutions280

for MRRS estimation. The PWL solutions make it possible to obtain pairs of subclasses that can

be utilized to obtain support vectors. Let π be an indicator variable such that π(xi) denotes the

subclass association of the ith sample. Let both the classes be divided into h subclasses each4,

φ+
i = {k|π(xk) = i & yk = +1} represents the index set of samples of +1 class belonging to the

ith subclass, and, similarly, φ−j = {k|π(xk) = j & yk = −1} represents the index set of samples of285

−1 class belonging to the jth subclass, where i, j ∈ {1, 2, 3, . . . , h}. Decision boundaries obtained

for the pairs φ+
i

⋃
φ−j describe a set of possible hyperplanes discriminating two classes in local

regions. All the h2 pairs of subclasses can be utilized for obtaining the global solution. Estimating

minimal representative reduced set requires solving h2 sub-problems defined on subclass-pairs. A

degenerate case for this is when each sample is considered as a subclass where each subclass-pair290

solver is bound to yield a linear decision boundary. With approximately reliable subclass associ-

ation, each subclass-pair decision boundary can be assumed to be linear. Overall, estimation of

MRRS involves learning h2 linear solvers and aggregating their SVs. For simplicity, we assume

that each subclass of +1 and −1 classes have n+

h and n−

h samples respectively. As a result, at

first, h2 linear SVM models are learned; each of which is learned over ((n+ + n−)/h) samples.295

4For the ease of mathematics, we assume that both the classes are divided into equal number of subclasses.

However, that is not a constraint of the proposed SRS-SVM.
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Algorithm 1 Proposed Subclass Reduced Set SVM

procedure

Input: Data matrix X, number of subclasses h, cost C, and kernel hyper-parameters

. Find subclass association of each sample

π=findSubclasses(X) . π(xi) denotes the subclass association of ith sample.

. using k-means clustering.

TRRS = {} . Initialize reduced representative set

for i = 1 to h do

for j = 1 to h do

φ+
i = {k|π(xk) = i & yk = +1} . index set of ith subclass samples of +1 class

φ−
j = {k|π(xk) = j & yk = −1} . Index set of jth subclass samples of −1 class

φ = φ+
i

⋃
φ−
j . Index set for the subproblem

Solve the subproblem:

arg maxα
∑
i αi −

1
2

∑
i,j αiαjyiyjxi · xj, s.t. 0 < αi ≤ C, i, j ∈ φ

TRRS = TRRS
⋃
{k|αk > 0}

end for

end for . Learn final SVM model

Solve the nonlinear classification problem on the candidate support vector set

arg maxα
∑
i αi −

1
2

∑
i,j αiαjyiyjk(xi,xj), s.t. 0 < αi ≤ C, i, j ∈ TRRS

Return: Learned SVM model on TRRS

end procedure

Note that, this also removes the requirement of storing the whole (n+ + n−)× (n+ + n−) kernel

matrix in the memory which is a bottleneck for large scale SVM learning.

Under the assumption of representative subclass categorization and appropriate parameteri-

zation, the union set of SVs corresponding to subclass-pair solutions is a representative reduced

set. Note that the union set may not necessarily be an MRRS as the mechanism does not pre-300

vent a global non-support vector from getting introduced into the union set. In the best case

scenario, when no global non-support vector is introduced in the union set, the obtained union

set is MRRS, resulting in optimally minimal computation time and space requirements. Thus,

as detailed in Proposition 3, this union set of SVs can be considered an approximate reduced

representative set. The final classifier model is obtained by learning kernel SVM on this reduced305

set. Test samples are classified using this kernel SVM model in the traditional manner, i.e.

yz = sign

([ ∑

i∈TRRS

αiyik(xi, z)

]
− b
)

(4)

where, z is the test sample, yz is its predicted label, and k is the kernel matrix. Algorithm 1

outlines the steps involved in the proposed subclass reduced set SVM.

Effect of Number of Subclasses h: Consider the most degenerate case, where each class is

divided into as many subclasses as the number of samples (n/2). In this case, each subproblem310

operates on two samples - one from each class. Both the samples are bound to become support
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Table 2: The effect of the number of subclasses on the size of estimated MRRS.

Decreasing number of subclasses−−−−−−−−−−−−−−−−−−−−→

Subclasses (h) n
2

n
2
−∆ · · · h∗ + ∆ h∗

Size of estimated MRRS n ∼ n < n � n � n

vectors, effectively passing all the training samples into the RRS. Although it is a valid RRS, it

is not a good approximation of MRRS. This degenerate case represents the worst case scenario,

where the obtained candidate set is same as the whole training set. Further, as shown in Table

2, any large value (∼ n
2 ) for h is likely to result in unsuitably very large MRRS set. At the315

opposite case, consider a scenario where the whole class is considered as one subclass, i.e. h = 1.

This configuration is also not useful, as it will violate the assumptions regarding the piece-wise

linearity defined on local regions. In summary, both, overestimation and underestimation of h, are

likely to yield sub-optimal results, due to large candidate SV set or basic violation of piece-wise

linearity assumptions, respectively.320

As the number of subclasses h is varied from n/2 (maximum number of subclasses) to h∗ (op-

timum number subclasses), the size of estimated MRRS varies between n and a value close to

a total number of global support vectors (∼ |TSV |). The optimal h∗ depends on the geometric

arrangement of the data; e.g. for XOR dataset h∗ = 2 due to the presence of two distinct clusters

for each class. However, for real-world high dimensional datasets, it is crucial to find a reasonably325

balanced estimate of h. The following Section proposes a solution to address this challenge.

5.2. Hierarchical Subclass Reduced Set SVM (HSRS-SVM)

The solution to the problem is either to estimate h∗ or to devise a mechanism that can

handle arbitrary higher value of h. Estimating h∗ essentially reduces down to understanding

the distribution of the class, similar to that in a generative modeling. In literature, estimation330

of subclasses is approached from various perspectives, such as supervised statistical criterion

[64, 11] and unsupervised estimation of mixture modes [65, 66] often relying on expectation-

maximization [67]. However, since, the philosophical foundations of SVM are in discriminative

modeling, we avoid the route of estimating h∗. We focus on creating an extended approach

that can provide relatively efficient model even with sub-optimal h. The improved extended335

approach is a hierarchical version of the proposed approach SRS-SVM. It gains robustness to

over-estimation of h by filtering out global non-support vectors at multiple levels of hierarchy.

As shown in Figure 6, the mechanism of proposed HSRS-SVM can be described in a tree

15



Reduced Solver

Non-linear
Cumulated

Solver
l.1

Non-linear
Cumulated

Solver
2.1

Sub-class
Solver
�+

1

S
��

1

Sub-class
Solver
�+

1

S
��

2

. . .
Sub-class

Solver
�+

1

S
��

µ

· · ·

. . .

· · · · · · · · · · · · · · · · · ·
Non-linear
Cumulated

Solver
l.dh2/µl�1e

. . .

. . .

Non-linear
Cumulated

Solver
2.dh2/µe

Sub-class
Solver

�+
µ

S
��

h�µ+1

Sub-class
Solver

�+
µ

S
��

h�µ+2

. . .
Sub-class

Solver
�+

µ

S
��

h

Level 1
h2 nodes

Level l
dh2/µl�1e nodes

...

...

Level 2
dh2/µe nodes

Level l + 1

Figure 6: Graphical illustration of the proposed Hierarchical Subclass Reduced Set SVM (HSRS-SVM).

structure. Since the proposed algorithm follows bottom-up approach, our convention considers

the leaf nodes at level 1. Each leaf node caters to one subclass-pair solver φ+
i

⋃
φ−j , i.e. a linear340

SVM is learned within each leaf node. Only the support vectors from each individual solvers are

moved further up in the tree and the remaining samples are discarded. Further, a set of µ models

is selected to learn an aggregated solver at the level 2. If each class is divided into h subclasses,

there will be h2 leaf nodes. In this work, a total of dh2/µe aggregated nodes are obtained at level

2. Based on the learned dh2/µe models, a total of dh2/µ2e models are obtained at level 3. In345

general, the proposed approach operates on dh2/µl−1e nodes at level l. The iterative aggregation

stops at the root level which represents the final aggregated solver model. Since, µ nodes are

aggregated at each level, the root node is placed at level k such that dh2/µk−1e = 1. Further,

in the case of µ = h2, the root level itself becomes level 2, making the mechanism equivalent to

SRS-SVM. Thus, the proposed SRS-SVM is a special case of HSRS-SVM.350

To increase the chances of introducing samples from various parts of feature space into the next

level, nodes are randomly shuffled prior to aggregation. This helps maintain representativeness of

the data distribution at next level nodes. For example, without shuffling, the node 2.1 (in Figure

6) receives the support vectors from φ+
1

⋃
φ−1 , φ+

1

⋃
φ−2 , φ+

1

⋃
φ−3 , . . . , φ+

1

⋃
φ−µ subclass-pairs. All

these subclass-pairs have one common (or repetitively occurring) subclass. The support vectors355

from these pairs provide a limited view of the overall data spread, as they only encode decision

boundary between φ+
1 and the parts of −1 class. Instead, if the nodes are shuffled, a relatively

holistic nature of decision boundary may be encoded in the subsequent layers.
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We can learn all the leaf nodes in parallel, as each node corresponds to training a separate

linear SVM model. Thus, the total time for leaf level computation is, in the best case scenario,360

equal to the maximum time required for an individual solver. Further, the level 2 nodes can also

be learned in parallel in a similar way. Thus, the total time required for the overall computation

is
∑l+1
i=1 max(t1i , t

2
i , . . .), where tji is the time required for training jth node in ith level. In practice,

propagating the SVs upwards in the tree will also consume computational cycles; however, it will

be negligible relative to learning SVM models in each node.365

6. Datasets and Protocols

The effectiveness of the proposed SRS-SVM and HSRS-SVM is evaluated on both non-linearly

separable synthetic datasets and real-world datasets. Datasets are chosen with considerable

variations in characteristics such as feature dimensionality, training set size, and application

domain (finance, weather, object images, face images, textual data) to show the applicability and370

efficacy of the proposed algorithm.

6.1. Nonlinearly Separable Synthetic Datasets:

The synthetic datasets enable performance evaluation in the presence of known nonlinearity

characteristics. All the synthetic datasets are chosen to be two-dimensional, as they provide an

opportunity to visualize the data scatter and the decision boundary.375

1. Two concentric circles (2CC)

2. Three concentric circles (or bullseye)(3CC)

3. Shooting range (a set of bullseyes) (SR)

4. XOR dataset

Figure 7 illustrates the distributions of the above mentioned synthetic datasets utilized in this380

research. All the synthetic datasets are created by defining the distribution functions. Thus,

we can arbitrarily sample varying number of instances from these datasets. For each dataset,

experiments are perfomed with instance size varying between 100 to 100,00. Further, the datasets

have a varying degree of nonlinearity. For example, the nonlinear nature of the databases increases

as we proceed from two concentric circles dataset (2CC) to three concentric circles dataset (3CC)385

and then to the shooting range (SR) dataset.
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Figure 7: Illustrating the synthetic datasets used for performance evaluation (best viewed in color).
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Dhamecha, Noore, Singh, and Vatsa

(a) Animal (b) Non-Animal

(c) Face (d) Non-Face (e) Faces from LFW

Figure 9: Sample (a) animal and (b) non-animal class images from face detection dataset
of Pascal Large Scale Learning Challenge(Krizhevsky, 2009; Hsieh et al., 2014).

(e) Arbitrary nonlinear (NL) dataset5

All the synthetic datasets, except the NL, are created by defining corresponding dis-
tribution functions. Thus, we can arbitrarily sample number of instances from these
datasets.

2. Real world datasets: The proposed approach is evaluated on six real world datasets
as listed below. The datasets correspond to classification tasks in various fields of data
analytics. The dataset characteristics are described in Table 3.

(a) adult/census income (Platt, 1999)6: the goal is to predict whether a person’s
income exceeds $50K based on various demographic features from censor data.

5. http://openclassroom.stanford.edu/MainFolder/courses/MachineLearning/exercises/
ex8materials/ex8Data.zip

6. https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
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(b) Face vs Non-Face

Figure 8: Samples of the real world databases used for performance evaluation: (a) animal and non-animal class

images from face detection dataset of Pascal Large Scale Learning Challenge [16, 28] and (b) face and non-face

images from face detection dataset of Pascal Large Scale Learning Challenge [18]

6.2. Real-world datasets

The proposed HSRS-SVM approach is evaluated on various real-world datasets. The datasets

correspond to classification tasks in different fields of data analytics. The dataset characteristics

are described in Table 3.390

1. adult/census income [14]5: predicts whether a person’s income exceeds $50K based on

various demographic features from census data.

2. ijcnn1 [15]6: consists of time-series of multiple observations from an internal combustion

engine, with the goal of predicting normal and misfiring of the engine.

3. covertype [17]7: consists of cartographic measures of wilderness areas belonging to seven395

major forest cover classes. In this work, the dataset is converted to a binary class problem

with the goal of separating class 2 from the remaining 6 classes (Protocol used in Collobert

et al. [68]).

4. cifar-10 [16]8: is an object detection dataset consisting of images of 10 object categories.

However, in this work the categories are modified to classify between animals and non-400

animals (Protocol used in Hsieh et al. [28]). Figure 8(a) shows sample images from both

the categories. Table 3 reports the parameter γ for the dataset is 2−22 (or 2.4 × 10−7)

which is considerably smaller compared to other datasets. As Hsieh et al. [28] suggest, the

average distance between samples for un-scaled images of the dataset is much larger than

5https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#a9a
6https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#ijcnn1
7https://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html#covertype.binary
8https://www.cs.toronto.edu/~kriz/cifar.html
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Table 3: Details pertaining to the real-world datasets used in the evaluation and their corresponding hyperpa-

rameters. (d is feature dimensionality, h is number of subclasses, C is misclassification cost, and γ is radial basis

function kernel parameter)

Dataset (size)
No. of training No. of testing

d
Parameters

samples samples h C γ

adult (45.8 MB) 32,561 16,281 123 15 1 2−5

ijcnn1 (23.78 MB) 49,990 91,701 22 5 25 2

covertype.binary (239.36 MB) 464,810 116,202 54 500 4 25

cifar-10.binary (1.37 GB) 50,000 10,000 3,072 30 2 2−22

LSL-FD (1.34 GB) 150,000 50,000 900 50 10 1

other datasets, which requires smaller values of the γ as the multiplicative factor to sample405

distance term ||xi − xj||.
5. Face detection from Pascal Large Scale Learning Challenge (LSL-FD) [18]: the dataset

consists of a large number of face and non-face images. It is useful for benchmarking face

detection performance. Figure 8(b) shows sample face and non-face images.

For adult, ijcnn1, and cifar-10 datasets, the predefined benchmarking train-test splits,410

available at the source, are utilized. An 80-20% train-test split of the binarized covertype is

used based on a protocol used in literature [68]. For the LSL-FD dataset, 75-25% train-test split

of 200K samples is utilized in the experiments.

7. Experiments on Synthetic Datasets

In the first part of the evaluation, we use synthetic datasets to understand the effectiveness of415

the proposed approach. As the proposed approach relies on an approximation of original objective

functions, the decision boundaries obtained with SRS-SVM are compared with a traditional solver

(LibSVM).

7.1. Visualization of Each Step

We first demonstrate the functioning of the proposed SRS-SVM by providing the visualization420

of various stages of the algorithm on XOR dataset. The scatter plot of training samples is shown

in Figure 9(a). The next step involves processing the sub-class pairs with h = 2. Figure 9(b)

shows h2 = 4 subclass-pairs along with a linear SVM decision boundary obtained from each of

the subclass-pair based subproblems. All the linear decision boundaries along with the scatter
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Figure 9: Visualization of proposed approach on the XOR dataset. Training on whole dataset (n = 800, h = 2)

LibSVM takes 3.46 seconds; whereas the proposed SRS-SVM obtains similar decision boundary in 0.25 seconds.

See Algorithm 1 to relate the mathematical formulation of the individual steps.

plot of estimated MRRS (candidate SV set) is shown in Figure 9(c). Out of n = 800 training425

samples, only 26 are retained as candidate SV set. Thus, a large fraction (96.7%) of samples

are discarded at this stage. The final classification boundary obtained using the proposed SRS-

SVM is shown in Figure 9(d) (right). Comparing this with the decision boundaries obtained by

applying LibSVM on the entire training set shows that both the decision boundaries are very

similar for the classification task.430

Figure 10 shows the working of the proposed SRS-SVM algorithm on the SR (Shooting range)

dataset. As the number of subclasses (h) is parametrized to 5, the linear decision boundary

is learned for 25 subclass-pairs. It can be observed that a large portion of samples from the

outermost band are rejected. The samples lying on the outer boundary of the band are not in

the vicinity of the margin of separation, which leads to their rejection as shown in Figure 10(c).435

At the end of Level 1, approximately 3, 609 samples are retained out of the total 4,500 training
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(a) One linear SVM decision boundary is learned for each of the 25 subclass-pairs obtained by dividing each class

into 5 subclasses.
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Figure 10: Illustrating the processing of the proposed SRS-SVM on the Shooting Range dataset (see Fig. 7c).

Training on the whole dataset (n = 4,500) LibSVM takes 93 seconds; whereas the proposed SRS-SVM obtains

similar decision boundary in 50 seconds.
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Figure 11: Comparative illustration of the decision boundaries obtained by LibSVM and by the proposed SRS-SVM

approach (h = 5).

samples. The SR dataset does not have clearly visible five subclasses; however, due to the mech-

anism of learning h2 linear SVMs, the proposed approach yields the decision boundary similar to

that obtained with LibSVM. With minimal reduced representative set (MRRS) estimation, the

proposed approach is able to reduce the training time by almost half as compared to LibSVM.440

Similarly, the decision boundary comparison for the other two synthetic datasets, is shown in

Figure 11. The XOR dataset actually contains two subclasses, the class corresponding to inner

circle of 2CC has actually only one subclass (the class itself), and for 3CC and SR datasets it is

hard to concretely define the number of subclasses due to their nonlinearity. However, while

applying SRS-SVM, we set the number of subclasses h = 5 for all these datasets. Although, it is445

an inexact parameterization, in all the cases, the decision boundaries obtained with the proposed

SRS-SVM are almost same as (visually) those obtained with LibSVM. The efficacy of SRS-SVM

with inexact parameterization helps understand its performance in application areas with limited

domain knowledge.

7.2. Quantitative Analysis450

In order to understand the time improvement of the SRS-SVM, we generate varying number of

samples (between 100 and 10000) from each synthetic dataset. The training time of the proposed

approach and LibSVM is compared as a function of the number of training samples. Figure

12 shows the graphs corresponding to this experiment for 2CC, 3CC, and XOR datasets. Figure

13 shows similar graphs for the SR (shooting range) dataset, with results for additional analysis455

pertaining to the number of subclass parameter (h).

For all the datasets, both SRS-SVM and LibSVM yield perfect classification on the test

sets. The reported training time in this experiment includes the time required for estimating

parameters C (misclassification cost) and γ using grid search, and the time required for training
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Figure 12: (Best viewed in color) Comparing training time on three synthetic datasets: two concentric circles

(2CC), three concentric circles (3CC), and XOR. A varying number of samples are generated for each of the datasets.

The training time is shown on the logarithmic scale. As the number of training instances increases, the training

time of LibSVM increases rapidly whereas, the proposed SRS-SVM has a significantly lower rate of increase in

training time.

the model. It can be observed in Figure 12 that for a training size above a certain limit (> 500) the460

training time of the exact solver (LibSVM) increases rapidly; whereas the rate of increase in the

training time is very small in the case of the proposed SRS-SVM. For example, in the case of 2CC

dataset with 10,000 samples, the proposed approach requires few seconds (< 10s) whereas, the

exact solver requires few hundreds of seconds (< 1,000s) for learning a model. Figure 13 shows

similar quantitative analysis for Shooting Range dataset. Given that the dataset is relatively465

complex, we observe that increasing the number of subclasses from 5 to 20, reduces the training

time, as it aids in significantly reducing the training set size. For example, for 9,000 training

samples, training time required for LibSVM is 430.7s; whereas for SRS-SVM with h = 5, 15, 20

requires training time of 176.6s, 71.9s, and 64.3s, leading to the speedup of 2.43x, 5.99x, and

6.69x, respectively. Note that there is not really a trade-off of accuracy, as all configurations of470

SRS-SVM and LibSVM yield perfect classification on the test sets.

8. Experiments on Real-world Datasets

Experiments on diverse real-world datasets are also performed to study (1) the comparative

performance of the proposed subclass reduced set based approach, (2) the computational time

required at various stages of applying SRS-SVM (namely, clustering, level-1, and level-2), (3)475

the effectiveness of the proposed representative reduced set (RRS) estimation procedure, and

(4) to study the effect of parameters h (number of subclasses) and µ (number of children) on

training time and classification accuracy. The first three objectives involve experiments to study

the effectiveness of the proposed subclass reduced set based approach with a parameterization of

µ = h2 (and therefore, two levels of hierarchy) as detailed in Section 5.1. The experiment is further480
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Figure 13: (Best viewed in color) Comparing training time on SR (Shooting Range) dataset. Different number of

samples are generated from the dataset and training set size vs training time plots is shown for different dataset

sizes with number of subclasses (h) as 5, 15, and 20. Consistently, SRS-SVM takes less training time compared to

LibSVM. As the parameter h is increased, the training time is observed to reduce significantly on the logarithmic

scale.

extended to the proposed hierarchical subclass reduced set SVM (HSRS-SVM) as described in

Section 5.2.

8.1. Comparative Analysis

Comparison of the proposed subclass reduced set based approach with existing algorithm is

performed with publicly available implementations. Hsieh et al. [28] have shown that large scale485

SVM approaches, namely Cascade SVM [22], SpSVM [53], and core vector machines [10] yield

lower accuracies than DCSVM. Therefore, in this work, the results are compared with the most

recent approaches namely DCSVM, LLSVM, and FastFood.9

1. LibSVM [69]: LibSVM is one of the widely used implementations of SVM that relies on

sequential minimal optimization algorithm [14] for optimizing the QP objective function.490

2. Divide and Conquer SVM (DCSVM) [28]: DC-SVM is one of the recent related approaches.

In this study, the exact version of DC-SVM is utilized.

3. Low-rank Linearization SVM (LLSVM) [70]: We utilize the LLSVM implementation from

the BudgetedSM toolbox [71].

9As the proposed approach relies on accurately finding a subset of the training set, it is logical to investigate

the performance of a randomly sampled subset of training set. However, [28] have shown that such random subsets

yield suboptimal performance.
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Table 4: Comparing the results of the proposed HSRS-SVM to other related approaches.

(a) Classification Accuracy (%) comparison

Dataset
LibSVM LLSVM FastFood DCSVM Proposed

[69] [70] [54] [28] (µ = h2)

adult 85.01 66.28 85.2 84.75 84.46

ijcnn1 98.70 98.34 91.58 98.39 97.82

covertype.binary 96.07 71.25 out of memory 95.81 93.99

cifar-10.binary 89.66 78.27 79.79 89.78 89.92

LSL-FD 99.10 92.27 57.36 99.20 98.50

(b) Training Time (seconds) comparison

Dataset
LibSVM LLSVM FastFood DCSVM Proposed

[69] [70] [54] [28] (µ = h2)

adult 135.4 99.4 83.1 122.6 60.2

ijcnn1 68.3 96.6 107.3 74.0 13.3

covertype.binary 102,940.0 1,854.0 out of memory 75,183.0 47,536.0

cifar-10.binary 69,128.0 1,220.0 459.4 78,107.0 38,243.0

LSL-FD 311,543.0 1,396.5 254.0 515,674.0 112,558.0

4. FastFood [54]: The technique aims at obtaining approximate high dimensional representa-495

tion.

Details regarding datasets and the hyper-parameters are provided in Table 3. The first set

of experiments is performed with parameter µ = h2, which is a special non-hierarchical case of

HSRS-SVM. The results of the comparative prediction performance and training time requirement

are reported in Table 4(a) and Table 4(b), respectively. All the experiments are performed on a500

Windows machine with two 2.66 GHz Intel Xeon E5640 processors with 48GB primary memory.

Table 4(b) (on page 26) shows that compared to LibSVM, the proposed algorithm yields, the

speedup of 2.25x (135.4/60.2), 5.13x (68.3/13.3), 2.16x (102,940/47,536), 1.80x (69,128/38,243),

and 2.76x (311,543/112,558) on adult, ijcnn1, covertype, cifar-10, and LSL-FD, respectively,

while yielding similar classification accuracies. Moreover, the speedup of 2.03x, 5.56x, 1.58x,505

2.04x, and 4.58x with respect to DCSVM is observed in the case of adult, ijcnn1, covertype,

cifar-10, and LSL-FD, respectively. The basic assumption of the proposed approach is that

estimating the candidate support vector set beforehand helps reduce the overall time complexity.

The speedup compared to exact solver can be achieved only if the time consumed in estimating
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the candidate support vector set is lesser than the time saved in learning the SVM model from510

it. If the dataset is densely sampled, the size of the candidate set is typically a small fraction of

the whole training set; almost, guaranteeing improvement in speed. Typically, an exact model

learned from a densely sampled set has a relatively very small number of support vectors (e.g.

ijcnn1, adult, and LSL-FD) which leads to a significant speed-up with the proposed subclass

reduced set based approach. To further compare the proposed HSRS-SVM and LibSVM, we515

perform McNemar’s test to evaluate if marginal homogeneity exists between the predictions of

the two. The test reveals that for adult (p = 0.0058) and ijcnn-1 (p < 0.001) datasets, the

difference is statistically significant, whereas for cifar (p = 0.08) the difference is not statistically

significant.

8.2. Training Time of Individual Stage520

To further understand the proposed HSRS-SVM approach, we provide its stage-wise training

times in Table 5. As explained earlier the first stage involves obtaining subclasses, which is

followed by Level 1 of training involving the estimation of MRRS based on h2 linear SVM decision

boundaries, and Level 2 involves learning nonlinear decision boundary. Training time of each stage

is reported on absolute and relative scale. It is observed that the subclass computation stage takes525

a very small fraction (0.2-10%) of the total training time. This is a very supportive result as any

computationally heavy subclass computation stage can affect the overall computation for large

scale learning. These results also imply that utilizing more time-efficient subclass computation

approach may not result in further reducing the training time significantly. Level 1 computation

involving MRRS estimation consumes a 6 − 49% of training time. However, this stage involves530

learning of h2 linear SVMs independently, thus using parallel architecture (e.g. multi-threading)

can further reduce the computation time of Level 1 by multiple folds. Overall, we observe that

the Level 2 (i.e. learning nonlinear SVM on estimated MRRS) requires more than 50% of the

total training time due to the complex nature of kernel SVM learning.

8.3. Effectiveness of MRRS Estimation Approach535

This analysis is presented to understand how effectively the proposed subclass based approach

estimates the reduced representative set. In order to understand this, its precision and recall are

computed with respect to the support vector set (TSV ) of the exact solver. If an estimated

MRRS (T̂MRRS) is a minimal RRS (i.e. smallest possible RRS), it will overlap completely with

TSV . Moreover, for an estimated MRRS to have as less spurious candidate support vectors, its540

precision, computed as |T̂MRRS ∩ TSV |
|TRRS | , should be close to one. Similarly, for an estimated MRRS
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Table 5: Stage-wise training time of the proposed subclass reduced set based SVM approach. Time is reported in

seconds. The figures in the parenthesis represent the fraction of total training time consumed in percentage. Level

2 is the root level as µ = h2.

Dataset
Subclass

computation

Level 1 (MRRS

estimation)

Level 2 (Learning

decision boundary from

estimated MRRS)

adult 3.5 (5.8%) 14.8 (24.6%) 41.9 (69.6%)

ijcnn1 1.2 (9.1%) 5.3 (40.2%) 6.7 (50.7%)

covterype.binary 235.9 (0.5%) 2,978.3 (6.3%) 44,315.6 (93.2%)

cifar-10.binary 269.5 (0.7%) 5,855.9 (14.7%) 33,635.4 (84.6%)

LSL-FD 228.7 (0.2%) 42,693.0 (38.1%) 69,636.0 (61.7%)

to have all the actual support vectors, its recall, computed as |T̂MRRS ∩ TSV |
|TSV | , should be close to

one.

The precision and recall for the set of SVs in the final SVM model of the proposed approach

(TrSV ) is also computed. The metrics help in quantifying the similarity between the SVM model of545

the exact solver and that obtained with the proposed HSRS-SVM. Note that, this quantification of

similarity of two models is independent of the test set. Table 6 summarizes the results pertaining

to this particular analysis. Key observations are as follows:

• As a general trend it can be observed that recall of estimated MRRS T̂MRRS is high (> 80%)

for all the datasets (except LSL-FD). This means the proposed MRRS estimation approach550

retains a large fraction of actual support vectors.

• The basic premise of the MRRS estimation is that it should retain all support vectors, i.e.

recall is one. The recall of < 1 results from the following two practical aspects: 1) estimating

subclasses using a limited iteration approximate k-means without actually modeling the

data distribution, and 2) approximating the potentially nonlinear decision boundary of555

subclass-pairs with a linear decision boundary. Note that both of these approximations

yield a significant improvement in training time, with recall > 0.8. Table 4 shows that the

trade-off does not have a significant impact on the classification accuracy.

• The precision of the MRRS estimation shows that majority of its elements are actual support

vectors. A close-to-one precision is not necessary to obtain SVM model equivalent to the560

traditional solver. However, higher precision of RRS estimate reduces the training time of
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Table 6: Numerical analysis of the precision and recall of the estimated minimal reduced representative set

(T̂MRRS) and the final support vector set (TrSV ) obtained using proposed HSRS-SVM approach with respect to

the support vector set (TSV ) of the traditional solver (LibSVM).

Dataset |TSV |

T̂MRRS (Estimated MRRS) TrSV

|T̂MRRS |
Precision Recall

|TrSV |
Precision Recall

|T̂MRRS ∩ TSV |
|T̂MRRS |

|T̂MRRS ∩ TSV |
|TSV |

|TrSV ∩ TSV |
|TrSV |

|TrSV ∩ TSV |
|TSV |

adult 11,622 13,698 0.7220 0.8509 9,889 0.9093 0.8403

ijcnn1 2,478 10,865 0.1913 0.8390 2,202 0.8629 0.8390

covertype.binary 98,978 242,998 0.3475 0.8531 88,892 0.8685 0.7800

cifar-10.binary 31,750 36,842 0.7197 0.8351 26,616 0.9614 0.8060

LSL-FD 130,117 69,991 0.9536 0.5129 67,034 0.9956 0.5129

subsequent levels.

• The precision values of TrSV is typically higher than that of TRRS . This validates the

hypothesis that the spurious support vectors in the reduced representative set get discarded

in the subsequent levels. Theoretically, the recall of TrSV cannot be higher than that of565

T̂MRRS , as TrSV ⊆ T̂MRRS (therefore, |TrSV ∩ TSV |
|TSV | ≤ |T̂MRRS ∩ TSV |

|TSV | ).

• In the case of LSL-FD dataset, estimated MRRS (T̂MRRS) is about half the size of the actual

support vector set (TSV ). On other datasets, the estimated MRRS is larger than the actual

support vector set. Due to this peculiar behavior, we observe that recall values for LSL-FD

are lower as compared to other datasets. In spite of these observations, the classification570

performance is affected by only 0.6%, i.e. 99.1% by LibSVM vs 98.5% by the proposed

subclass reduced set based approach in Table 4.

8.4. Effect of h (Number of Subclasses) and µ (Number of Children) Parameters in Hierarchical

SRS-SVM

This experiment focuses on understanding the effect of the parameter h (number of subclasses)575

and µ (number of children) on training time and testing accuracy of the proposed HSRS-SVM. Ta-

ble 2 outlines a theoretical relationship between number of subclasses (h) and size of the estimated

MRRS (|T̂MRRS |). As explained earlier, a large value of h can render the time improvements

ineffective, whereas a very small value can affect the performance. As detailed in Section 5.2,

HSRS-SVM can relax the need of fine tuning h by introducing hierarchical structure to the MRRS580

estimation. The proposed hierarchical structure, which is controlled by µ (number of children),
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Table 7: Effect of varying number of subclasses (h) and number of children (µ) on the training time and classifi-

cation accuracy of the proposed HSRS-SVM on the adult dataset. The training time is reported in seconds. The

figures within parenthesis represent the classification accuracy.

Number of Training Time in seconds (Accuracy in %)

Subclasses (h) µ = h2 µ = dh22 e µ = dh24 e µ = dh28 e µ = dh216 e µ = dh232 e

2 88.0 (68.5) 112.8 (65.8) n/a

4 79.0 (82.0) 84.8 (80.7) 84.1 (82.9) 116.0 (77.1) n/a

6 68.4 (84.2) 84.2 (83.2) 80.8 (83.5) 103.1 (74.9) 115.8 (75.7) 122.2 (81.7)

8 68.9 (83.7) 98.8 (84.1) 81.2 (83.7) 70.7 (83.9) 94.4 (83.2) 120.2 (78.7)

10 68.1 (83.5) 101.9 (83.2) 82.9 (84.3) 78.2 (82.3) 98.2 (84.2) 116.0 (84.0)

15 70.9 (84.1) 93.2 (84.6) 95.8 (84.3) 80.0 (84.1) 80.2 (84.2) 94.1 (83.5)

20 77.8 (84.7) 111.0 (84.3) 98.0 (84.0) 87.9 (84.7) 82.1 (84.4) 103.0 (84.8)

25 81.4 (84.4) 112.6 (84.7) 106.6 (84.7) 94.7 (84.2) 86.1 (84.7) 112.6 (84.4)

30 88.2 (84.4) 125.0 (84.8) 114.8 (84.9) 107.3 (84.9) 92.4 (84.5) 123.6 (84.5)

35 91.2 (84.7) 132.7 (84.6) 130.0 (84.8) 119.0 (84.7) 102.7 (84.7) 97.7 (84.9)

40 95.5 (84.6) 145.2 (84.8) 139.1 (85.0) 127.6 (84.8) 111.8 (85.0) 100.0 (84.9)

45 102.4 (84.6) 153.1 (84.7) 145.0 (84.6) 138.0 (84.6) 123.7 (84.8) 110.1 (84.7)

50 106.6 (84.9) 162.7 (84.9) 161.0 (84.8) 147.2 (84.8) 133.2 (84.7) 119.4 (84.7)

Table 8: Effect of varying number of subclasses (h) and number of children (µ) on the training time and classifica-

tion accuracy of the proposed HSRS-SVM on the ijcnn1 dataset. The training time is reported in seconds. The

figures within parenthesis represent the classification accuracy.

Number of Training Time in seconds (Accuracy in %)

Number of subclasses Number of children (µ)

(h) h2 h2/2 h2/4 h2/8 h2/16 h2/32

2 50.8 (91.4) 50.6 (91.8) n/a

4 33.4 (92.0) 34.3 (95.3) 32.6 (91.4) 31.9 (93.4) n/a

6 25.2 (95.7) 23.2 (94.7) 34 (90.9) 21.3 (95.3) 20.7 (94.4) 21.8 (95.1)

8 17.9 (95.6) 19.1 (94.9) 19.0 (95.8) 15.6 (95.1) 16.3 (94.7) 16.7 (95.8)

10 15.4 (96.4) 17.0 (95.6) 13.3 (95.4) 9.1 (96.2) 13.8 (96.2) 13.3 (95.1)

15 12.9 (96.8) 13.5 (96.2) 12.4 (96.9) 10.0 (96.1) 8.8 (96.6) 10.9 (96.2)

20 13.4 (97.4) 13.9 (97.5) 11.9 (96.9) 11.5 (97.3) 10.5 (97.3) 11.2 (96.9)

25 15.7 (97.4) 16.0 (97.6) 14.4 (97.6) 13.7 (97.9) 12.3 (97.7) 13.3 (97.7)

30 17.5 (97.8) 19.1 (98.0) 16.8 (98.0) 15.3 (97.4) 13.8 (97.8) 14.7 (97.4)

35 19.1 (98.1) 21.2 (98.1) 19.2 (97.6) 18.7 (98.3) 17.1 (98.2) 15.8 (97.8)

40 20.6 (98.3) 22.9 (98.2) 20.9 (98.2) 22.1 (97.9) 18.3 (97.9) 17.9 (98.1)

45 22.8 (98.0) 23.6 (98.2) 24.6 (98.3) 24.3 (98.2) 21 (98.1) 19.6 (98.2)

50 25.3 (98.3) 27.5 (98.3) 26.8 (98.4) 25.1 (98.0) 24.3 (98.4) 24.1 (98.2)

should yield good results with an approximate parameterization of h. This experiment focuses on

verifying the expected behavior of the proposed hierarchical SRS-SVM. The number of subclasses

h is varied between 2 and 50. For every value of h, experiments are performed with six different

values of µ (h2, h2/2, h2/4, h2/8, h2/16, and h2/32). Since µ has to be a natural number, a585

ceiling value is used.
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Tables 7 and 8 summarize the results for adult and ijcnn1 datasets respectively10. Similar

trends were observed on other datasets as well. Note that, µ < h2/2 with h = 2, and µ < h2/8

with h = 4 are invalid combinations (mentioned as n/a) as they do not satisfy the condition

µ ≥ 1.590

• In our experiments, we observe that as the number of subclasses increase, the training

time decreases around moderate value (∼15 subclasses) and then increases steadily. The

testing accuracy appears to increase rapidly but the rate of increase decreases at higher

h approaching saturation. Note that as h increases, so does the size of estimated MRRS

which is likely to reduce approximation explaining the accuracy convergence.595

• When h is very small, the estimation of MRRS can be poor, i.e. it has low recall (many

actual support vectors may be missed) and/or low precision (many non-support vectors are

retained). The former will lead to poor testing accuracy, whereas the later will increase the

computation time of subsequent levels by increasing the overhead of discarding non-SVs.

It can be verified from Table 7 that underestimation of h results in overall poor testing600

accuracy and suboptimal training time.

• Similarly, higher values of h increases the size of estimated MRRS, which affects its precision

and overall the training time adversely. However, it improves the recall of MRRS estimation,

resulting in the convergence of the decision boundary and testing accuracy to that of an

exact solver. As shown in Table 7 on adult dataset, the classification performance appears605

to converge/saturate at h ≥ 20.

• In our experiments, we observe that, for constant h, varying µ from h2 to h2/32 increases

the overall training time because for smaller µ we need to learn more number of intermediate

models. For example, with µ = h2, h2 linear SVMs (at Level 1) and 1 nonlinear SVM (at

root Level 2) is learned internally; whereas, with µ = h2/2, h2 linear SVMs at Level 1, 2610

nonlinear SVMs at Level 2, and 1 nonlinear SVM at root Level 3 is computed. This effect

is more pronounced with small values of h, as they lead to relatively higher number of

samples per subclass; which make the training computationally expensive. However, with

higher values of h it is still suitable to set µ at lower values, which can increase prediction

performance with relatively less impact on overall training time.615

10Due to the exhaustive nature of this experiment, we show tabular results on only two datasets.
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Table 9: Verification accuracy of L-CSSE features with HSRS-SVM (h = 5, µ = 25) and LibSVM in comparison

to state-of-the-art approaches on the LFW database.

Approach Accuracy

L-CSSE with HSRS-SVM 90.92

L-CSSE with LibSVM [72] 90.51

L-CSSE with Neural Net [72] 90.49

Spartans [73] 87.55

POP-PEP [74] 91.10

MRF-Fusion-CSKDA [75] 95.89

8.5. HSRS-SVM with Deep Learning Features for Face Recognition

To further investigate the performance and suitability of the proposed classifier we perform

experiments on a challenging problem of face verification. In the last few years, deep learning

based approaches have established state-of-the-art results in various research areas, especially in

computer vision and face recognition. These approaches benefit from utilizing deep learning based620

features as inputs to traditional classifiers. Therefore, it is our assertion that the proposed subclass

reduced set based SVM may also efficiently utilize deep learning based features. Further, this

integration of deep learning feature with HSRS-SVM is expected to achieve improved accuracy

(by virtue of the features) and to be computationally efficient (by the virtue of the proposed

classifier). For face verification, we use Labeled faces in the wild (LFW) dataset [19]. The dataset625

consists of face images with the objective of face verification i.e. predicting match and non-match

pairs. The face verification performance is reported for image-restricted protocol. The official

protocol defines 10 fold cross-validation splits over 3000 match and 3000 non-match pairs. Each

cross-validation contains 5400 images for training and 600 images for testing. We explore the

utility of Local Class Sparsity Based Supervised Encoding (L-CSSE) [72] which is a deep learning630

feature representation. The L-CSSE feature extractions involves a l2,1 norm in auto-encoder

based representation learning to promote joint sparsity among same-class samples. Majumdar

et al. [72] have reported impressive face verification performance using L-CSSE features and SVM

as classifier. In this experiment, HSRS-SVM is learned over 1,792 dimensional L-CSSE feature

representations of face images with parameterization of h = 5 and µ = 25.635

Table 9 and Figure 14 provide accuracy comparison of LibSVM and HSRS-SVM with same L-

CSSE feature representations. Further, accuracy values of some of the state-of-the-art approaches

are also provided. To further analyze the classification performance difference between LibSVM
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Figure 14: ROC curves on the restricted protocol of LFW dataset [19].

and HSRS-SVM, McNemar’s test (p = 0.3613) and paired t-test (p = 0.0808) between fold-wise

accuracy values are employed. Both the test indicate that, there is no statistically significant640

difference between classification performance of LibSVM and HSRS-SVM. It is observed that the

proposed subclass reduced set based SVM required 2,972 seconds for training whereas, LibSVM

and Neural Network [72] required 3,288 and 3,382 seconds respectively on machine with Intel Xeon

Processor, 6 Core and 64GB RAM. The cardinality of estimated MRRS set is observed to be 4,732.

The cardinalities of TrSV (support vectors at root level) and TSV (support vectors of LibSVM)645

are observed to be 1,809 and 1,874, respectively. It can be seen that the verification performance

of proposed HSRS-SVM with the deep learning based features is comparable to state-of-the-art

approaches. This provides an empirical evidence for the suitability of the proposed approach with

deep learning based features.

9. Conclusion and Future work650

In this work we presented a novel approach for efficiently learning nonlinear support vector

machine classifier from large training data. The proposed approach obtains a set of candidate

support vectors based on computationally low-cost linear subproblems. We show that utilizing

these candidate support vectors (termed as estimated MRRS) to learn the overall nonlinear de-

cision boundary helps to reduce the overall training time significantly. Although, the proposed655

approach relies on an approximation stage for estimating MRRS, the decision boundary and

classification accuracy are not significantly different than that of LibSVM. A hierarchical ex-

tension is also proposed, that divides the MRRS estimation task further into multiple iterative

stages. Experimental results are shown on several synthetic and real-world datasets including
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adult, ijcnn1, covertype, cifar-10, and LSL-FD. Synthetic datasets are leveraged to gain the660

understanding of individual stages of the proposed approach and to compare the obtained deci-

sion boundaries with a traditional solver. We observe that the proposed approach yields two to

five fold speed-up compared to LibSVM and almost up to an order of magnitude compared to

other SVM-based large scale learning approaches. We also showcase the suitability of proposed

HSRS-SVM approach with deep learning based features for face verification on LFW dataset.665

Appendix A. Additional Toy Example

Here, we provide experiments performed on an additional toy dataset. The dataset is created

by specifying the number of actual subclasses. As shown in Figure A.15 three version are created

with h = 10, 20, and 100. As h increases, visually, the degree of non-linearity is also increasing.

As shown in Table A.10, the proposed approach consistently trains faster than LibSVM, across670

various values of h and n. This suggests that proposed approach is suitable with the classification

problems involving distributions with large number of actual subclasses.
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Figure A.15: (Best viewed in color) Synthetic datasets with varying number of subclasses (h) and samples (n).

Each subclass consists of 200 samples.

Number of

subclasses

(h)

Number of

samples

(n)

Training Time

of SRS-SVM

(seconds)

Training Time

of LibSVM

(seconds)

Accuracy

of SRS-SVM

(%)

Accuracy

of LibSVM

(%)

10 4,000 28.54 37.84 100.00 100.00

20 8,000 98.74 150.31 100.00 100.00

100 40,000 693.73 2,799.31 99.97 100.00

Table A.10: Training time and classification accuracy of the synthetic datasets with varying number of subclasses,

samples.
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