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Abstract—Research in face recognition has seen tremendous growth over the past couple of decades. Beginning from algorithms
capable of performing recognition in constrained environments, existing face recognition systems achieve very high accuracies on
large-scale unconstrained face datasets. While upcoming algorithms continue to achieve improved performance, many of them are
susceptible to reduced performance under disguise variations, one of the most challenging covariate of face recognition. In this paper,
the Disguised Faces in the Wild (DFW) dataset is presented which contains over 11,000 images of 1,000 identities with variations
across different types of disguise accessories. The dataset is collected from the Internet, resulting in unconstrained face images similar
to real world settings. This is a unique dataset that contains impersonator and genuine obfuscated face images for each subject. The
DFW dataset has been analyzed in terms of three levels of difficulty: (i) easy, (ii) medium, and (iii) hard, in order to showcase the
challenging nature of the problem. The dataset was released as part of the First International Workshop and Competition on Disguised
Faces in the Wild at the International Conference on Computer Vision and Pattern Recognition, 2018. This paper presents the DFW
dataset in detail, including the evaluation protocols, baseline results, performance analysis of the submissions received as part of the
competition, and three levels of difficulties of the DFW challenge dataset.

Index Terms—Face Recognition, Disguise in the Wild, Impersonation, Obfuscation, Face Verification.
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1 INTRODUCTION

E XTENSIVE research in the domain of face recognition has
resulted in the development of algorithms achieving state-

of-the-art performance on large-scale unconstrained datasets [1],
[2], [3], [4]. However, it has often been observed that most
of these systems are susceptible to digital and physical adver-
saries [5], [6], [7], [8], [9], [10]. Digital adversaries refer to
manipulations performed on the image being provided to the
recognition system, with the intent of fooling the system. It
has been shown that traditional systems based on hand crafted
features [5] degrade gracefully with digital attacks while deep
learning systems deteriorate rapidly. Recently, the issue of digital
attacks has garnered attention, with perturbation techniques such
as Universal Adversarial Perturbation [11] and DeepFool [12]
demonstrating devastating adversarial performance on different
algorithms. On the other hand, physical adversaries refer to the
variations brought to the individual before capturing the input data
for the recognition system. In case of face recognition, this can be
observed due to variations caused by different spoofing techniques
or disguises. While the area of spoof detection and mitigation is
being well explored [7], [13], research in the domain of disguised
face recognition is yet to receive dedicated attention, despite its
significant impact on both traditional and deep learning systems
[14], [15].

Disguised face recognition encompasses handling both inten-
tional and unintentional disguises. Intentional disguise refers to
the scenario where a person attempts to hide his/her identity or
impersonate another person’s identity, in order to fool a recogni-

• M. Singh, R. Singh, and M. Vatsa are with IIIT-Delhi, India, 110020 (e-
mail: maneets@iiitd.ac.in, rsingh@iiitd.ac.in, mayank@iiitd.ac.in).

• N. Ratha is with IBM TJ Watson Research Center, New York, USA (e-mail:
ratha@us.ibm.com).

• R. Chellappa is with Department of Electrical and Computer Engineering
and UMAICS, University of Maryland, College Park, MD, 20742 (e-mail:
rama@umiacs.umd.edu).

• DFW dataset link: http://iab-rubric.org/resources/dfw.html

Manuscript received October 30, 2018.

Fig. 1: Authentication systems often face the challenge of match-
ing disguised face images with non-disguised enrolled images.

tion system into obtaining unauthorized access. This often results
in utilizing external disguise accessories such as wigs, beard,
hats, mustache, and heavy makeup, leading to obfuscation of
the face region. This renders low inter-class variations between
different subjects, thereby making the problem challenging in
nature. Unintentional disguises cover a range of images wherein
the face is obfuscated by means of an accessory such as glasses,
hats, and masks. It can also be due to aging, resulting in an
increase or decrease of facial hair such as beard or mustache,
and variations in the skin texture. Unintentional disguises create
challenges for the face recognition system by increasing the intra-
class variations for a given subject. The combination of both
intentional and unintentional disguises render the problem of
disguised face recognition an arduous task. Fig. 1 presents sample
images of intentional and unintentional disguises, along with non-
disguised enrolled face images. The authentication system faces
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TABLE 1: Summary of disguise face datasets in literature.

Name Controlled Number of Availability of Publicly
Disguise Images Subjects Impersonators Available

AR Dataset (1998) [16] Yes 3,200 126 No Yes
National Geographic Dataset (2004) [17] Yes 46 1 No No
Synthetic Disguise Dataset (2009) [18] Yes 4,000 100 No No
Curtin Faces Dataset (2011) [19] Yes 5,000 52 No Yes
IIITD I2BVSD Dataset (2014) [20] Yes 1,362 75 No Yes
Disguised and Makeup Faces Dataset (2016) [21] No 2,460 410 No Yes
Spectral Disguise Face Dataset (2018) [22] Yes 6,480 54 No Yes
DFW Dataset (2018) No 11,157 1,000 Yes Yes

the challenge of verifying an image containing unconstrained
disguise variations against a frontal non-disguised face image.

This paper presents the Disguised Faces in the Wild (DFW)
dataset1, containing 11,157 face images of 1,000 identities. Al-
most the entire dataset is collected from the Internet resulting
in an unconstrained set of images. One of the key highlights of
the dataset is the availability of (i) normal, (ii) validation, (iii)
disguised, and (iv) impersonator images for a given subject. This
is a unique dataset containing multiple types of in-the-wild images
for a subject in order to evaluate different aspects of disguised face
recognition, along with three pre-defined evaluation protocols.
Here, for a given subject, disguised face images are images of
the same subject with disguise accessories, while impersonators
correspond to images of different subjects. It is our assertion
that the availability of a large-scale dataset, containing images
captured in unconstrained settings across multiple devices, pose,
illumination, and disguise accessories would help in encouraging
research in this direction. The dataset was released as part of the
DFW challenge, in the Disguised Faces in the Wild Workshop at
International Conference on Computer Vision and Pattern Recog-
nition (CVPR), 2018. We present the DFW dataset, along with
the findings across the three evaluation protocols. Performance of
participants in the DFW challenge along with the baseline results,
and analysis of three difficulty levels has also been provided.
The organization of this paper is as follows: Section 2 presents
the motivation of the DFW workshop and challenge, followed
by a detailed description of the DFW dataset in Section 3.
Section 4 elaborates upon the DFW challenge, its submissions,
and performance across the three protocols. Section 5 presents
the DFW dataset’s three degree of difficulties in terms of easy,
medium, and hard.

2 MOTIVATION

Table 1 presents the characteristics of existing disguise face
datasets, along with the DFW dataset. One of the initial datasets
containing disguise variations is the AR dataset [16]. It was
released in 1998 and contains a total of 3,200 face images
having some images containing controlled disguise variations.
This was followed by the release of different datasets having
variations across disguise accessories and dataset size. Most
of the datasets are moderately sized having controlled disguise
variations. Other than disguised face datasets, a lot of recent
research in face recognition has focused on large-scale datasets
captured in unconstrained environments [23], [24], [25], [26], [27].

1. Shorter version of this paper was presented at the CVPR Workshop on
DFW, 2018 [14] which summarized the phase-I results of the competition.
This manuscript presents the final results of the DFW 2018 competition, along
with additional analysis and observations on the DFW dataset.

TABLE 2: Statistics of the DFW dataset.

Characteristic Count

Subjects 1,000
Images 11,157
Normal Images 1,000
Validation Images 903
Impersonator Images 4,440
Range of Images per Subject [5,26]

The availability of such datasets facilitate research in real world
scenarios, however, they do not focus on the aspect of disguised
face recognition.

Disguised face recognition presents the challenge of matching
faces under both intentional and unintentional distortions. It is
interesting to note that both forms of disguise can result in
either genuine or imposter pairs. For instance, a criminal may
intentionally attempt to conceal his identity by using external
disguise accessories, thereby resulting in a genuine match for
an authentication system. On the other hand, an individual might
intentionally attempt to impersonate another person, resulting in
an imposter pair for the face recognition system. Similarly, in
case of unintentional disguises, use of casual accessories such
as sunglasses or hats results in a genuine disguised pair, while
individuals who look alike are imposter pairs for the recognition
system. The combination of different disguise forms along with
the intent makes the given problem more challenging.

To the best of our knowledge, no existing disguise dataset cap-
tures the wide spectrum of intentional and unintentional disguises.
To this effect, we prepared and released the DFW dataset. The
DFW dataset simulates the real world scenario of unconstrained
disguise variations, and provides multiple impersonator images for
almost all subjects. The presence of impersonator face images en-
ables the research community to analyze the performance of face
recognition models under physical adversaries. The dataset was
released as part of the DFW workshop, where researchers from
all over the world were encouraged to evaluate their algorithms
against this challenging task. Inspired by the presence of disguise
intent in real world scenarios, algorithms were evaluated on three
protocols: (i) Impersonation, (ii) Obfuscation, and (iii) Overall.
Impersonation focuses on disguise variations where an individual
either attempts to impersonate another individual intentionally,
or looks like another individual unintentionally. In both cases,
the authentication system should be able to detect an (imposter)
unauthorized access attempt. The second protocol, obfuscation,
focuses on intentional or unintentional disguise variations across
genuine users. In this case, the authentication system should
be able to correctly identify genuine users even under varying
disguises. The third protocol evaluates a face recognition model
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on the entire DFW dataset. As mentioned previously, it is our
hope that the availability of DFW dataset along with the three
pre-defined protocols would enable researchers to develop state-
of-the-art algorithms robust to different physical adversaries.

3 DISGUISED FACES IN THE WILD (DFW)
DATASET

As shown in Table 1, most of the research in the field of
disguised face recognition has focused on images captured in
controlled settings, with limited set of accessories. In real world
scenarios, the problem of disguised face recognition extends to
data captured in uncontrolled settings, with large variations across
disguise accessories. Combined with the factor of disguise intent,
the problem of disguise face recognition is often viewed as an
exigent task. The DFW dataset simulates the above challenges
by containing 11,157 face images belonging to 1,000 identities
with uncontrolled disguise variations. It is the first dataset which
also provides impersonator images for a given subject. The DFW
dataset contains the IIIT-Delhi Disguise Version 1 Face Database
(ID V1) [15] having 75 subjects, and images corresponding to
the remaining 925 subjects have been taken from the Internet.
Since the images have been taken from the Web, most of the
images correspond to famous personalities and encompass a wide
range of disguise variations. The dataset contains images with
respect to unconstrained disguise accessories such as hair-bands,
masks, glasses, sunglasses, caps, hats, veils, turbans, and also vari-
ations with respect to hairstyles, mustache, beard, and make-up.
Along with the disguise variations, the images also demonstrate
variations across illumination, pose, expression, background, age,
gender, and camera quality. The dataset is publicly available for
research purposes and can be downloaded from our website 2. The
following subsections present the dataset statistics, protocols for
evaluation, and details regarding data distribution.

3.1 Dataset Statistics
As mentioned previously, the DFW dataset contains images per-
taining to 1,000 identities, primarily collected from the Internet.
Most of the subjects are adult famous personalities of Caucasian
or Indian ethnicity. Each subject contains at least five and at
most twenty six images. The dataset comprises of 11,157 face
images including different kinds of images for a given subject,
that is, normal, validation, disguised, and impersonator. Detailed
description of each type is given below:

• Normal Face Image: Each subject has a frontal, non-
disguised, good quality face image, termed as the normal
face image.

• Validation Face Image: Other than the normal face im-
age, 903 subjects have another non-disguised face image,
referred to as the validation image. This can help in
evaluating a proposed model for matching non-disguised
face images.

• Disguised Face Image: For each subject, disguised face
images refer to images having intentional or unintentional
disguise of the same subject. For the 1,000 identities
present in the dataset, every subject has at least one and
at most 12 disguised images. These images form genuine
pairs with the normal and validation face images, and can
help in evaluating the true positive rate of an algorithm.

2. http://iab-rubric.org/resources/dfw.html

TABLE 3: Statistics of the training and testing sets of the DFW
dataset.

Number of Training Set Testing Set

Subjects 400 600
Images 3,386 7,771
Normal Images 400 600
Validation Images 308 595
Disguised Images 1,756 3,058
Impersonator Images 922 3,518

• Impersonator Face Image: Impersonators refer to peo-
ple who intentionally or unintentionally look similar to
another person. For a given subject, impersonator face
images belong to different people, thereby resulting in
imposter pairs which can be used to evaluate the true
negative rate of an algorithm. The images were collected
from the Internet using different relevant keywords on
Google Images, news articles, and popular entertainment
blogs and later manually verified by human examiners. In
the DFW dataset, 874 subjects have images corresponding
to their impersonators, each having at least 1 and at most
21 images.

Statistics of the DFW dataset are presented in Table 2, and Fig.
2 demonstrates sample images of two subjects. It can be observed
that disguised face images result in increased intra-class variations
for a given subject, while the impersonator images render lower
inter-class variability. Overall, the DFW dataset contains 1,000
and 903 normal and validation face images, respectively, along
with 4,814 disguised face images, and 4,440 impersonator images.

3.2 Protocols for Evaluation

The DFW dataset has been released with three protocols for
evaluation. A fixed training and testing split is provided which
ensures mutual exclusion of images and subjects. Images from
four hundred subjects are used to create the training set, and the
remaining six hundred subjects form the test set. Table 3 presents
the statistics of the testing and training sets. All three protocols
correspond to verification, where a face recognition module is
expected to classify a pair of images as genuine or imposter.
Detailed description of each protocol on the pre-defined training
and testing partitions is given below:
Protocol-1 (Impersonation) evaluates a face recognition model
for its ability to distinguish impersonators from genuine users with
high precision. A combination of a normal image with a validation
image of the same subject corresponds to a genuine pair for this
protocol. For imposter pairs, the impersonator images of a subject
are partnered with the normal, validation, and disguised images of
the same subject.
Protocol-2 (Obfuscation) is useful for evaluating the performance
of a face recognition system under intentional or unintentional
disguises, wherein a person attempts to hide his/her identity. The
genuine set contains pairs corresponding to the (normal, disguise),
(validation, disguise), and (disguise1, disguise2) images of a sub-
ject. Here, disguisen corresponds to the nth disguised image of a
subject. That is, all pairs generated using the normal and validation
images with the disguise images, and the pairs generated between
the disguise images of the same subject, constitute the genuine
pairs. The imposter set is created by combining the normal,
validation, and disguised images of one subject with the normal,
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(a) Subject A

(b) Subject B

Fig. 2: Images pertaining to two subjects of the DFW dataset. The dataset contains at most four types of images for each subject:
Normal, Validation, Disguised, and Impersonator.

validation, and disguised images of a different subject. This results
in the generation of cross-subject imposter pairs. The impersonator
images are not used in this protocol.
Protocol-3 (Overall Performance) is used to evaluate the perfor-
mance of a given face recognition algorithm on the entire DFW
dataset. The genuine and imposter sets created in the above two
protocols are combined to generate the data for this protocol.
For the genuine set, pairs are created using the (normal, vali-
dation), (normal, disguise), (validation, disguise), and (disguise1,
disguise2) images of the same subject. For the imposter set, cross-
subject imposter pairs are considered, wherein the normal, valida-
tion, and disguised face images of one subject are combined with
normal, validation, and disguised face images of another subject.
Apart from the cross-subject imposter pairs, the impersonators
of one subject are also combined with normal, validation, and
disguised face images of the same subject to further supplement
the imposter set.

3.3 Nomenclature and Data Distribution
The DFW dataset is available for download as an archived file
containing one folder for each subject. Each of the 1,000 folders
is named with the subject’s name and may contain the four
types of images discussed above: normal, validation, disguise,
and impersonator. In order to ensure consistency and eliminate
ambiguity, the following nomenclature has been followed across
the dataset:

• Each subject has a single normal face image, which has
been named as firstName lastName.jpg. For instance, for
the subject Alicia Keys, the subject’s normal image is
named Alicia Keys.jpg.

• As mentioned previously, a given subject contains only
a single validation face image. Therefore, the vali-
dation image is named with a postfix ‘ a’, that is,
firstName lastName a.jpg. For the example of Alicia
Keys, the subject validation image is stored as Ali-
cia Keys a.jpg.

• For disguised face images, a postfix of ‘ h’ is adopted,
along with a number for uniquely identifying the dis-
guised face image of a given subject. That is, first-
Name lastName h number.jpg. Here, number can take
values such as ‘001’, ‘002’, ... ‘010’. For example, the
first disguise image of subject Alicia Keys can be named
as Alicia Keys h 001.jpg, while the third disguised face
image can be named as Alicia Keys h 003.jpg.

• Similar to the disguised image nomenclature, a postfix
of ‘ I’ is used to store the impersonator images of
a subject. That is, impersonator images are named as
firstName lastName I number.jpg. For example, the first
impersonator image of subject Alicia Keys can be named
as Alicia Keys I 001.jpg.

In order to correctly follow the protocols mentioned above,
and report corresponding accuracies, training and testing mask
matrices are also provided along with the dataset. Given the entire
training or testing partition, the mask matrix can be used to extract
relevant genuine and imposter pairs or scores for a given protocol.
The DFW dataset also contains face co-ordinates obtained via
faster RCNN [33]. Given an image of the dataset, the co-ordinates
provide the face location in the entire image.
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TABLE 4: List of teams which participated in the DFW competition.

Model Affiliation Brief Description

AEFRL [28]
The Saint-Petersburg National Research University of Information
Technologies, Mechanics and Optics (ITMO), Russia

MTCNN + 4 networks for feature extraction + Cosine distance

ByteFace Bytedance Inc., China Weighted linear combination of ensemble of 3 CNNs
DDRNET [29] West Virginia University, USA Inception Network with Center Loss
DisguiseNet [30] Indian Institute of Technology Ropar, India Siamese network with VGG-Face having a weighted loss
DR-GAN Michigan State University, USA MTCNN + DR-GAN + Cosine distance
LearnedSiamese Computer Vision Center UAB, Spain Cropped faces + Siamese Neural Network
MEDC Northeastern University, USA MTCNN + Ensemble of 3 CNNs + Average Cosine distance
MiRA-Face [31] National Taiwan University, Taiwan MTCNN + RSA + Ensemble of CNNs
OcclusionFace Zhejiang University, China MTCNN + Fine-tuned ResNet-28
Tessellation Tessellate Imaging, India Siamese network with triplet loss model
UMDNets [32] The University of Maryland, USA All-In-One + Average across scores obtained by 2 networks
WVU CVL West Virginia University, USA MTCNN + CNN + Softmax

4 DISGUISED FACES IN THE WILD COMPETITION

Disguised Faces in the Wild competition was conducted as part of
the First International Workshop on Disguised Faces in the Wild3,
at the International Conference on Computer Vision and Pattern
Recognition, 2018 (CVPR’18). Participants were required to de-
velop a disguised face recognition algorithm, which was evaluated
on all three protocols of the DFW dataset. The competition was
open world-wide, to both industry and academic institutions. The
competition saw over 100 registrations from across the world.

All participating teams were provided with the DFW dataset,
including the training and testing splits, face co-ordinates, and
mask matrices for generating the genuine and imposter pairs.
Evaluation was performed based on the three protocols described
in Section 3.2. No restriction was enforced in terms of utilizing
external training data, except ensuring mutual exclusion with the
test set. The remainder of this section presents the technique and
performance analysis of all the submissions, including the baseline
results.

4.1 Baseline Results

Baseline results are computed using the VGG-Face descriptor
[34], which is one of the top performing deep learning models
for face recognition. A pre-trained VGG-Face model is used
for feature extraction (trained on the VGG-Face dataset [34]).
Baseline results were also provided to the participants. Baseline
results have also been computed with the ResNet-50 architecture
trained on the MS-Celeb-1M and VGGFace2 datasets [26]. The
extracted features are compared using Cosine distance, followed
by classification into genuine or imposter. Both the models achieve
high recognition performance on challenging face datasets.

4.2 DFW Competition: Submissions

The DFW competition received 12 submissions from all over
the world, having both industry and academic affiliations. Table
4 presents the list of the participating teams, along with their
affiliation. Details regarding the technique applied by each
submission are provided below:

(i) Appearance Embeddings for Face Representation Learning
(AEFRL) [28]: AEFRL is a submission from the Information

3. http://iab-rubric.org/DFW/dfw.html

Technologies, Mechanics and Optics (ITMO), Russian Federa-
tion. Later in the competition, it was renamed to Hard Example
Mining with Auxiliary Embeddings. Faces are detected, aligned,
and cropped using Multi-task Cascaded Convolutional Networks
(MTCNN) [35]. This is followed by horizontal flipping, and
feature extraction by four separate networks. Feature-level fusion
is performed by concatenation of features obtained for the original
and flipped image, followed by concatenation of all features from
different networks. l2 normalization is performed on the con-
catenated feature vector, followed by classification using Cosine
distance. The CNN architecture used in the proposed model is
given in Fig. 3(a).
(ii) ByteFace: Proposed by a team from Bytedance Inc., China,
ByteFace uses an ensemble of three CNNs for performing dis-
guised face recognition. For detection and alignment, the algo-
rithm uses a mixture of co-ordinates provided with the DFW
dataset and MTCNN. Three CNNs are trained with (i) modified
center loss and Cosine similarity [36], (ii) joint Bayesian similar-
ity, and (iii) sphere face loss [37] with joint Bayesian similarity,
respectively. A linear weighted combination of scores obtained
via the three models is used for performing the final classification.
The CASIA WebFace [38] dataset is also used for training the
proposed model.
(iii) Deep Disguise Recognizer Network (DDRNET) [29]: A
team from West Virginia University, USA presented the DDRNET
model. The name of the model was later changed to Deep Disguise
Recognizer by the authors. Faces are cropped using the co-
ordinates provided with the dataset, which is followed by pre-
processing via whitening. An Inception network [39] along with
Center loss [36] is trained on the pre-processed images, followed
by classification using a similarity metric.
(iv) DisguiseNet (DN) [30]: Submitted by a team from the
Indian Institute of Technology, Ropar, DisguiseNet performs face
detection using the facial co-ordinates provided with the dataset.
A Siamese network is built using the pre-trained VGG-Face [34],
which is fine-tuned with the DFW dataset. Cosine distance is
applied for performing classification of the learned features.
(v) DR-GAN: Proposed by a team from Michigan State Univer-
sity, USA, the framework performs face detection and alignment
on the input images using MT-CNN [35]. This is followed by
feature extraction using the Disentangled Representation learning-
Generative Adversarial Network (DR-GAN) [40]. Classification is
performed using Cosine distance.
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(a) AEFRL (b) UMDNets

Fig. 3: Diagrammatic representation of (a) AEFRL [28], and (b) UMDNets [32]. Images have been taken from their respective
publications.

Fig. 4: Diagrammatic representation of MiRA-Face [31]. Image
has directly been taken from their publication.

(vi) LearnedSiamese (LS): A team from the Computer Vi-
sion Center, Universitat Autnoma de Barcelona, Spain proposed
LearnedSiamese. Facial co-ordinates provided with the dataset
are used for performing face detection, followed by learning a
Siamese Neural Network for disguised face recognition.

(vii) Model Ensemble with Different CNNs (MEDC): MEDC is
proposed by a team from the Northeastern University, USA. Face
detection is performed using MTCNN followed by 2-D alignment.
An ensemble of three CNNs is used for performing the given task
of disguised face recognition. The algorithm utilizes a Center face
model [36], Sphere face model [37], and a ResNet-18 model [41]
trained on the MS-Celeb-1M dataset [42]. Since MS-Celeb-1M
dataset also contains images taken from the Internet, mutual exclu-
sion is ensured with the test set of the DFW dataset. Classification
is performed using Cosine distance for each network, the average
of which is used for computing the final result.

(viii) MiRA-Face [31]: Submitted by a team from the National
Taiwan University, MiRA-Face uses a combination of two CNNs
for performing disguised face recognition. It treats aligned and
unaligned images separately, thereby using a context-switching
technique for a given input image. Images are aligned using the
co-ordinates provided with the dataset along with MTCNN and
Recurrent Scale Approximation (RSA) [43]. Features learned by
the CNNs are directly used for classification. Fig. 4 presents a
diagrammatic representation of the proposed model.

(ix) OcclusionFace: A team from ZJU, China proposed the
OcclusionFace framework. MT-CNN [35] is used to perform face
landmark detection and alignment based on five facial landmarks.
ResNet-28 [41] is used for performing classification. The model is

first pre-trained on the CASIA Webface dataset [38] followed by
fine-tuning on the DFW dataset.

(x) Tessellation: Proposed by a team from Tessellate Imaging,
India, Tessellation uses a Siamese network with triplet loss. Facial
co-ordinates provided with the dataset are used for performing
pre-processing, followed by training of the Siamese network. The
final layer of the model learns a distance metric which returns a
score between 0-1 for a given pair of images.

(xi) UMDNets [32]: Proposed by a team from University of
Maryland, USA, its name was later modified to ’DCNN-based
approach’. Face detection is performed by the All-in-One network
[44], followed by alignment using the detected keypoints. Feature
extraction is performed using two networks, followed by indepen-
dent score computation. Classification is performed by averaging
the scores obtained via the two feature sets. Fig. 3(b) presents the
training and testing pipeline of the proposed model.

(xii) WVU CL: Submitted by a team from West Virginia Univer-
sity, USA, WVU CL uses the face co-ordinates provided with
the dataset along with MT-CNN [35] for face alignment. The
aligned images are provided to a CNN architecture for performing
classification using a softmax classifier.

4.3 Results
Tables 5-7 and Fig. 5 present the Receiver Operating Characteristic
(ROC) curves of the above mentioned models for all three
protocols. Along with the submissions, the performance of
VGG-Face [34] with Cosine distance is also tabulated as baseline.
The performance of each model is reported in terms of Genuine
Acceptance Rate (GAR) at 1% False Acceptance Rate (FAR)
and 0.1% FAR. Results for each protocol are given in detail below:

Results on Protocol-1 (Impersonation): Fig. 5(a) presents the
ROC curves for all the submissions, and Table 5 presents the GAR
corresponding to two FAR values. It can be observed that for the
task of impersonation, AEFRL outperforms other algorithms at
both the FARs by achieving 96.80% and 57.64% at 1% FAR and

4. Not part of DFW competition
5. GAR@0.95%FAR
6. The smallest FAR value is 0.95%FAR for DisguiseNet.
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(a) Protocol-1

(b) Protocol-2

(c) Protocol-3

Fig. 5: ROC curves of all participants along with the baseline
results on protocol-1 (impersonation), protocol-2 (obfuscation),
and protocol-3 (overall) of the DFW dataset.

TABLE 5: Verification accuracy (%) of the participants and
baseline performance on protocol-1 (impersonation).

Algorithm GAR
@1%FAR @0.1%FAR

AEFRL 96.80 57.64
ByteFace 75.53 55.11
DDRNET 84.20 51.26
DenseNet + COST 4 92.10 62.20
DisguiseNet 1.34 5 1.34 6

DR-GAN 65.21 11.93
LearnedSiamese 57.64 27.73
MEDC 91.26 55.46
MiRA-Face 95.46 51.09
OcclusionFace 93.44 46.21
Tessellation 1.00 0.16
UMDNets 94.28 53.27
VGGFace (Baseline) 52.77 27.05
VGGFace2 (Baseline) 73.94 38.48
WVU CL 81.34 40.00

0.1%FAR, respectively. A difference of around 40% is observed
between the accuracies at both the FARs, which suggests that
for scenarios having stricter authorized access, further improved
performance is required. The second best performance is reported
by MiRA-Face which presents a verification accuracy of 95.46%
and 51.09%, respectively. At 0.1%FAR, MEDC performs second
best and achieves an accuracy of 55.46%. All three algorithms
utilize MT-CNNs for face detection and alignment before feature
extraction and classification.

Results on Protocol-2 (Obfuscation): Fig. 5(b) presents the ROC
curves for the obfuscation protocol, and Table 6 summarizes the
verification accuracies for all the models, along with the baseline
results. MiRA-Face achieves the best accuracy of 90.65% and
80.56% for the two FARs. It outperforms other algorithms by
a margin of at least 2.8% for GAR@1%FAR and 2.5% for
GAR@0.1%FAR. As compared to the previous protocol (imper-
sonation), the difference in the verification accuracy at the two
FARs is relatively less. While further improvement is required,
however, this suggests that recognition systems suffer less in case
of obfuscation, as compared to impersonation at stricter FARs.

Results on Protocol-3 (Overall): Table 7 presents the GAR
values of all the submissions, and Fig. 5(c) presents the ROC
curves for the third protocol. As with the previous protocol,
MiRA-Face outperforms other algorithms by a margin of at least
around 3%. An accuracy of 90.62% and 79.26% is reported by the
model for 1% and 0.1%FAR.

Other than the DFW competition submissions, Suri et al. [45]
proposed a novel COST (Color (CO), Shape (S), and Texture
(T)) based framework for performing disguised face recognition.
COST learns different dictionaries for Color, Shape, and Texture,
which are used for feature extraction, along with the deep learning
based model, DenseNet [46]. Final output is computed via clas-
sifier level fusion of the deep learning and dictionary learning
models. The performance of the proposed DenseNet + COST
algorithm has also been tabulated in Tables 5 - 7.

Figs. 6 - 7 demonstrate sample images of the DFW dataset cor-
rectly classified or misclassified by almost all the submissions. Fig.
6 presents False Positive and True Negative samples for protocol-
1 (impersonation). Upon analyzing the False Positive samples, it
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TABLE 6: Verification accuracy (%) of the participants and
baseline performance on protocol-2 (obfuscation).

Algorithm GAR
@1%FAR @0.1%FAR

AEFRL 87.82 77.06
ByteFace 76.97 21.51
DenseNet + COST 4 87.10 72.10
DDRNET 71.04 49.28
DisguiseNet 66.32 28.99
DR-GAN 74.56 58.31
LearnedSiamese 37.81 16.95
MEDC 81.25 65.14
MiRA-Face 90.65 80.56
OcclusionFace 80.45 66.05
Tessellation 1.23 0.18
UMDNets 86.62 74.69
VGGFace (Baseline) 31.52 15.72
VGGFace2 (Baseline) 54.86 31.55
WVU CL 78.77 61.82

TABLE 7: Verification accuracy (%) of the participants and
baseline performance on protocol-3 (overall).

Algorithm GAR
@1%FAR @0.1%FAR

AEFRL 87.90 75.54
ByteFace 75.53 54.16
DenseNet + COST 4 87.60 71.50
DDRNET 71.43 49.08
DisguiseNet 60.89 23.25
DR-GAN 74.89 57.30
LearnedSiamese 39.73 18.79
MEDC 81.31 63.22
MiRA-Face 90.62 79.26
OcclusionFace 80.80 65.34
Tessellation 1.23 0.17
UMDNets 86.75 72.90
VGGFace (Baseline) 33.76 17.73
VGGFace2 (Baseline) 56.22 32.68
WVU CL 79.04 60.13

can be observed that all pairs have similar lower face structure,
which might result in algorithms incorrectly classifying them as
the same subject. Moreover, external disguises such as the cowboy
hat (first pair) might also contribute to the misclassification. For
protocol-2 (obfuscation), Fig. 7 presents sample False Negative
and True Positive pairs common across almost all submissions. It
is interesting to observe that in the False Negative pairs, disguise
results in modification of face structure and textural properties.
Coupled with obfuscation of face and pose variations, the problem
of disguised face recognition is rendered further challenging.

5 DEGREE OF DIFFICULTY: EASY, MEDIUM, AND
HARD

In order to further analyze the DFW dataset, and study the
problem of disguised faces in the wild, the DFW dataset has
been partitioned into three sets: (i) easy, (ii) medium, and (iii)
hard. The easy partition contains pairs of face images which are
relatively easy to classify by a face recognition system, the medium
set contains pairs of images which can be matched correctly by
a majority of face recognition systems, while the hard partition

Fig. 6: Sample False Positive and True Negative pairs reported by
a majority of submissions for protocol-1 (impersonation). False
Positive refers to the case where an algorithm incorrectly classifies
a pair as genuine, and True Negative refers to the case where two
samples of different identities are correctly classified as imposters.

Fig. 7: Sample False Negative and True Positive pairs reported
by a majority of submissions for protocol-2 (obfuscation). False
Negative refers to the case where a pair of images are incorrectly
classified as an imposter pair, while True Positive refers to the
scenario where a pair of images are correctly classified as a
genuine pair.

contains image pairs with high matching difficulty. In literature, a
similar partitioning was performed for the Good, Bad, and Ugly
(GBU) face recognition challenge [47], where a subset of FRVT
2006 competition data [48] was divided into the three sets. The
GBU challenge contained data captured over an academic year,
in constrained settings with frontal face images having minimal
pose or appearance variations. This section analyzes the DFW
dataset containing data captured in unconstrained scenarios with
variations across disguise, pose, illumination, age, and acquisition



ACCEPTED FOR PUBLICATION IN T-BIOM 9

(a) Easy Genuine Samples

(b) Hard Genuine Samples

(c) Hard Imposter Samples

Fig. 8: Sample easy and hard pairs of the DFW dataset.

TABLE 8: Number of easy, medium, and hard pairs for 1% and 0.1% FAR. TP and TN refer to True Positive and True Negative,
respectively.

FAR
Number of

Easy Medium Hard
Genuine (TP) Imposter (TN) Total Genuine (TP) Imposter (TN) Total Genuine (TP) Imposter (TN) Total

1% 11,544 8,878,599 8,890,143 789 106,398 107,187 1,564 67,435 68,999
0.1% 9,461 9,034,109 9,043,570 1,138 11,534 12,672 3,298 6,789 10,087

device.
The top-3 performing algorithms of the DFW competition

have been used for partitioning the dataset, that is, AERFL, MiRA-
Face, and UMDNets. The performance of the three algorithms
is used for dividing the test set of the DFW dataset into three
components: (i) easy, (ii) medium, and (iii) hard. Easy samples
correspond to those pairs which were correctly classified by all
three algorithms, and are thus easy to classify. Medium samples
were correctly classified by any two algorithms, while the hard
samples were correctly classified by only one algorithm, or mis-
classified by all the algorithms, and thus are the most challenging
component of the dataset. It is ensured that the partitions are
disjoint, and samples belonging to one category do not appear
in another category.

Table 8 presents the number of easy, medium, and hard pairs at
different False Accept Rates of 1% and 0.1%. At 1%FAR, 11,544
genuine pairs are correctly classified as True Positive, while
8,878,599 imposter pairs are correctly classified as True Negative
by all three techniques. This results in a total of 8,890,143 easy
pairs, signifying that the total number of easy samples are highly
dominated by the imposter pairs. In comparison, at 0.1%FAR, the
total number of easy pairs increase to 9,043,570. It is interesting to
observe that this increase is primarily due to the increased number
of easy imposters at the lower FAR. Since at lower FARs, more
pairs are classified as imposters, it leads to an increased number
of easy pairs. Intuitively, at a stricter threshold of 0.1%FAR, one
would expect the number of easy genuine samples to reduce. This
trend is observed in Table 8, where the number of genuine pairs
reduces from 11,544 at 1%FAR to 9,461 at 0.1%FAR.
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Fig. 9: Score distribution of the genuine pairs at 0.01% FAR, in
terms of three levels of difficulty: easy, medium, and hard.

The opposite trend is observed for the hard partition, where the
total number of hard pairs reduces at 0.1%FAR, as compared to
1%FAR, however, the number of genuine samples increases. The
last three columns of Table 8 can be analyzed in order to observe
this effect. At 1%FAR, the number of hard genuine pairs, that is,
samples which are classified correctly by at most one algorithm is
1,564, while at 0.1%FAR it is 3,298. This implies that at a stricter
FAR of 0.1%, more genuine samples were misclassified by all
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three algorithms. However, the number of hard imposter samples
drops from 67,435 to 6,789 at a lower FAR. A similar trend is
observed for the medium partition, wherein a total of 107,187 and
12,672 samples were correctly classified by any two algorithms at
1% and 0.1%FAR, respectively.

Fig. 9 presents the score distribution of the genuine samples
across the three categories of easy, medium, and hard at 0.1%
FAR. The easy and hard samples occupy opposite ends of the
distribution, while the medium category corresponds to a dense
block between the two. Fig. 8 presents sample easy and hard pairs
of the DFW dataset at 0.1% FAR. The first row corresponds to
easy genuine pairs, that is, genuine pairs correctly classified by
all three top performing algorithms. Most of these pairs contain
images with no pose variations ((i)-(ii)) or similar pose variations
across images of the pairs ((iii)-(iv)). It can also be observed that
most of these pairs are of the normal and validation images of
the dataset, with minimal or no disguise variations. Images which
involve disguise in terms of hair variations or hair accessories
with minimal change in the face region are also viewed as easy
pairs by the algorithms. Since in such cases, the face region
remains unchanged, algorithms are often able to correctly classify
such samples with ease. This observation is further substantiated
by the hard genuine samples (Fig. 8(b)). Most of the samples
which were not correctly classified by any of the top algorithms
contain occlusions in the face region. A large majority of genuine
samples misclassified have occlusions near the eye region. All
the pairs demonstrated in Fig. 8(b) have at least one sample with
occluded eye region. Effect of occlusion can also be observed in
the hard imposter samples (Fig. 8(c)), that is, imposters which
were not correctly classified by either of the top-3 performing
algorithms. Large variations due to heavy make-up, similar hair
style or accessories, coupled with covariates of pose, occlusion,
illumination, and acquisition device further make the problem
challenging. It is our belief that in order to develop robust face
recognition systems invariant to disguises, research must focus on
addressing the hard pairs, while ensuring high performance on the
easy pairs as well.

6 CONCLUSION AND FUTURE WORK

This research presents the Disguised Faces in the Wild (DFW)
dataset containing 11,157 images pertaining to 1,000 identities
with variations across different disguise accessories. A given
subject may contain four types of images: normal, validation,
disguised, and impersonator. Out of these, normal and validation
images are non-disguised frontal face images. Disguised images of
a subject contain genuine images of the same subject with different
disguises. Impersonator images correspond to images of different
people who try to impersonate (intentionally or unintentionally)
another subject. To the best of our knowledge, this is the first
disguised face dataset to provide impersonator images for different
subjects. Three evaluation protocols have been presented for the
DFW dataset, along with the baseline results. The dataset has also
been analyzed in terms of three degrees of difficulty: (i) easy, (ii)
medium, and (iii) hard. The dataset was released as part of the
DFW competition held in conjunction with the First International
Workshop on DFW at CVPR’18. Details regarding the submis-
sions and their performance evaluation have also been provided.
It is interesting to observe that most of the submissions utilized
traditional face recognition architectures, with limited task-specific
inclusions in the entire pipeline, which might have resulted in

lower verification performance at the stringent FAR of 0.1%.
Dedicated research in the direction of disguised face recognition
could help in the development of robust face recognition systems,
imperative for several real world applications. It is our hope that
the DFW dataset would help facilitate research in this important
yet less explored domain of face recognition.

As future research directions, we plan to extend the database to
include more challenging cases of obfuscation and impersonation.
Additionally, DFW database may be extended to analyze the
performance of presentation attack detection algorithms. As per
the ISO standards (ISO/IEC CD 30107-1), presentation attack
refers to the “presentation of an artifact or human characteristic to
the biometric capture subsystem in a manner that could interfere
with the intended policy of the biometric system”. Given the above
definition, presentation attacks could encompass variations due to
intentional disguise and impersonation. Since the DFW dataset
presents a separate set of impersonators, it may thus be used
for evaluating and developing robust presentation attack detection
algorithms as well.
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