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Abstract. Automatic kinship verification using face images involves an-
alyzing features and computing similarities between two input images to
establish kin-relationship. It has gained significant interest from the re-
search community and several approaches including deep learning archi-
tectures are proposed. One of the law enforcement applications of kinship
analysis involves predicting the kin image given an input image. In other
words, the question posed here is: “given an input image, can we gen-
erate a kin-image?” This paper attempts to generate kin-images using
Generative Adversarial Learning for multiple kin-relations. The proposed
FamilyGAN model incorporates three information, kin-gender, kinship
loss, and reconstruction loss, in a GAN model to generate kin images.
FamilyGAN is the first model capable of generating kin-images for multi-
ple relations such as parent-child and siblings from a single model. On the
WVU Kinship Video database, the proposed model shows very promis-
ing results for generating kin images. Experimental results show 71.34%
kinship verification accuracy using the images generated via FamilyGAN.

Keywords: Kinship, image generation, generative adversarial networks,
deep learning

1 Introduction

The prevalent discourse on kinship facial-analysis is determining if two indi-
viduals are related (kins) through given face images. This analysis extends to
predict the possible relation between given individuals such as father-daughter,
mother-son, and mother-daughter. Such relations are ascertained through lever-
aging and understanding common facial features [6], [7], [15]. In this research,
we are exploring the scantly addressed question related to kinship analysis and
predicting looks of possible kin of an individual (Fig. 1).

For cases of missing persons and long-lost relatives where kin-images were
not available to compare, a possible kin-image can potentially assist in speeding
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Fig. 1. Relation samples from WVU Kinship Video Database. FamilyGAN is learning
to generate kin face images by understanding the facial heredity hierarchy in such
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relations and applying appropriate transforms.
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Fig.3. Suspects for the Boston
Fig. 2. Sisters separated at birth?. Bombing*. The two individuals were
later identified to be brothers.

the search!,?. For a recent case of long-lost sisters at Greenwood, USA? (Fig.
2), where sisters were separated at birth, “probable kin-image” could assist this
search. Kinship verification can help investigations such as Boston Bombing*
(Fig. 3). With initial images of suspects, kinship verification could have helped
them to ascertain relations and conduct targeted search for suspects, but what
if the images of one of the brothers was missing. Kinship image generation can
help synthesize possible family members.

We are keen on understanding the hierarchy of facial features amongst re-
lations. Fabricating possible face image of kin given only the face image of a
person requires capturing and reproducing dominant transforms observed in dif-
ferent relations. Applying an appropriate transform for different individuals is
essential in the creation of images that can possibly be the face images of kins.
Kin feature heredity varies extremely with a single family e.g. feature heredity
between a mother-daughter is different than mother-son. This feature heredity
also varies amongst different families as genetic matter shared between two pairs
of mother-daughter is highly conditional. Such large variations make it hard to
observe global patterns for fabricating kin images. While generating possible kin

! https://abcnews.go.com/Lifestyle/long-lost-brothers-discover-college-
disbelief/story?id=51918769

2 https://www.mirror.co.uk/3am/celebrity-news/rochelle-humes-reunites-long-lost-
14977068

3 https://abcnews.go.com/GMA /Family /adopted-woman-searches-long-lost-sister-
learn-shes/story?id=56230030

* https://en.wikipedia.org/wiki/Boston_Marathon_bombing
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Fig. 4. Conceptualizing kin image generation task. FamilyGAN takes image of a person
and kin-gender as input to generate possible kin image as output.

images extreme emphasis is required on physical features and type of relation
for suitable transforms.

We formulate FamilyGAN to address the complex problem of kinship image
generation. FamilyGAN is successful in learning intricate feature heredity and
administering apposite feature transforms to generate the possible image of kin
with just the input image of a person and the relation to be generated (Fig. 1).
FamilyGAN is simultaneously trained to identify and verify kin relations between
the given individuals as a by-product of learning to generate kin images. The
research contributions are as followed:

— The proposed FamilyGAN model learns and understands kin feature hered-
ity. The model is capable of administering learned feature transforms on the
image of an individual to generate a possible face image of kin. The kin
image is generated under the conditioning of kin gender (Fig. 4).

— We propose a novel optimization and loss for learning how to generate kin-
images.

— We perform both qualitative and quantitative evaluation of kin face images
generated by FamilyGAN on the WVU Kinship Video Dataset [14]. For
quantitative evaluation we use two approaches: (i) evaluation using state-of-
the-art kinship verification algorithms and (ii) face recognition algorithms.

2 Related Work

The problem statement of kin-image generation observes its foundation from the
problem of kinship verification [19] and image generation. Kinship verification is
determining if two individuals are related based on evidence of common physical
features. Given the images of two individuals, kinship verification leverages the
facial features of two individuals to answer the question - are the two individuals
related (kins) or not. This binary classification can be further extended to multi-
class classification, predicting the kin relation between given individuals such
as father-daughter, mother-son, and mother-daughter [6], [7], [15]. The human
face is formed by key features and regions such as eyes, nose, lips, cheeks, and
face-shape, these facial-features are contingent on the genetic makeup of an
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individual [4], [5]. Therefore, to understand the kinship hierarchy we can discern
the hierarchy in facial features amongst kin and use the learned hierarchy to
generate possible kin images of an individual.

While the problem of kin image generation is derived from kinship verifica-
tion, to the best of our knowledge, there are only two papers that attempt to
generate possible kin images of a given individual. Ozkan et al. [17] use a cycle
consistent GAN (CycleGAN) framework [22] to generate images of children by
analysing images of parents. Their work is limited to generating images of chil-
dren and do not model other kin-relations. Similarly Ghatas et al. [8] takes both
parents (father and mother) as input and pass the concatenated information
through a kin-feature predictor network. The predicted features act as input to
a PGGAN [11] network for generating images of children for a given age.

3 Proposed FamilyGAN Model

GANSs are generative networks that rely on adversarial training for learning an
underlying distribution and generating new members of the learned distribu-
tion. These models can transform noise or alter input data to generate realistic-
looking samples [9], [18], [16]. Various GAN architectures exist to model different
kinds of distributions and problem statements, such as Deep Convolutions GANs
(DCGANS) [18], WGAN [1], Conditional GANs (CGAN) [16], CycleGAN [22],
Pix2Pix [10], and StarGAN [2].

The proposed FamilyGAN captures key kin-feature hierarchies using the pro-
posed loss function. Three key components are driving the learning for achiev-
ing the desired transformations. The new formulated loss function (Equation
3, Equation 4) learns adversarial sample generation and kinship verification in
cohesion. Learning features through kinship verification improves the training of
the generator for this specific task. Furthermore, conditioning the generator on
kin-gender and additionally conditioning the discriminator on kinship verifica-
tion samples is not present in the current literature for a kin-image generation.
Finally, constricting the generator with an additional reconstruction loss helps
the generator learn better transforms as this drives the generator to maintain
the facial-integrity of generated samples. This ensures that the generated images
resemble naturally occurring human faces.

3.1 FamilyGAN Model

FamilyGAN learns to perform facial feature transformation observing underlying
kin hierarchy. The transformations learned are kin-gender specific, where the
model explicitly learns appropriate kin transformations for female kin relations
and male kin relations. This is achieved by conditioning the generator on kin-
gender. Kin feature hierarchy is dependent on kin relation and gender relations.
Kins with same-gender relations (such as father-son, mother-daughter) have a
higher correlation of physical features [21]. Thus, we are focusing on generating
images of the same kin-gender so that FamilyGAN learns strong discriminating
features for each kin-gender.
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Fig. 5. Architecture of FamilyGAN model. Generator takes image person Ip and Kin-
Gender as input and generates kin-image I k. Reconstruction loss between Igx and
I (real-kin) guides training. The discriminator takes Ip, Icx and kin-relation as input
to calculate an adversarial loss and also for kinship verification. Both these losses steer
model training.

3.2 Generator

The generator of FamilyGAN is tasked with fooling the discriminator by gener-
ating realistic face images of individuals that can be their kin relative. Not only
is the generator producing images that should look like samples from the given
data space, but it is also additionally focused on generating faces that follow
a particular kinship hierarchy for facial features. The generator needs to learn
both these aspects to fool the FamilyGAN discriminator in believing that the
generated kin-image is the actual kin of an individual. One of the prime novelties
of FamilyGAN is to incorporate the notion of facial-feature hierarchy in a GAN
framework.

Kin-gender Input to the generator is the images of an individual Ip and kin-
gender label vector R (0 for female kin and 1 for male kin). A convolutional
neural network with residual connections is used to extract latent features from
Ip. We use residual connections to counter the degradation problem because
of network depth. These connections ensure the flow of information to deeper
layers, without any non-linear activation on residual connections the information
flows freely during both forward and backward pass. The learned features are
combined with the kin-gender label vector (one-hot encoding). This combined
vector is processed by deconvolution layers to generate an image of appropriate
dimensions. This is how we generate kin-images I conditioned on kin-gender.
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Reconstruction Loss Another important component of our generator is the
reconstruction loss between the generated kin-image Igx and the actual kin
image Ix. We use mean squared error to find this loss. By adding reconstruction
loss to the adversarial loss of generator, FamilyGAN governs the generation of
the kin-image Igx to be closer to the actual kin image Ix. This constraint
drives the generator to learn the underlying kin feature hierarchy for each kin-
pair, generating more probable looking relatives. Along with learning kinship
hierarchy, the kinship loss forces the generator to maintain the facial integrity
of generated images. We observed that it is difficult to preserve this with other
models such as DCGANSs [18], WGAN [1], CGAN [16], CycleGAN [22], Pix2Pix
[10], and StarGAN [2].

Lg = Exnp-K, Eznppllog(1 — D(G(2|K)|Ip, Ick /K, R))] (1)

L¢r :LG+)\||IK*IGKH§ (2)

Equation 1 captures the real vs fake loss for the generated kin image, this is sim-
ilar to the standard optimization for generator networks. Kin-image generation
is conditioned over kin-gender K. The generator is optimized over Equation 2.
Reconstruction loss is added to the loss of the generator as an auxiliary loss.

3.3 Discriminator

We construct a 3-class classification objective for our discriminator function.
Given a pair of kin-images with their corresponding kin-relations, the discrimi-
nator determines the appropriate class, classes being: {[real + true kin], [real +
false kin],[fakegenerated + true kin]}. FamilyGAN is optimized for only a 3-
class classification as the {[fake— false kin]} class does not fit into our objective
of generating realistic samples that follow pertinent kin feature hierarchy. The
proposed loss captures notions of both kinship-verification and adversarial train-
ing. Kinship-verification is learned through a tradeoff between {[real —true kin|}
and {[real — false kin]}. Concomitantly, the discriminator learns to distinguish
real images from fake by training on both real images of kin I (from database)
and fake kin images Ik (from the generator) in an adversarial setting. Deep
CNN extracts latent feature from given image input, CNNs can extract the in-
formation while keeping the spatial information of image intact.

During fakeness detection, the discriminator is concerned only with pre-
dicting if the input facial image is real or fabricated. At this stage, the dis-
criminator is concerned with determining the closeness of generated samples
and the actual data along with validating kinship-relations through kinship
verification. While training the discriminator for learning kinship feature hi-
erarchy both actual-positive-pairs (image-of-person Ip, actual-image-of-kin Ix)
and generated-positive-pairs (image-of-person Ip, generated-image-of-kin Igk)
along with negative-actual-pairs are processed. The discriminator also takes kin-
relation (father-son, daughter-mother, sister-sister, and brother-brother) as in-
put. The discriminator processes the image-pair along with the kin-relation to
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determine if the image-pair are valid kins or not (the pair has to be related by
the given kin-relation).

As training progresses the discriminator becomes smarter at detecting minute
details between real and fake images making the discriminator more powerful.
Now, as the discriminator becomes more powerful it guides the generator better
and in turn, trains the generator for more realistic looking images. In addition to
the real-fake discrimination, incorporating kinship verification in the optimiza-
tion function of the discriminator makes the discriminator learn kinship feature
hierarchy while learning to detect fakeness. We propose a new discriminator loss
function in Equation 3. The discriminator classifies input pair as x, the decision
is conditioned on image of person Ip, generated kin-image Ik / real kin-image
Ik and kin-relation R. To learn the decision boundary Cross-Entropy loss is
calculated for the predictions. ¢ is the number of classes (3), ¥y is 1 if x equals
¢ otherwise 0.

Lp =—X2 1y, clog(P(D(z|Ick, Ip, R))) (3)

Combined loss equation for GAN model is:

mingmazp(Le — Lp) (4)

3.4 Model Training

The generator and discriminator of FamilyGAN are trained in tandem. The
generator is dependent on the discriminator’s ability to understand how far gen-
erated samples are from real kin. In turn, the discriminator becomes more capa-
ble in distinguishing minute difference as the generator becomes powerful. The
FamilyGAN discriminator, in a combined fashion, finds out fake images as well
as performing kinship verification for a given pair of images and their gender-
relation.

The discriminator has two separate training steps. To optimally learn kinship-
features through verification, the discriminator is initially trained over a data-set
of both positive and negative kin-pairs. During this phase boundary between the
[real]+[true kin] and [real]+[false kin] are learned. This lets FamilyGAN focus on
learning optimal facial kinship features for guiding generation. For the second
phase, the discriminator is retrained on only positive kin-pairs from the real-
data as well as generated kin-images. During this step, the discriminator is being
trained contemporaneously with the generator. Through this step the discrimi-
nator learns to optimize decision boundary for [real]+[true kin] and [fake]+[true
kin].

To learn the kinship feature hierarchy transforms, we experimented with us-
ing the actual kin relations classes (for example father-son, mother-daughter) as
conditional input to the generator. Such generation would provide more nuanced
control concerning the kin feature transform, but FamilyGAN was not able to
converge with such conditioning. The facial feature hierarchy follows some ubig-
uitous patterns amongst the same gender but the feature hierarchy may not be
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similar for all pairs, e.g. different mother-daughter pairs observe different feature
transforms dependent on their gene. Such conditioning on gender separates the
learning space, as it does not have to learn more constricted feature transforms
based on kin-relations that may not follow generic patterns. Nuances for feature
transforms are dependent on the input face image of the individual. FamilyGAN
relies mainly on three key components, which are:

— The novel loss function (Equation 4) learns to optimize FamilyGAN jointly
over kinship verification and kinship generation. This provides more super-
vision.

— Conditioning the generator on kin-gender as the feature hierarchy is more
readily observed amongst kin-gender relations as compared to specific kin
relations (e.g. father-son, mother-daughter), so the model can capture kin-
gender transforms better.

— Inspired from autoencoders, a reconstruction loss is used to maintain the
facial features of generated images. This constricts the generation of kin
that looks like the true kin.

3.5 Implementation Details

True (real) positive and negative samples are randomly shuffled in the training
dataset. Fake positive kin samples are generated by conditioning the generator
on the input image of the person and conditioning of kin-gender for each pair.
Adam optimizer is used for both the discriminator and generator loss.

The generator of FamilyGAN combines input image Ix and the kin-relation
by a simple addition operation and passed through a series of convolution and
deconvolution blocks to generate kin-images. Each convolution (downsampling)
block consists of a convolution layer, instance normalization, ReLU activation,
and residual connection. Whereas, the deconvolution (upsampling) blocks consist
of a transposed convolution layer, ReLLU activation, and instance normalization.
The output of the generator is passed to the discriminator and also used to
determine reconstruction loss.

For the FamilyGAN discriminator, each convolutional block consists of a
convolutional layer, LeakyReLu activation, and Dropout layer. Inputs to the
discriminator are passed to four such convolutional blocks before propagating
them through a deep neural network for classification. The three inputs to the
discriminator are processed separately before combining them for further prop-
agation (Fig. 5). Two separate CNN networks process image of input-person Ip
and image of kin Ik /Ix. An embedding layer is used to transform the relation
vector. A simple concatenation of extracted latent-feature vectors is then passed
forward for processing.

4 Experimental Analysis

To evaluate the performance of the proposed FamilyGAN approach, we have
used WVU Kinship Video database [13]. This section first briefly presents the
database and protocol followed by the results.
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4.1 WVU Kinship Video Database

This dataset contains video clips of individuals and kin-relationship information
for positive and negative kin pair. The pairs have been divided between testing
and training. For each individual, image frames are extracted from the video
footage. Positive kin-pairs have the correct kin relations, whereas negative kin-
pairs have false kin relations mentioned.

— 141 positive, 141 negative kin sets (videos) for training
— 214 positive, 214 negative kin sets (videos) for testing

There are seven types of kin-pair relations in the dataset mother-daughter,
mother-son, father-daughter, father-son, brother-brother, sister-sister, and brother-
sister. The database has majorly same gender kin cases, i.e. mother-daughter
(21.28%), father-son (21.28%), brother-brother (11.34%), and sister-sister (13.47%).
For cross-gender cases, the total cases are around 32%, i.e. mother-son (7.80%),
father-daughter (16.31%), and brother-sister (8.52%). The Several image frames
for each individual are extracted and filtered, the total number of positive pairs
possible is 33,965,699. We find limited data for cross gender relations, such as
mother-son and brother-sister [14].

The dataset contains extreme pose variations and that makes the underly-
ing data distribution highly complex to learn. For pruning pose variance, we
use pose estimation. For each individual, we choose 50 facial images (after pose
estimation) providing 2,500 image pairs for each kin set. We construct posi-
tive and negative kin pairs through the same process, to ensure uniformity and
avoid unwanted bias. Both sets of kin pair (negative and positive) are necessary
for proper optimization of the loss function. We follow the same procedure for
generating test kin image pairs from 214 positive and negative testing kin sets.

The final processed training dataset consists of 462,500 kin pairs (both pos-
itive and negative kins). The dataset provides meta-data of the kin relation for
each pair. Kin type is crucial for training the discriminator to predict kin class
correctly (kinship verification). Introducing kin verification loss in the overall
loss function of the discriminator allows it to be more partitioned in learning
latent features described in Section 3.4. We create additional kin-gender labels
that we input to the generator. The generation of kin images is conditioned on
the kin-gender, where female genders such as mother-daughter or sister-sister
are given a label 0 while male genders such as father-son or brother-brother are
given a label 1.

4.2 Results

Evaluating models for kin-image generation is a challenge. Kin-image datasets
are not comprehensive in multiple regards. When generating kin images in an
unconstrained environment, the generated image may belong to a certain point
of time to the actual-kin-pair image. Additionally, when generating kin-images,
a person may have multiple possibilities of kins based on different feature trans-
forms. For example, a person may have 3 sisters and the evaluation dataset may



10 Sinha et al.

Fig. 6. Kin-samples generated from the training set, using the proposed FamilyGAN.

: -H

Fig. 7. Kin samples generated from the unseen (testing) set, using the proposed Fam-
ilyGAN.

contain samples of only 2. What happens if the kin-image generated resembles
the third sister? To address these concern we propose two evaluation techniques.
First, understanding the closeness in features of generated kin with input and real
kin through a Siamese framework for kinship classification. Secondly, we evalu-
ate generated kin-images through a state-of-the-art kinship verification model.
Such a model is adept at understanding underlying notions of kinship relations
in a given dataset and has fewer chances of giving a false positive. So we don’t
need to generate an image that is exactly similar to the real-kin pair for es-
tablishing that FamilyGAN is successfully generating kin-images. Furthermore,
we provide with qualitative analysis of FamilyGAN and an ablative study it’s
various components.



FamilyGAN 11

Fig. 8. Comparing effects of various FamilyGAN components for generating kin images
on unseen (testing) data.

Qualitative analysis of kin image generation FamilyGAN successfully
learns the facial feature hierarchy transforms. Transforms learned are used to
generate possible kin images for a given individual. The generation is controlled
through kin-gender as conditional input to the generator, this lets the generator
use an appropriate transform for different kin-gender. The generation is depen-
dent on the input image distribution, so each generated kin is dependent on
the initial facial features of the input person. The dependence on the input im-
age allows FamilyGAN to generate unique possible kin images, this dependence
also enables FamilyGAN to generate realistic kin-image for previously unseen
individuals (Fig. 7). Fig. 6 shows that the generator is learning the correct fea-
ture transforms during training and is able to model the observable kin feature
hierarchy.

FamilyGAN drives the generator to produce such close results by including
the reconstruction loss while training the model. From Fig. 6 and Fig. 7 we see
that the network not only is able to learn the facial-feature transform but is also
able to learn the pose variance in images. This again is achieved because of the
addition of reconstruction loss.

A fascinating observation from Fig. 6 is that the generated kin-images have
slight variations to the actual kin-images, which shows that the generator is
not simply replicating actual kin images during training but learning sensible
and generic kin feature transforms. Fig. 8 shows that FamilyGAN learns kin-
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Table 1. Light CNN-Siamese network to quantitatively compare models for generation
of kin-images. Reported values are the average-MSE between latent-feature represen-
tation of inputs to the siamese network for the testing data.

Model Image Pairs
Real-Kin & Generated-Kin &|Real-Kin &  |Negative pairs
Input (True Pairs)|Input Generated-Kin|(False Pairs)
FamilyGAN without | -, 775 5 2.649F-05 2.503E-05 3.29E-05
Gender Constraints
Family GAN without | ) 56,10 5 2.497E-05 2.460E-05 | 3.013E-05
Reconstruction Loss
FamilyGAN without
pre-training for 3.008E-05 2.954E-05 2.786E-05 3.722E-05
kinship verification
Proposed FamilyGAN 2.478E-05 2.463E-05 2.334E-05 2.892E-05

ship feature hierarchy in detail for each kin-gender. Specific feature transforms
for different facial features are learned. As FamilyGAN learns kin-gender based
feature transforms for each kin-pair, the transforms learned are generic to the
kin-gender which makes the model useful to generate possible kin images even
if the input person was not seen before. Not only are hierarchical relations in
facial features learned, but are also learned for skin tone, hair type, hair color,
eyebrow shape, and eye color.

To demonstrate the feasibility of FamilyGAN we show the result of kin gen-
eration for unseen samples from the testing data (Fig. 7). Generated kin images
for unseen samples have facial features resembling the input person. The possi-
ble kin images show resemblance to the actual kin image but are closer to the
input individuals. This happens because FamilyGAN is learning generic but spe-
cific for a kin-gender, making the transformations are not specific to any single
kin pair. This allows FamilyGAN to generate more likely kin images for any
unseen input. The resemblance between generated and actual kin shows that
learned transforms capture the notion of kin hierarchy. In section 4.2 we deter-
mine experiment and discuss result for a quantitative evaluation of generated
kin images.

Quantitative Analysis of Light CNN-Siamese Kin Image Distance To
evaluate the generated images with rigor, we formulate an experiment that can
quantify how similar are the generated kin-images I to both input person Ip
and real-kin Iy . The following quantitative experiment is performed to evaluate
the similarity. We train a LightCNN [20] based siamese network [3], [12] to
capture the closeness of true kin-pairs (Ip and Ik ) in terms of facial features.
To achieve this, we optimize the MSE-distance between the true image of the
person and real-kin image from the training set. The distance between latent-
feature representations from the two networks is a quantitative benchmark for
kinship similarity. The distance between input person Ip and generated kin I x
is now calculated to gauge the performance of the generator. We additionally
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find the distance between the generated kin Ik and real-kin /i to evaluate the
closeness.

The distances for testing protocols are determined, the results are sum-
marised in Table 1. We can see that proposed FamilyGAN outperforms other
models and has the least distance between the input person and generated kin.
We observe comparable distance between ‘real-kin & input person (True)’ and
‘generated-kin & input person’, which indicates that FamilyGAN is aware the
appropriate feature transform that should be applied given the context. Addi-
tionally, the distance between ‘real-kin & generated-kin’ is the least amongst
comparable pairs showing that the generated-kin is close to the real-kin in the
embedding space.

This effectively shows us that FamilyGAN can learn and apply suitable kin-
ship feature transforms such that the generated kin images are close to the true
kin as well as input in terms of feature hierarchy. The power and utility of
FamilyGAN can be observed by the images generated for unseen (testing) sam-
ples. Though the model has not seen the images before it can apply appropriate
transform based on features and maintain kinship feature hierarchy.

Kinship Verification Performance Using the experimental protocol (frame-
based) defined in Kohli et al. [14], we performed kinship verification experiments.
We generated 3674 kin images of real subjects using FamilyGAN and computed
the kinship verification accuracies (i.e. “positive pairs between real (input) -
generated kin”). For these input images, we have real kin images that are used
to compute verification accuracy of “real to real kinship positive pairs”. Using
Supervised Mixed Norm Autoencoder for kinship verification approach [14], we
computed the positive pair accuracy and observed that for “real (input) to real
kinship positive pairs”, it is 74.06% whereas, for “real (input) to generated kin
positive pairs”, the accuracy is 71.34%. This experiment shows that the proposed
FamilyGAN is able to generate images useful for automatic analysis as well.

5 Conclusion

Learning to generate kin face images by understanding the nuances of kinship
facial feature as well as heredity patterns and when to apply appropriate trans-
forms is an arduous task. FamilyGAN is a novel model that attempts to capture
these complex feature hierarchy and govern the generation of possible kin face
images. FamilyGAN conditions the generation of kin face images on kin-gender
(Section 3.2) and the input face image of the person. The generative dexterity of
FamilyGAN is analyzed qualitatively and quantitatively to show that the gen-
erated images are closely related to input face image of person and the real-kin
face image in terms of facial features. FamilyGAN is adept at applying felicitous
facial features transform to maintain kin feature hierarchy while observing rela-
tion (kin-gender) constraints. As a future work, we plan to extend the model to
include kin-relation as well, to enable generating kin-images of different gender
relations, such as father-daughter and mother-son.
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