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Abstract. Research in face recognition has evolved over the past few
decades. With initial research focusing heavily on constrained images,
recent research has focused more on unconstrained images captured in-
the-wild settings. Faces captured in unconstrained settings with disguise
accessories persist to be a challenge for automated face verification. To
this effect, this research proposes a novel deep learning framework for
disguised face verification. A novel Inverse Disguise Quality metric is
proposed for evaluating amount of disguise in the input image, which
is utilized in likelihood ratio as a quality score for enhanced verification
performance. The proposed framework is model-agnostic and can be ap-
plied in conjunction with existing state-of-the-art face verification models
for obtaining improved performance. Experiments have been performed
on the Disguised Faces in Wild (DFW) 2018 and DFW 2019 datasets,
with three state-of-the-art deep learning models, where it demonstrates
substantial improvement compared to the base model.
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1 Introduction

Face recognition has witnessed substantial research interest with large number of
applications, especially in social media, biometric authentication, social security,
and enhanced user experience in the product domain. Several successful state-
of-the-art face recognition models, including VGGFace [3], Residual Networks
(ResNet) [4] and ArcFace [5], have been proposed in the literature. Research
with these models has focused on covariates such as pose, illumination, expres-
sion, ageing, and heterogeneity, however, disguise variations have received limited
research attention. Disguises can be considered as external “noise” which chal-
lenge the robustness of the face verification systems. Earlier research on disguised
face recognition focused mostly on datasets prepared under constrained settings,
thus failing to capture the real world scenario. Recently, the focus has shifted
towards adapting face recognition to in-the-wild datasets like Disguised Faces in
the Wild (DFW) 2018 [1] and 2019 [2], which incorporate both intentional and
unintentional disguises ([18,19]).

While deep neural networks such as VGGFace [3] and ResNet trained on face
images have produced superlative performance on popularly used face recogni-
tion databases, their performance is subpar on disguise databases. Analysis of
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Fig.1: (a) Proposed face verification algorithm where extracted image pair In-
verse Disguise Quality is fused with match scores generated. (b) Inverse Disguise
Quality denotes the biometric quality of a sample, i.e. on how easy it is to classify
based on the “amount of disguise” present in the image.

the VGGFace model pre-trained on the VGGFace dataset, ResNet-50 model
trained on the MS-Celeb-1M and VGGFace2 dataset [39] (referred to as VG-
GFace2), and the ResNet-100 model trained on MS1M-ArcFace dataset demon-
strates verification accuracies of 33.76%, 66.97% and 65.51%, respectively, on the
DFW 2018 dataset [1]. The poor performance of state-of-the-art face recognition
models thus suggests a requirement for robust models invariant to disguise vari-
ations. Automated disguise face verification suffers from the challenge of both
intentional and unintentional disguises. For example, concealing the identity, im-
personating someone using glasses, moustache, beard, different hairstyles, scarfs
or caps and makeup or even unintentionally changing the appearance as seen
with hair growth or removal. These variations often result in reduced inter-class
distance between subjects and increased intra-class variations, thus rendering
the problem of disguised face recognition further challenging.

This research proposes a novel face verification framework for authenticat-
ing face images under disguise variations. The proposed framework utilizes the
“amount of disguise” in an image to improve the performance of the face recog-
nition algorithm in an attempt to make it more robust, secure, and usable in
real-life scenarios. Fig. 1 shows how this “amount of disguise” is used as an image
quality for this purpose. The contributions of this research are as follows:

— A novel face verification framework is proposed which utilizes an Inverse
Disguise Quality metric for quantifying the biometric quality of a face image.
The proposed framework is model-agnostic and can be applied in conjunction
with existing state-of-art deep learning based face verification models for
obtaining enhanced performance.

— Inverse Disguise Quality is derived by performing disguise detection on the
face images. Semantic segmentation has been applied to recognize disguise
and non-disguise patches, followed by a combination of the confidence scores
for generating the quality metric. Further, the Inverse Disguise Quality has
been fused with face verification match scores for improved performance.
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— Experiments performed using state-of-the-art models pre-trained on large-
scale face datasets demonstrate that the proposed framework yields improved
performance as compared to the baseline models. For example, on the DFW
2018 dataset at 0.1% FAR, VGGFace [3], VGGFace2 [39] and ArcFace [5]
models yield an overall increase of 63.41%, 38.11% and 35.07%, respectively.

2 Related Work

The proposed framework presents a novel technique for disguised face recogni-
tion. Disguise detection is performed on face images using semantic segmenta-
tion, followed by the estimation of Inverse Disguise Quality metric. The quality
metric is fused with the match scores obtained via a face recognition model. This
section presents the related work for the concepts of disguised face recognition,
semantic segmentation, and likelihood ratio-based biometric score fusion.

2.1 Disguised Face Recognition

Initial research on disguised face recognition utilized datasets captured in con-
strained settings [20], [12], [21], [22], [23] and [24]. Chellappa et al. [12] stud-
ied the facial similarity for several variations including disguise by forming two
eigenspaces from two halves of the face, one using the left half and other us-
ing the right half. From the test image, the optimally illuminated half face is
chosen and projected into the eigenspace. Silva et al. [13] used the concept of
eigeneyes to ensure that any change in facial features other than eyes does not
affect the recognition performance. Singh et al. [14] used 2D log polar Gabor
transform to extract phase features from faces, which were then divided into
frames and matched using Hamming distance. Dhamecha et al. [15] classified
the local facial regions of both visible and thermal face images into biometric
and non-biometric classes. Yoon et al. [16] detected partially occluded faces us-
ing a SVM to characterize suspicious ATM users. From 2018, with the release
of the Disguised Faces in the Wild (DFW) datasets [1] and [2], research started
focusing more on unconstrained disguised face recognition. Smirnov et al. [17]
proposed several ways to create auxiliary embeddings and used them to increase
the number of potentially hard positive and negative examples. Zhang et al.
[18] extracted features for generic faces using two networks. PCA based on the
DFW 2018 dataset was applied to attempt a form of transfer learning. Deng
et al. [19] applied the ArcFace [5] loss on the DFW 2018 [1] and DFW 2019
[2] datasets. They improved their generic implementation [5] by combining hard
sample mining with the intra-loss and inter-loss. While the domain of disguised
face recognition has attracted research focus in recent times, not-so-high per-
formance of state-of-the-art algorithms as compared to non-disguised datasets
demonstrate a need for further research.
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2.2 Semantic Segmentation

Given an input image, semantic segmentation is the process of assigning a class
label to each pixel for the purpose of object detection. Ciresan et al. [6] used
a sliding widow to train a network, which would predict the class label of each
pixel. This was done by providing a patch around that pixel as input. More recent
approaches [7] utilized multiple resolutions of images to allow the use of local-
ization and neighbourhood context at the same time. Long et al. [9] used fully
convolutional networks to define a novel architecture that combines semantic and
appearance information from different layers for segmentation. Ronneberger et
al. [10] modified and extended this architecture and used an encoder-decoder
model with skip connections to combine high resolution features with upsam-
pled ones. Girshick et al. [40] combined several object detection predictions in
images for semantic segmentation. He et al. [41] extended this by training a
multi-branch network for bounding box recognition and object mask prediction.
Semantic segmentation of faces has mostly focused on identifying different facial
regions of the face image. Khan et al. [11] performed multi-class semantic seg-
mentation on faces to separate various parts of the face using random forests.
Jackson et al. [45] performed landmark localisation and then used it to guide
semantic part segmentation. Kalayeh et al. [46] performed facial part parsing
to transfer localisation properties to improve face attribute detection. Zhou et
al. [47] combine fully-convolutional network, super-pixel information and CRF
model to perform semantic segmentation. Lin et al. [48] used Mask RCNN [41]
and FCN [9] branches for semantic labeling of the inner face and hair regions.

2.3 Likelihood Ratio and Quality in Biometric Fusion

At a conceptual level, the quality of any input (e.g. image or text) is a measure
of the suitability of the input for automated analysis. For our task of face verifi-
cation, a high quality sample is one which gets classified as genuine or imposter
with relative ease as compared to a poor quality sample. Bharadwaj et al. [25]
discussed several definitions and interpretations of biometric quality, and Singh
et al. [35] performed a comprehensive survey of biometric fusion techniques. Bi-
gun et al. [26] performed multimodal biometric fusion using a statistical frame-
work that combined multiple verification scores along with corresponding quality
metrics defined by human users. Fierrez-Aguilar et al. [27] used the quality of
biometric samples as sample weights for training a SVM. Poh et al. [28] de-
fined the quality of a biometric sample as how close the corresponding biometric
sample is to the decision boundary that satisfies the equal error rate criterion.
Nandakumar et al. [29] determined the quality of local regions in fingerprint
and iris images to derive an overall quality of the match between each pair of
template and query images. This quality was used to estimate a joint density
between biometric match scores and their corresponding quality. Vatsa et al. [32]
proposed applying Redundant Discrete Wavelet Transform (RDWT) to quantify
distinguishing information present in an image. As far as the image quality in
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Fig.2: The complete pipeline consisting of Disguise Detection and the usage of
Inverse Disguise Quality in Face Verification.

face images is concerned, Subasic et al. [42] used 17 tests to determine face qual-
ity. These included image properties like resolution, brightness, aspect ratio, and
sharpness, and facial properties like position and tilt of eyes and head. Gao et al.
[43] used facial symmetry, lighting and pose to define face quality metrics. Zhang
and Wang [44] extracted scale-invariant SIFT features from faces to define face
asymmetry-based quality.

The proposed disguised face verification framework utilizes semantic seg-
mentation for identifying disguised patches in a given input image. Based on the
“amount of disguise”, a novel Inverse Disguise Quality metric is calculated, fol-
lowed by biometric fusion with the match scores obtained via the base network.
The proposed framework is model-agnostic and can be applied in conjunction
with existing deep learning based face verification models.

3 Proposed Disguised Face Verification Framework

The proposed framework (Fig. 2) consists of three components: (i) disguise de-
tection on the input face image using thresholding on semantic segmentation to
obtain block-wise semantic labelling, followed by the classification of block-wise
learned features as disguise or non-disguise, (ii) computation of a quality metric
based on the detected disguise which gives a quantitative measure of the amount
of disguise in a face, and (iii) combination of the image quality into biometric
pair quality for fusion with face verification scores obtained from a base network.
The following subsections elaborate upon each component of the framework.
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Fig. 3: Sample pairs of detected face and the corresponding semantic segmenta-
tion along with block-level annotation. We annotate each block in an image as
disguise/non-disguise. Images are taken from the DFW 2018 [1] dataset.

3.1 Disguise Detection

In this research, the task of disguise detection involves predicting the regions of
disguise or non-disguise in an image. The proposed pipeline for disguise detection
broadly consists of three steps: (i) The input image is divided into 8x8 patches
and semantic segmentation is performed on the image in order to classify each
patch as disguise or non-disguise, (ii) A binary classifier is utilized for classifying
the learned feature as disguise or non-disguise, and (iii) Weighted majority voting
is performed by combining the 8 x 8 patches into 4 x 4 blocks for incorporating
the neighbourhood information during disguise detection.

Step-1: Semantic Segmentation of Faces Semantic segmentation refers to
the process of classifying each pixel in an image for the purpose of object detec-
tion. The task to be performed here is disguise detection in face images. In this
research, semantic segmentation is applied to label blocks of the input image as
disguised or non-disquised in a manner similar to [15]. The image is divided into
8 x 8 patches or blocks, and block-level labeling is performed. Thus, for an input
image of dimension 224 x 224, 64 blocks are obtained. The U-net architecture
[10, 33] is used for the said task. U-net is an encoder-decoder framework which
performs semantic segmentation by downsampling an image in the encoder using
convolution and up-sampling it using transpose convolutions to obtain pixel-level
classification. It consists of skip connections between the encoder and decoder
at equal levels of feature size to get precise locations by preventing information
loss. Since U-net provides pixel-level labels, post training, thresholding is ap-
plied to transfer predicted pixel labels to their corresponding 28 x 28 block, to
obtain the block-wise labels for disguise/non-disguise regions. In order to further
strengthen the predictions at block-level, features are extracted from the trained
model, followed by block-level classification into disguise/non-disguise.

Step-2: Binary Block Classification As demonstrated in Fig. 3, the se-
mantic segmentation model described in the previous section provides a good
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representation of disguised regions in an image. In order to further enhance the
performance, block-level features are extracted from the trained U-net model for
each image. As we separate the blocks of the image for classification, they be-
come individual entities and retain no properties of being part of a larger image.
This causes the neighbourhood of a block to no longer be explored, thus losing
the structure of the image. On the other hand, semantic segmentation utilizes
the whole image and not just different blocks. Thus, the features of semantic
segmentation for a block also encode the neighbourhood of the block, therefore
resulting in more descriptive and informative features.

The features for each block are provided as input to a binary block classi-
fier, which classifies it as disguised or non-disguised. This module consists of six
convolutional layers and two fully-connected layers. Further, since the number
of non-disguised blocks are much more in number as compared to the disguised
blocks, a weighted binary cross-entropy loss is applied to this model. We calcu-
lated the loss for weighted samples, i.e., individual weights are introduced for
disguised samples, as shown in Equation 1.

C= 13 [welylna+ (1) (i - a)) (1)

x

where a, y are the predicted and ground-truth labels, respectively. x denotes the
input and w, is the weight corresponding to a given input. The above Equation
allows us to increase the representation of disguised blocks in our training, as
we are manually instructing the classification module to focus more on reducing
the loss incurred due to the mis-classification of disguised blocks.

Step-3: Parent-Sibling Majority Voting In order to further incorporate the
structure of the facial image, a parent-sibling majority voting is performed for
obtaining the final disguise detection predictions. It is important to note that
this component of the framework does not involve any training, and is applied
directly on the predicted outputs of the binary block classifier. After getting
predictions of all the 8 x 8 blocks, we classify each block on the basis of the
predictions of blocks in its neighbourhood. Parent and siblings are the two types
of neighbours considered here. Each block is seen as a part of a 4 x 4 block and
each 4 x 4 block consists of four 8 x 8 blocks. For each block, we consider the
corresponding 4 x4 block as its parent. The other three 8 x8 blocks corresponding
to the 4 x 4 block are defined as the siblings of the block under consideration.
We follow majority voting among the four 8 x 8 blocks that constitute a 4 x 4
block to determine its label. Random selection of labels acts as a tie-breaker.
A binary classifier, similar to the one described in the previous step, is used to
classify 4 x 4 blocks as disguise/non-disguise. Once we get predictions of the 8 x 8
and 4 x 4 blocks, we find all the non-disguise confidence scores for 8 x 8 blocks.
For all the blocks classified with confidence scores below a threshold, we follow
a weighted majority voting between the disguise and non-disguise confidence
scores of the siblings and parent of that block. The 4 x 4 block is given a weight
of 0.7, while the siblings are given weights of 0.1 each. This weight assignment
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has been done to take into account the fact that the 4 x 4 block best represents
the neighbourhood of a given 8 x 8 block. The proposed voting mechanism helps
low confidence samples to be represented via a more confident label obtained
from its neighbourhood. Mathematically, this is denoted as:

1—w
4x4
Class = argcmax{ (w*D x4 4 <3> *E :[D781><8}> 7

n

(w*N4X4 T (1;“’) > [Ngxss})}

where C, w, n, D and N denote the set of classes, hierarchy level weight, 8 x 8
neighbours, disguise and non-disguise confidence score, respectively.

3.2 Inverse Disguise Quality for Face Verification

The result obtained from the disguise detection module are utilized to compute
a novel Inverse Disguise Quality metric for quantifying the quality of the input
image. The inverse disguise quality score is further fused with the match scores
obtained via a base face verification model for obtaining improved performance.

Inverse Disguise Quality The quality of biometric samples has a significant
impact on the accuracy of a matcher. Poor quality biometric samples often lead
to incorrect matching results since the features extracted from them are not re-
liable. Therefore, assigning weights to the predicted output of a face verification
model based on the quality of the input sample can improve the overall recog-
nition performance. In this research, a novel Inverse Disguise Quality metric is
used to quantify the “amount of disguise” in an image. As disguise proves to
be an obstruction in face recognition or verification, the amount of disguise in
an image is an ideal metric to quantify whether the input is of good biometric
quality or not. Hence, we define the Inverse Disguise Quality of an image as the
sum of the non-disguised confidence scores of each block of the image.

64
D= Z [((Non — DisguiseCon fidence);) (2)

=1

where, D denotes the inverse disguise quality. If the amount of non-disguised
blocks are higher, the inverse disguise quality metric will also be higher, thus
suggesting more confidence in the feature extraction by the base model.

Inverse Disguise Quality based Likelihood Ratio Test The Inverse Dis-
guise Quality is fused with the likelihood ratio for enhanced disguised face ver-
ification. The likelihood ratio test utilizes the match score densities obtained
for the genuine and impostor classes. In this research, we have used a Gaussian
distribution [30] to estimate the match score densities. Let s, fgen(Sgen) and
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fimp(Simp) denote the vector of match scores and the conditional densities of
the genuine and impostor match scores, respectively. Traditionally, let ¥ be a
statistical test for testing. For an input I,: Hy: I, corresponds to an impostor
and Hy: I corresponds to a genuine user. As per the Neyman-Pearson theorem
[36], for testing Hy against H;, there exists a test ¥ and a constant n such that:

P(W(s) =1|Ho) = « 3)
g

w(ls) = Faon (1) (4)
0’ imP(IS) S K

If a test satisfies these two equations for some 7, then it is the most powerful
test for testing Hy against Hy at level a. If the false accept rate (FAR) « is
fixed, the optimal test for deciding which class I, belongs to is the likelihood
ratio test W(I,) if fyen(ls) and fimp(Is) are estimated properly. In other words,
any data point with likelihood ratio > n will be classified as belonging to the
genuine class. All other data samples will be classified as impostor.

In the proposed framework, the Inverse Disguise Quality metric is incorpo-
rated into the likelihood ratio test for face verification. For this purpose, we
have used two quality metrics for image pairs: (i) Average Image Pair Quality
(ATIPQ), where we take the average of the inverse disguise image qualities of the
image pair; (ii) Normalized Image Pair Quality (NIPQ), where the image quali-
ties are normalized in the range of [0,1]. The quality metric is incorporated into
the likelihood ratio test by multiplying each element of the log-likelihood ratio
vector with the corresponding image pair quality, taking from Poh and Bengio
[28], where the independent match scores are combined with the corresponding
sample quality in the authentication phase. Mathematically, it is expressed as:

fgen (Is)
1, Q(I) * In ﬁg 1) =M
w(Is) = fHZE(IS ()
0, QU)xIn & <y
imp

where Q(I) denotes AIPQ or NIPQ of the input image pair I. Multiplying the
log-likelihood ratios helps in enhanced face verification performance since the
inherent concept of quality of an image is that a poor quality sample will be
difficult to classify as genuine or impostor. By multiplying log-likelihood ratios
with the corresponding image pair quality, we explicitly weigh the resulting log-
likelihood ratios with their corresponding image pair qualities. For example, if
face verification is performed using NIPQ, we observe that multiplication of the
log-likelihood ratios and NIPQ leads to downscaling of the LRs as NIPQ lies
between 0 and 1. Multiplication helps us achieve the purpose of trusting good
quality samples more and poor quality samples less, as pairs with low quality
are downscaled to an extent greater than that of good quality pairs.
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4 Dataset and Implementation Details

The proposed framework has been evaluated for disguised face verification on
two recent challenging datasets: DFW 2018 and DFW 2019 datasets. Details
regarding the datasets, protocols, and implementation details are as follows.

4.1 Datasets

DFW 2018 Dataset was released as part of the DFW Workshop in CVPR
2018 [1]. The dataset contains 11,157 face images belonging to 1000 subjects
having unconstrained disguise variations. Out of these 1000 subjects, 400 sub-
jects belong to the training set, and 600 belong to the testing set. Each subject
contains at least 5 and at most 26 face images of normal, validation, disguise and
impersonator types.The dataset has been released with three protocols for eval-
uation. For all protocols, face verification is to be performed between a gallery
and a probe image for classification as genuine or imposter.

DFW 2019 Dataset: It was released as part of the DFW Workshop in ICCV
2019 [2]. The dataset was released as a test set only, while encouraging re-
searchers to utilize the DFW 2018 dataset as the training and validation set.
The DFW 2019 dataset contains images pertaining to 600 subjects. Further,
the dataset contains variations due to bridal make-up, and out of the 600 sub-
jects, 250 subjects demonstrate variations due to plastic surgery. As compared
to DFW 2018, an additional protocol related to plastic surgery has also been
added. The DFW 2019 dataset has been released with four protocols for evalua-
tion. For all four protocols, face verification is to be performed between a gallery
and a probe image for classification as genuine or imposter. Detailed description
of each protocol [1,2] is given as:

— Protocol-1 (Impersonation) is defined for the purpose of differentiating
between genuine users and impersonators. A genuine pair of gallery and
probe images consists of same subject images while an imposter pair consists
of pairs of impersonator images with the other types of images for a subject.
This protocol is present in both DFW 2018 and DFW 2019 datasets.

— Protocol-2 (Obfuscation) evaluates the ability of a face verification frame-
work to perform accurately even with obfuscated face images. Genuine pairs
include disguised images of a subject paired with normal, validation and
other disguised images of the same subject. The imposter set is created by
combining cross-subject normal, validation, and disguised images. This pro-
tocol is present in both DFW 2018 and DFW 2019 datasets.

— Protocol-3 (Plastic Surgery) evaluates the ability of a face verification
framework to identify faces despite changes in them due to plastic surgery.
The genuine pairs are made of same subject pre-surgery and post-surgery
images while the imposter set contains cross-subject pre-surgery and post-
surgery images. This protocol is present only in the DFW 2019 dataset.

— Protocol-4 (Overall) is used to evaluate the performance of any face recog-
nition algorithm on the entire DFW dataset. The genuine and imposter sets



Disguise Face Verification using Inverse Disguise Quality 11

created in the above mentioned protocols are combined to generate the data
for this protocol. The overall protocol is Protocol 3 in DFW 2018 and is
formed by combining Protocols 1 and 2. In DFW 2019, it is formed by com-
bining all three protocols described above.

4.2 Implementation Details

For both the datasets, face detection is performed using the face coordinates
provided by the authors. Since there does not exist any dataset with annotated
disguise patches, manual annotation is performed on the training images for
obtaining the ground-truth labels for the disguise detection module. The face
images are resized to 224 x 224, and divided into blocks of 8 x 8. Each block is
annotated as disguised or non-disquised, where a disguised block is defined as a
block with at least 25% coverage of the disguise accessory. The annotation pro-
cedure is performed in an absolute manner for external objects obstructing the
face like caps, hats, scarves, glasses, etc. Any such external accessory is marked
as disguise. Factors like facial hair and hair colour are considered relative to the
normal image. Every block in a normal image which is not affected by an exter-
nal accessory is considered as non-disguised. For validation and disguised images,
blocks containing facial hair and hair colour are annotated with respect to the
normal image. Impersonator image blocks containing facial hair are marked as
disguise if facial hair is present in the corresponding region in the normal image
as well. The annotated images are passed through a U-Net for semantic seg-
mentation, as described in Section 3.1. The model is trained using the Adam
optimizer and the dice coefficient loss function with a learning rate of le — 3.
Features of the last convolutional layer are separated into 8 x 8 blocks for binary
classification, which is done using a classification network consisting of six con-
volutional layers and two fc-layers. As described in Section 3.1, training is done
using weighted binary cross entropy loss. The weights of the disguised blocks for
the separate 8 x 8 and 4 x 4 networks are selected as 7 and 21 respectively for
the best average between block-level accuracies of disguised and non-disguised
blocks. Training was done using the Adam optimizer at a learning rate of 1le — 5.

5 Experimental Results and Analysis

The experiments for disguise detection are performed on the DFW 2018 dataset,
and face verification experiments on the DFW 2018 and DFW 2019 datasets.
For face verification, experiments are performed on all the protocols of both the
datasets. The efficacy of the proposed framework is demonstrated by applying it
on existing pre-trained models. Three base models are used: (i) VGGFace model
pre-trained on the VGGFace dataset [3], (ii) ResNet-50 model trained on the
MS-Celeb-1M and VGGFace2 dataset [39] (referred to as VGGFace2), and (iii)
ArcFace model (ResNet-100) trained on the MS1IM dataset [5].
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Table 1: Block-level disguise detection accuracy (%) on the DFW 2018 dataset.
Results have been computed for the thresholding on semantic segmentation
(TSS), binary classification (BC) and parent-sibling majority voting (PSMV).

[Technique | TSS [BC (8 X 8)[BC (4 X 4)[PSMV]|
Disguised Blocks (%) 56.43%| 68.66% 76.45% |69.32%
Non-Disguised Blocks (%)[89.66%|  77.47% 66.54% | 77.67%

Table 2: Verification accuracy (%) for the impersonation (P-1), obfuscation (P-
2), and overall (P-3) protocols of the DFW 2018 dataset. The proposed technique
with NIPQ scores demonstrates improved performance as compared to the base-
line model across different False Acceptance Rates (FAR).

GAR@1% FAR GARQ@O0.1% FAR
VGGFace[VGGFaceZ[Arcface VGGFace[VGGFaceZ[Arcface

Base | 52.77% 80.17% 87.22% | 27.05% 48.23% 55.79%
P-1 |[AIPQ| 80.00% 92.60% 91.93% | 71.43% 86.05% 77.64%
NIPQ| 95.24% 97.98% |98.46%| 93.10% 96.97% | 95.12%
Base || 31.52% 66.32% 64.10% | 15.72% 43.79% 45.48%
P-2 |ATPQ| 54.65% 77.81% 75.56% | 37.92% 66.75% 61.58%
NIPQ| 89.26% 89.85% 190.52%| 79.82% 80.89% | 80.23%
Base || 33.76% 66.97% 65.51% | 17.74% 44.05% 47.51%
P-3 |AIPQ| 56.39% 78.51% 76.03% | 40.28% 67.27% 62.81%
NIPQ| 91.47% 91.92% |92.43%| 81.14% 82.16% |82.58%

Prtcl.| Algo.

5.1 Disguise Detection Results

Table 1 summarizes the block classification accuracies on the DEFW 2018 dataset
obtained by thresholding on semantic segmentation (TSS), binary classification
(BC) and parent-sibling majority voting (PSMV). BC improves the disguised
block accuracy by 12.23%, as compared to the traditional semantic segmentation.
While the non-disguised block accuracy comes down by 12.19%, this is because
BC removes the bias present due to TSS. PSMV improves disguised and non-
disguised block accuracies by 0.66% and 0.20%, respectively and achieves the
best performance for disguise detection.

5.2 Face Verification Performance

The proposed framework has been evaluated on the DFW 2018 and DFW
2019 test datasets. Fig. 4 presents the Receiver-Operator Characteristics (ROC)
curves for the respective best model on the protocols of the DFW 2018 and
the DFW 2019 datasets. Table 2 shows the verification accuracies of the base-
line models and the proposed frameworks for the protocols of the DEFW 2018
dataset. Table 3 shows the same for the protocols of the DFW 2019 dataset.
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Table 3: Verification accuracy (%) for the impersonation (P-1), obfuscation (P-
2), plastic surgery (P-3), and overall (P-4) protocols of the DFW 2019 dataset.
The proposed technique with NIP(Q scores demonstrates improved performance
as compared to the baseline model across different FARs.

GAR®@O0.01% FAR GAR@O0.1% FAR
VGGFace[VGGFace2[Arcface VGGFace[VGGFace2[Arcface

Base 14.80% 27.20% 7.20% 26.00% 57.60% 47.20%
P-1 |ATPQ| 48.00% 63.60% 9.20% 86.80% 72.80% 65.60%
NIPQ| 78.40% 92.80% | 24.80% | 86.80% 98.00% | 88.80%
Base 3.711% 35.55% 12.33% | 10.05% 55.37% 25.34%
P-2 |ATPQ| 22.92% 60.85% 26.55% | 26.88% 75.61% 42.75%
NIPQ| 73.68% 90.22% | 55.47% | 73.68% 93.57% | 74.97%
Base 7.20% 35.60% 34.40% | 14.00% 60.40% 54.40%
P-3 |[AIPQ| 14.80% 40.40% 38.00% | 18.80% 68.00% 59.60%
NIPQ| 50.80% 72.80% | 59.60% | 50.80% 82.80% | 72.00%
Base 3.11% 34.12% 14.12% 9.52% 54.70% 27.16%
P-4 |ATPQ| 25.48% 62.21% 28.48% | 27.41% 73.03% 44.59%
NIPQ| 74.81% 90.59% | 57.03% | 74.81% 93.80% | 75.94%

Prtcl.| Algo.

Analysis with Different Base Models: On the DFW 2018 dataset, the Ar-
cFace model gives the best baseline verification accuracies. On application of
NIPQ), it is observed from Table 2 that the performance of VGGFace and VG-
GFace2 is comparable to that of ArcFace. At 0.1% FAR, the performance of the
three models improve by 63.41%, 38.11% and 35.07% respectively. VGGFace2
easily outperforms the other two models on DFW 2019 dataset for both the
baseline and NIPQ. At 0.1% FAR, the performance of the three models im-
prove by 65.29%, 39.10% and 48.78% respectively. The improved performance
after applying the proposed framework motivates its usage with different models.

Protocol-specific Performance: All three base models show substantial im-
provements on all the protocols in both datasets. On DFW 2018 dataset, VG-
GFace2 is the best performing model for Protocols 1 and 2 with NIPQ showing
improvements of 48.74% and 37.10% respectively over the baseline at 0.1% FAR.
ArcFace is the best performing model on the overall protocol with a correspond-
ing improvement of 35.07%. On the DFW 2019 dataset, Table 3 shows that
VGGPFace2 is the best performing model on all four protocols, with NIPQ im-
proving over the baseline by 40.40%, 38.20%, 22.40% and 39.10% respectively
at 0.1% FAR.

Effect of Quality Metric: As described in Section 3.2, we have shown results
for ATPQ and NIPQ, where AIPQ is the average of the Inverse Disguise Qualities
of an image pair while NIPQ is obtained by normalizing AIPQ to lie between
0 and 1. ArcFace, the best performing model on DFW 2018 dataset, shows
an improvement of 10.92%, 14.14% and 14.89% when NIPQ is used instead of
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Protacol 1 ArcFace 2018 Protocol 2 ArcFace 2018 Protocel 3 ArcFace 2018

10 1/— ArcFace Baseline —7 10 |/ — ArcFace Baseline

ArcFace NIPQ — ArcFace NIPQ
— ArcFace AIPQ

ace APQ

107 107 10 107t 100 107 100 100 10 100 1% 100 100 107 100 100 10¢ 100 17 107 100
FAR FAR FAR

(a) P-1 (c) P-3

Protocol 1 VGGFace2 2019 Protocol 3 VGGFace2 2019 Protocol 4 VGGFace2 2019

— VGGFace2 APQ

00 0 100 100 100 1
AR

(g) P-4

Fig. 4: ROC curves for the best models on all protocols of the DFW 2018 dataset
((a)-(c)) [1] and the DFW 2019 dataset ((d)-(g)) [2].

ATPQ on Protocols 1, 2 and 3 of DFW 2018 dataset at 0.1% FAR respectively.
The corresponding results for VGGFace2 on the DFW 2019 dataset are 25.20%,
17.96%, 14.80% and 10.77% respectively. The results motivate the inclusion of
NIPQ in the proposed framework.

6 Conclusion

This research proposes a novel framework for disguised face verification incorpo-
rating the proposed Inverse Disguise Quality metric. The framework is model-
agnostic and can be applied in conjunction with existing deep learning based
face verification models. Disguise detection is performed on the input face image
using a combination of semantic segmentation and binary classification mod-
els. Based on the predictions, the Inverse Disguise Quality Metric is computed
which provides an estimate of the image’s quality. The proposed metric has been
incorporated into the likelihood-ratio based verification process for obtaining en-
hanced performance. Experiments have been performed on the recently released
Disguised Faces in the Wild (DFW) 2018 and DFW 2019 datasets. Analysis
is drawn using three state-of-the-art models: (i) VGGFace, (ii) VGGFace2, and
(iii) ArcFace, where, substantial improvement is observed in the verification per-
formance upon applying the proposed framework.
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