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Abstract—Face recognition in the unconstrained environment is an ongoing research challenge. Although several covariates of face
recognition such as pose and low resolution have received significant attention, “disguise” is considered an onerous covariate of face
recognition. One of the primary reasons for this is the scarcity of large and representative labeled databases, along with the lack of
algorithms that work well for multiple covariates in such environments. In order to address the problem of face recognition in the
presence of disguise, the paper proposes an active learning framework termed as A2-LINK. Starting with a face recognition
machine-learning model, A2-LINK intelligently selects training samples from the target domain to be labeled and, using hybrid noises
such as adversarial noise, fine-tunes a model that works well both in the presence and absence of disguise. Experimental results
demonstrate the effectiveness and generalization of the proposed framework on the DFW and DFW2019 datasets with state-of-the-art
deep learning featurization models such as LCSSE, ArcFace, and DenseNet.

Index Terms—Face Recognition, Disguised Faces in the Wild, Impersonation, Obfuscation, Plastic Surgery, Face Verification, Active
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1 INTRODUCTION

S Tate-of-the-art face recognition models have demon-
strated near-human performance on constrained and

semi-constrained datasets such as CMU MultiPIE [1] and
Labeled Faces in the Wild [2]. These datasets lack the
presence of rich covariates like disguise, makeup, and low-
resolution, which are generally present in face images sam-
pled from real-world scenarios. This absence of covariates in
the training database leads to models performing poorly in
the presence of such covariates during testing. For example,
a person may get a photo clicked while wearing sunglasses,
a wig, or with makeup. Such disguised appearances should
not confuse an ideal face recognition model. At the same
time, as shown in Fig. 1, an impostor wearing a disguise
to impersonate another user should not be able to fool
an ideal face recognition model. Differentiating between
these two cases without compromising the performance on
normal data is a non-trivial task. This covariate has signif-
icant implications for real-world face recognition systems
used by government agencies, online social networks, and
surveillance systems.

Even when the problem of adapting to new covariates in
datasets may be solved, it usually requires a lot of labeled
data for training. Obtaining labels for normal face-images,
either generated by humans or state-of-the-art algorithms,
is a relatively easy task. However, identifying people with
makeup and impostors, for instance, is a non-trivial task:
even humans need to cross-check with various sources and
use agreement with other judges to label such face images
confidently. An ideal algorithm should be able to work with
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Fig. 1: Image samples of two subjects from the DFW
dataset [3], [4] database, along with their corresponding
impostor and disguised images.

small amounts of such labeled data to boost its performance
in the presence of covariates. Of all the methods in the
literature designed to work with a scarcity of labeled data,
active learning seems to be the most suitable approach when
labeled data is scarce. The algorithm should be able to select
unlabeled examples for which it wishes to obtain labels,
instead of asking judges to annotate all of them.

Data augmentation is a well-known technique that helps
increase dataset size and thus helps lower overfitting ten-
dencies when training machine-learning models [5]. Com-
bining various data augmentation methods, along with
active learning, should thus help us bridge the performance
gap between limited and abundant labeled data with covari-
ates. The central supporting hypothesis behind the design of
the proposed algorithm is that using the right kind of data
augmentation, not just to augment the dataset size but iden-
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tifying useful data points, can help adapt a model to work
within the presence of covariates, all the while consuming
lower labeled data than vanilla learning algorithms do. This
paper proposes A2-LINK, an active learning algorithm that
can be used to train models to work well in the presence
of several covariates. A2-LINK utilizes concepts from active
learning, domain adaptation, and noise-based augmentation
to train models that approach state-of-the-art on multiple
datasets while using a fraction of the labeled data.

1.1 Related Work

The following section discusses the development of research
in the domain of face recognition in the presence of dis-
guises. Since the proposed algorithm utilizes concepts from
domain adaptation and active learning, a brief literature
review of these areas is provided in the subsequent section.

1.1.1 Disguises in Face Recognition
Unlike traditional face recognition literature, disguise as
a covariate of face recognition has received limited atten-
tion. A psychological study on observers’ face identification
capabilities when presented with images with “disguise”
shows how memory performance deteriorates with these
disguises, and that not all forms of disguise hinder perfor-
mance equally [6]. Conclusions from this study validate em-
pirical observations in the performance of face identification
and verification models: it is a hard task for humans and
thus is an even harder task for artificial cognitive systems.
Singh et al. proposed a face recognition algorithm that is
designed to be robust to changes in appearance such as
disguises, and works well with limited gallery images [7].
Ramanathan et al. proposed a framework that compensates
for pose variations using ’half-faces’ to derive a similarity
measure to be robust to changes in age, disguise, illumina-
tion, and pose [8]. Although these techniques achieved then
state-of-the-art performance, there have been considerable
advancements in performance with the advent of sophisti-
cated deep learning algorithms. Li et al. proposed a robust
face recognition system that uses low-resolution 3D cameras
for identification [9]. Other work explores the feasibility
of face verification under disguise variations, using multi-
spectrum face images: combining visible, near, and mid-
visible spectral imaging cameras that can better identify
disguises like makeup and surgical alterations [10].

Anti-spoofing techniques have also been explored to
increase robustness to disguises [11], [12]. Other techniques
distinguish between biometric (regions without disguise)
and non-biometric (regions with disguise) facial features
using visible and thermal face images for better face recog-
nition under disguise [13]. However, these methods require
thermal face images or 3D face maps, which are nearly
impossible to obtain from cameras used in standard equip-
ment like drones, mobiles, and CCTVs. To circumvent this
limitation, Jiang et al.propose a 3D face alignment pipeline
that extracts 3D faces using 2D face images at inference time
to extract face landmarks efficiently [14]. Their algorithm
shows promising results in handling disguise using 3D
face models to remove disguise from images. However, the
performance of this approach, while better than baseline
methods, is not near state-of-the art for the dataset. It is

computationally intensive compared to a standard deep
learning model, making it unsuitable for real-time deploy-
ment. Smirnov et al. describe an approach based on hard
example mining to impose a useful structure in their mini-
batches, which is used by the training algorithm to train
models on a dataset with the disguise covariate [15]. They
also propose doppelganger mining: exploiting similarities
between subjects for imposing a structure on batches when
training models [16]. Although these works show promising
results, they may not necessarily work well in the absence
of sufficient labeled data, which significantly limits their
performance in the presence of rare covariates.

The DFW workshop organized at CVPR in 2018 released
a new dataset with disguises: the Disguised Faces in the
Wild (DFW) dataset [4], [17], including a large set of face
images with various forms of disguise. More recently, a
bigger, more diverse version of the DFW dataset was re-
cently made public at the DFW 2019 workshop organized at
ICCV 2019: the DFW 2019 dataset [18]. These datasets have
helped advance research in disguised face recognition [11],
[19], [20], [21], [22], [23]. For instance, Deng et al. use novel
face detection and alignment algorithms, along with Arc-
Face [24] face feature embeddings to handle disguises [25],
and are currently state-of-the-art on DFW2019. However,
their algorithm is not conservative in the amount of data
it needs to train, and thus cannot be extended to scenarios
where labeled disguised data is scarce.

1.1.2 Domain Adaptation and Active Learning
Matching faces with their disguised variants can be modeled
as a domain adaptation problem: the source domain con-
tains undisguised faces (data without covariates), whereas
the target domain may include disguised images (data with
covariates). Recent work by Kan et al. [26] uses such an
approach to utilize unlabeled data in the target domain.
However, their work cannot function on top of the already
trained models, or convolutional neural networks/deep
learning models, which is what most effective face recog-
nition systems use. Yao et al. utilize a similar approach:
they consider low resolution and high resolution as two
distinct domains and propose a projection technique that
utilizes domain adaptation [27] to project data from one
domain to the other. The scarcity of labeled data from the
target domain can significantly lower the performance of
such approaches. One possible solution to this scarcity is
to use weakly-supervised learning to use model-generated
labels. However, the magnitude of disguise in most cases
can be too much for a model trained on the source domain
to work well. Even for humans, it can be difficult to tell
apart between real actors and doppelgangers1!

Active learning, a technique that intelligently selects ex-
amples while training or queries the annotator (Oracle) for
labels, has demonstrated promising results in environments
constrained by the availability of labeled data. The DFAL al-
gorithm by Ducoffe et al. estimates distances of points from
decision boundaries using adversarial perturbations [28],
and then order those data samples according to their useful-
ness. Generative Adversarial Networks (GANs) have been
used for active learning as well: the generator generates

1. http://iab-rubric.org/DFW/index.html
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Fig. 2: A data-flow diagram of A2-LINK for the case of disguised faces. A2-LINK starts with a batch of unlabeled data from
the target domain and ends up with a batch of data from both source and target domain, on which M2 is fine-tuned.

images which, if labeled, can maximize information gain
for the model [29]. Another example of adapting active
learning to deep learning is work by Geifman et al. that uses
intermediate-layer activations to sample data points to be
labeled [30].

Combining active learning with domain adaptation can,
potentially, lead to a system that works better than either
of the techniques applied individually: a face recognition
system that is robust to covariates, while not requiring a
lot of labeled training data with covariates. A combination
of these two techniques has been briefly explored in liter-
ature, one example of which is active-supervised domain
adaptation [31]. This algorithm trains an auxiliary classifier
to segregate examples into the source or target domain.
However, it may not be feasible to draw such a strict
distinction in the case of face disguises. Additionally, an
auxiliary classifier increases both the time needed to train
and run inference via this algorithm.

1.2 Research Contributions
Inspired by the recent success of domain adaptation and
active learning, this paper proposes A2-LINK (Adversarial
Noise and Active-Learning based Inter-domaiN Knowledge): a
framework that utilizes active learning to adapt to data with
covariates. The key contributions of this paper are:

- Propose a framework that fine-tunes a model trained on
a small set of labeled data with covariates, to improve
its performance in the presence of covariates. This pa-
per builds on top of A-LINK2 [32] and introduces an
adversarial noise component while constructing hybrid
noise inputs for the algorithm.

- Empirically demonstrates the generalizability of A2-
LINK to various featurization models, namely:

2. A shorter version of the manuscript was presented at IEEE Inter-
national Conference on BTAS, 2019 [32].

DenseNet [33], Local Class Sparsity Supervised Au-
toencoder (L-CSSE) [34], and ArcFace [24].

- Evaluate the performance of models trained with A2-
LINK on all protocols of the DFW dataset [4], [17]
and DFW2019 dataset [18]. The proposed algorithm
achieves close to state-of-the-art performance while us-
ing a fraction of the labeled data.

2 A2-LINK ALGORITHM

The algorithm’s novelty lies in determining which points
from the target distribution should be used to fine-tune a
model that already performs well on data in the absence
of covariates. A2-LINK intelligently creates a subset of im-
ages sampled from the target domain (data with covariate),
which in effect allows the best possible transfer of weights
from the source to the target domain. Fig. 2 illustrates the
concept of A2-LINK for the case of disguise as a covariate.
The algorithm assumes the following entities:

• A model M1 (teacher model): having knowledge of the
source domain, via being trained well on data without
covariates.

• A model M2 (student model): with some partial infor-
mation about the target domain, via being trained on a
relatively smaller set of labeled data with covariates.

• An Oracle: an annotator which yields the corresponding
ground truth for given inputs. This entity is found in
most active learning settings; its use in this particular
problem is elaborated upon in Section 2.4.

For both models M1 and M2, they take as input a data point
(which, in this paper, is a pair of face images) and output a
confidence score p ∈ [0, 1].

p =M(x) (1)

A predicted value of 0 implies that the images in a pair are
of distinct people, while 1 corresponds to a perfect match.
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A threshold can be set on this predicted score to classify
two images as matching or different people based on the
desired precision-recall trade-off of the parties using these
trained models. The ultimate goal of the algorithm is to use
M1’s knowledge to refine M2’s performance on the target
domain in a semi-supervised manner.

The presence of two models helps achieve an effect
similar to model distillation [35], transferring knowledge
from M1 to M2. As discussed in Section 2.4, the presence
of an Oracle ensures that the data used to fine-tune M2

does not have incorrect or noisy labels, thus ensuring that
these outliers do not hamper the model’s performance. The
algorithm can be broken down into four phases:

1) Generating predictions from both models M1 and M2,
2) Filtering data based on some heuristics,
3) Querying the Oracle to obtain ground truth for selected

samples, and
4) Fine-tuning M2.

These four steps are repeated in a loop. These steps are
described in detail in the following sections, along with de-
tails on how the final trained model M2 is used at inference
time for generating predictions on test data.

2.1 Generating Predictions

The main objective of the algorithm is to fine-tuneM2 with a
limited amount of labeled training data, by utilizing domain
information available from M1. Since data annotation is an
expensive process, this paper considers the setting where
a sufficient amount of unlabeled data is available as the
starting premise for the algorithm.

The algorithm samples a batch of unlabeled target-
domain image-pairs (called Xtarget) and passes it to M1 to
obtain a set of predictions, P1:

P1 =M1(Xtarget) (2)

Xtarget is then partitioned into n disjoint subsets:

Xtarget =
n⋃

i=1

Xi
target

Xi
target ∩X

j
target = φ ∀i, j (3)

and noise is added to a copy of this batch:

Xtarget+noise =
n⋃

i=1

{εi(x) | x ∈ Xi
target} (4)

where εi is a particular noise function, that produces a data
point with noise εi(x), for the given input data point x.

There is no restriction on how many noises or what
kind of noise (noise function) can be incorporated into the
image; the noise function may be purely statistical, or even
adversarial. In this paper, both these variants are explored:
Gaussian, Salt and Pepper, Perlin, Speckle, and Poisson
noise, as well as Pixel-wise perturbations [36]. Various com-
binations of all these noises are also explored.

2.1.1 Adversarial Noise
Adversarial noise is imperceptible noise which, when added
to a data point, can fool a predictive model with high
confidence. Generating adversarial examples for a Siamese
network has not been studied much in literature. Although
it is straightforward to do so in a black-box setting where the
adversary has control over only one image (and the gallery
image cannot be accessed or modified), crafting white-box
examples is a non-trivial task. This paper works with Pixel-
wise perturbations [36], as it is a black-box attack and can be
used with other kinds of machine-learning models like Ran-
dom Forests. To craft adversarial examples, the algorithm
concatenates both image inputs to the network and adds
pixel-wise noise to this combined image. Once the combined
images have been perturbed, the algorithm splits them back
into two images to be used by the Siamese network.

The noise crafted above is independent of the model’s
specific architecture. Model-specific adversarial perturba-
tions like FGSM [37], or a framework similar to AMC [38]
could potentially be used to generate various adversar-
ial noise components. However, most of such attacks are
white-box attacks and thus assume the target models to
be from a specific family of classification models (neural
networks). Using black-box, gradient-free adversarial per-
turbations helps keep the overall algorithm model-agnostic
and computational costs of generating perturbed inputs
independent of the model’s complexity, which helps scale
the algorithm with larger models.

It may be noted that for Adversarial noise components,
model access is also needed to craft adversarial examples.
Thus, the noise crafted in Eq. (4) case would be computed
as εi(x,M1).

2.2 Predictions from M2

This set of now-noisy samples ( Xtarget+noise) is fed as input
to M2 to obtain P2:

P2 =M2(Xtarget+noise) (5)

The intuition here for adding noise is: a model that has
overfitted on the given data distribution or is not confident
enough about its predictions is most likely to yield incor-
rect predictions for such perturbed inputs. However, if the
model predicts a score that is close to the actual label (which
is approximated using P1) for a pair of images perturbed
with noise, it is expected to perform well for unperturbed
images as well. Thus, adding noise to images and consid-
ering only such cases, helps identify data points which,
when used to fine-tune M2, could potentially improve its
performance.

2.3 Data Filtering
Once P1 and P2 are obtained, the algorithm computes the
set of indices Idiff as the indices where P1 and P2 differ in
predictions:

Idiff = {i | I[P1[i] ≥ 0.5] 6= I[P2[i] ≥ 0.5]} (6)

where I denotes the indicator function. Similarly, this paper
defines agreement for predictions P1 and P2 corresponding
to data point with index i, if:

I[P1[i] ≥ 0.5] = I[P2[i] ≥ 0.5] (7)
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Algorithm 1: A2-LINK
Input: mix ratio, n hybrid noise functions εi

1 Train model M1 on image-pairs without the
covariate (source domain);

2 Train model M2 on the limited-size set of
image-pairs with the covariate (target domain);

3 while Xtarget contains data do
4 Get next batch of unlabeled image-pairs with

covariate (Xtarget);
5 P1 = M1(Xtarget);
6 Partition Xtarget into n subsets Xi

target;
7 Collect noise-added samples: Xtarget+noise =⋃n

i=1 { εi(x) | x ∈ Xi
target };

8 // When εi is Adversarial, use εi(x,M1)
9 P2 = M2(Xtarget+noise);

10 Idiff = {i | I[P1[i] ≥ 0.5] 6= I[P2[i] ≥ 0.5]} ;
11 Idiff = {i | P1[i] < 0.5− ε}∪{i | P1[i] > 0.5+ ε};
12 Label = { O(Xtarget[i]) | i ∈ Idiff };
13 Imatching = {i ∈ Idiff | Label[i] = P1[i]} ;
14 Xtarget+noise use = Xtarget+noise[Imatching];
15 Get Xsource = mix ratio− 1 more batches of

source-domain image-pairs;
16 Fine-tune M2 with concatenate(Xsource,

Xtarget+noise use) and their corresponding
labels;

17 end

The intuition here is that data points, for which P1 and P2

agree, would not provide any additional information re-
quired to fine-tune M2. Thus, using such data-points would
not be very beneficial in improving M2’s performance, and
querying the Oracle to confirm their labels would not be
very useful, given a specific budget of label queries.

To further reduce the number of queries made to the
Oracle, the algorithm filters Idiff the following way:

Idiff = {i | P1[i] < 0.5− ε} ∪ {i | P1[i] > 0.5 + ε} (8)

Discarding points for which the predictions from M1 lie in
[0.5-ε, 0.5+ε] helps lower the number of queries made to the
Oracle, since these cases correspond to the scenario where
M1 is not confident enough about its predictions and thus
have a higher probability of being incorrect.

2.4 Using the Oracle

After the first filtering step, the algorithm utilizes the Or-
acle to prune data points further. The Oracle provides the
ground truth for any input it is supplied with: the Oracle
ascertains whether a pair of images belong to the same
class/identity or not ( elaborated in Section 4).

Once Idiff is computed, the corresponding image-pairs,
i.e. Xtarget[Idiff ] are collected and queried to the Oracle to
obtain ground-truth as:

Label = {O(Xtarget[i]) | i ∈ Idiff} (9)

where O(x) is the ground truth corresponding to input
data x. In the same way, as explained in Section 2.3, the

algorithm chooses points where the Oracle agrees with M1’s
predictions, to generate a new set of indices Imatching :

Imatching = {i | Label[i] = I[P1[i] ≥ 0.5], i ∈ Idiff} (10)

Sections 2.3 and 2.4 primarily comprise the active-
learning portion of the proposed algorithm: the algorithm
queries the Oracle only for a small subset of possible image-
pairs since such label queries are expensive in the real
world.

2.5 Fine-tuning M2

After computing Imatching from the previous step, image
pairs from Xtarget corresponding to these indices are se-
lected:

Xtarget+noise use = {Xtarget+noise[i] | i ∈ Imatching} (11)

These image-pairs correspond to the cases whereM1 is right
about its predictions but M2 is wrong about its predictions
when a perturbed version of the same data-points is used.

Since this batch consists of only data from the target
domain (with covariate), M2 is susceptible to overfitting
on image-pairs from the target domain. In order to cir-
cumvent such a possibility, some data from the source
domain (with associated labels) is added to the batch as
well: mix ratio − 1 more batches of data-points from the
source domain to prepare one final batch on which M2 is
fine-tuned.

Xsource = mix ratio− 1 batches from source domain
Xuse = concatenate(Xsource, Xtarget+noise use) (12)

This step ensures that M2 maintains performance on the
source domain, while it is being fine-tuned on data from
the target domain. The parameter mix ratio can be used
to control how much M2 is supposed to change. A high
ratio can be used when data from the target domain is
expected to be rare at inference time, whereas a one-to-one
ratio (mix ratio = 2) can be used when data from both the
domains are equally probable. The algorithm repeats the
above four subsections in order, looping through batches of
unlabeled data from the target domain. The entirety of the
algorithm is given in Algorithm 1.

2.6 Testing

After the A2-LINK algorithm has completed, we have the
model M2 that can be used for inference on data from
both the source domain and the target domain. The model
predicts a score ∈ [0, 1], where a higher score suggests an
identity match between the two input images, and a score
of 0 indicates a mismatch. A gallery of images (one or more
images per identity) is used as a reference for identifying
people in the input image. Given an input image, images
from the gallery are tested one at a time together with the
input image, and M2 yields a score for each such pair. Then,
the identity from the gallery whose corresponding pair had
the highest score is finalized as the identity matching the
given input image. This procedure is fairly standard when
working with Siamese networks.
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3 DATASETS

This paper evaluates the effectiveness of the proposed al-
gorithm on two popular disguise databases: DFW dataset
[4], [17] and DFW2019 dataset [18]. The details of both the
databases are described below. A comparison of the DFW
and the DFW2019 datasets, highlighting their fundamental
differences, is summarized in Table 1.

3.1 Disguised Faces in the Wild (DFW)
The DFW dataset [4], [17] contains 11,157 images of 1000
subjects with different kinds of disguise variations. As per
the predefined protocol, 400 subjects comprise the training
set, and 600 subjects comprise the testing set. Face coordi-
nates for these images are included in the dataset and were
generated using Faster RCNN [39]. The face region from
each image is extracted using these coordinates. The dataset
contains images with their identifiers. However, for training
on these protocols, the proposed algorithm requires a format
where a pair of images with a {0, 1} label (an indicator of
them being the same) is provided. Thus, image-pairs are
constructed by combining inter-class and intra-class images
(all possible combinations) for use in the algorithm. Subject
exclusivity is maintained between the training and test sets
while creating these image-pairs. All further references to
data point refer to these image-pairs, not individual images
from the original structure of the dataset. The three cases or
protocols considered for evaluation are:

1) Impersonation: considering genuine validation (595
cases) vs. impostor impersonators (24,451 cases).

2) Obfuscation: considering genuine, disguised (13,302
cases) vs. cross-subject impostors (9,027,981 cases).

3) Overall: considering genuine (disguised and undis-
guised both; 13,897 cases) vs. impostors (impersonators
and cross-subject; 9,052,432 cases).

3.2 Disguised Faces in the Wild 2019 (DFW2019)
The DFW2019 dataset [18] is meant to be a dataset for
evaluation, built along the lines of the original DFW dataset.
It contains 3840 images of 600 subjects with new disguise
variations like bridal makeup and plastic surgery. Similar
to the procedure used for DFW dataset, image-pairs are
constructed by combining inter-class and intra-class images.
The dataset defines four protocols for evaluation:

1) Impersonation: considering genuine validation (250
cases) vs. impostor impersonators (7,431 cases).

2) Obfuscation: considering genuine, disguised (along
with bridal makeup) (10,267 cases) vs. cross-subject
impostors (2,802,011 cases).

3) Plastic Surgery: considering genuine, before-after
surgery (250 cases) vs. cross-subject impostors (124,500
cases).

4) Overall: considering genuine (disguised and undis-
guised both; 10,767 cases) vs. impostors (impersonators
and cross-subject; 2,933,942 cases).

4 IMPLEMENTATION DETAILS

Models: To assess the generalization of the proposed ap-
proach to different feature extraction models, this paper

Attribute DFW DFW2019
Training Set 3386 images, 400 subjects -
Testing Set 7771 images, 600 subjects 3840 images, 600 subjects
Covariates Disguise, Makeup Bridal Makeup,

(shades, beards, etc) Plastic Surgery, etc
Evaluation Impersonation, Impersonation,
Protocols Obfuscation, Overall Obfuscation,

Plastic Surgery, Overall
Challenges Peculiar covariates, Peculiar covariates,

Unconstrained disguises No training set

TABLE 1: A comparison of the DFW and DFW2019 datasets.

considers experiments with three featurization models: Lo-
cal Class Sparsity Supervised Autoencoder (L-CSSE) [34],
ArcFace [24] (Section 5.4), and DenseNet [33] (Section 5):

• The L-CSSE model utilizes class-specific sparsity pat-
terns in the latent space to train an autoencoder. An
L-CSSE model pre-trained on the LFW database [2] is
used in this paper.

• Densenet uses a convolutional model where each layer
is connected to every other layer in a feed-forward
fashion. Similar to L-CSSE, a DenseNet model pre-
trained on the LFW database [2] is used in this paper.

• ArcFace utilizes the geometry of data to use geodesics
on the latent space manifold. A pre-trained ArcFace
model, pre-trained on a modified version of the MS-
Celeb-1M dataset [40] is used in this paper.

The featurization model is followed by a Siamese network
built on top of it with three fully-connected layers: the
absolute difference in feature vectors is passed as input to
the fully-connected layers. All feature extraction layers are
frozen while training these Siamese networks.

Architectures of models M1 and M2 are the same: it
consists of an absolute difference layer over the two inputs
(features extracted from images), followed by two layers
with ReLU [41] activation of 512 and 64 neurons. A two-
neuron layer with Sigmoid activation follows these layers,
thus predicting a score in the range [0,1]. The AdaDelta
optimizer, with its default learning rate of 1, was used
while training all the models, with a batch size of 64. M1 is
trained using labeled, undisguised face-image pairs, while M2

is trained using 50% of the labeled, disguised face-image pairs
available. The proposed algorithm uses the remaining 50%
disguised face-image pairs for A2-LINK. All cropped face-
images are resized to 224×224. Since DFW2019 dataset does
not contain a training set, models trained on DFW dataset
are used to evaluate the performance on DFW2019 dataset.

Code: Nvidia K-80 GPU with 128GB RAM and a Xeon
E5-2630v2 CPU is used to perform all the experiments.
Tensorflow3 and Keras4 were used for implementing the al-
gorithm (MXNet5 for ArcFace) and training models6. While
training on both the datasets, Disparity-ratio is varied in the
range {0.25, 0.5, 1, 2, 4}. An Oracle is artificially simulated
by accessing ground-truth for labeled data from the target
domain, which is otherwise not used by the algorithm, and
keeping track of the number of such accesses.

3. https://www.tensorflow.org/
4. https://keras.io/
5. https://mxnet.apache.org/
6. https://github.com/iamgroot42/A-LINK
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For generating prediction matrices needed for running
evaluation on various dataset protocols (DFW, DFW2019
datasets), for all

(n
2

)
image-pairs, (for n people) predictions

are obtained by passing image-pairs through the model. For
evaluation, this generated predictions matrix is used along
with a masking matrix provided with the datasets.

Hyper-parameters: For different kinds of noise utilized,
the following configurations were used:

• Gaussian: µ = 10, σ = 10
• Salt & Pepper: Salt/Pepper ratio 0.5, Amount = 0.004
• Speckle: µ = 0, σ = 1

15
• Pixel-wise perturbations: pixel count = 40, iterations =

50, population size = 250
A grid search is performed over the hyper-parameters

specified in Algorithm 1. The configuration of parameters
that yield the best results is as follows:

• ε = 0.05
• mix ratio: 2
• 50% of labeled disguised-face data used in Step 2
• noise used: Gaussian, Salt-Pepper, Poisson, Speckle,

Perlin, Adversarial, and their combination.

5 EXPERIMENTAL RESULTS AND ANALYSIS

This section presents the performance of A2-LINK on the
DFW and DFW2019 databases. As defined in the DFW
competition protocols, the results are reported as Genuine
accept rates (GAR) at two different false accept rates (FAR).
Figs 3 and 4, along with Tables 2-4 show results of A2-LINK
trained with DenseNet, LCSEE, and ArcFace models on the
DFW and DFW2019 datasets.

In addition to the models trained with A2-LINK, results
for model M1 and M2 (M2 before A2-LINK) after the step
where it has been trained on a limited-size set of disguised
face-image-pairs (Line 2, Algorithm 1) are also included.
Measuring the increase in performance from this model
to the final model helps quantify performance gains when
using A2-LINK (i.e. ablative study).

5.1 Performance on DFW Dataset

Fig. 3 and Tables 2-3 summarize the results on the DFW
database. Compared to the base model, each of the fea-
turization model shows significant improvement with the
proposed algorithm. For the configuration using DenseNet
(Section 4):

• Use of A2-LINK leads to absolute improvements of
6.53%, 4.87%, and 5.02% in GAR at 1%FAR for the cases
of impersonation, obfuscation, and overall case of DFW
dataset, respectively.

• Similarly, absolute improvements of 5.31%, 6.17%, and
6.86% are observed in GAR at 0.1%FAR for the cases
of impersonation, obfuscation, and overall case of DFW
dataset, respectively.

For comparison, results from the DFW competition orga-
nized with CVPR 2018 are also included. According to
the competition, MiRA-Face [17], AEFRL [15] and UMD-
Nets [42] are the current state-of-the-art for this dataset.
It can be observed that in addition to outperforming base
models, the performance of models trained with A2-LINK
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Fig. 3: GAR at 1% FAR for impersonation, obfuscation, and
overall performance on DFW dataset, for M1 and variations
of M2. M1, M2 use L-CSSE for feature extraction.

TABLE 2: GAR at 1% FAR and 0.1% FAR for impersonation,
obfuscation and overall performance on the DFW dataset.
Featurization model: DenseNet.

Model GAR1% GAR0.1%

Impersonation
Baseline (VGG-Face) 52.77 27.05
Baseline (VGG-Face2) 73.94 38.48
AEFRL [15] 96.80 57.64
MiRA-Face [17] 95.46 51.09
UMDNets [42] 94.28 53.27
A-LINK [32] 95.73 75.38
M1 (DenseNet) 89.68 65.60
Uncertainty Sampling [43] 89.71 65.78
Margin Sampling [44] 91.09 73.12
Entropy Sampling [45] 91.27 73.53
M2 before A2-LINK 89.15 69.41
M2 without A2-LINK 91.38 71.93
M2 after A2-LINK: no noise 92.84 73.27
M2 after A2-LINK: mixture 97.91 77.24

Obfuscation
Baseline (VGG-Face) 31.52 15.72
Baseline (VGG-Face2) 54.86 31.55
MiRA-Face [17] 90.65 80.56
AEFRL [15] 87.82 77.06
UMDNets [42] 86.62 74.69
A-LINK [32] 88.97 72.13
M1 (DenseNet) 83.11 63.01
Uncertainty Sampling [43] 83.44 63.28
Margin Sampling [44] 85.01 68.92
Entropy Sampling [45] 85.07 68.99
M2 before A2-LINK 84.23 65.15
M2 without A2-LINK 86.99 68.95
M2 after A2-LINK: no noise 87.52 69.28
M2 after A2-LINK: mixture 91.86 75.12

Overall
Baseline (VGG-Face) 33.76 17.73
Baseline (VGG-Face2) 56.22 32.68
MiRA-Face [17] 90.62 79.26
AEFRL [15] 87.90 75.54
UMDNets [42] 86.75 72.90
A-LINK [32] 89.30 72.72
M1 (DenseNet) 83.74 63.18
Uncertainty Sampling [43] 83.89 63.71
Margin Sampling [44] 85.50 65.97
Entropy Sampling [45] 86.08 69.04
M2 before A2-LINK 85.41 65.99
M2 without A2-LINK 87.56 69.53
M2 after A2-LINK: no noise 88.14 70.15
M2 after A2-LINK: mixture 92.58 76.39
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TABLE 3: GAR at 1% FAR and 0.1% FAR for impersonation,
obfuscation and overall performance on the DFW dataset.
Featurization model: ArcFace.

Model GAR1% GAR0.1%

Impersonation
M1 (ArcFace) [24] 98.66 60.84
A-LINK [32] (with ArcFace) 98.80 62.50
M2 after A2-LINK: mixture noise 99.01 69.27

Obfuscation
M1 (ArcFace) [24] 95.08 92.20
A-LINK [32] (with ArcFace) 95.42 92.59
M2 after A2-LINK: mixture noise 95.93 93.08

Overall
M1 (ArcFace) [24] 95.11 91.76
A-LINK [32] (with ArcFace) 95.50 92.14
M2 after A2-LINK: mixture noise 95.99 93.01

TABLE 4: GAR at 0.1% FAR and 0.01% FAR for imperson-
ation, obfuscation, plastic surgery, and overall performance
on the DFW2019 dataset. Featurization model: ArcFace.

Model GAR0.1% GAR0.01%

Impersonation
Baseline (LightCNN) 74.40 51.20
ArcFaceIntraInter [24] 56.80 17.60
M1 (ArcFace) 72.40 44.80
A-LINK [32] (with ArcFace) 76.40 52.80
M2 before A2-LINK 72.00 42.80
M2 without A2-LINK 76.40 51.20
M2 after A2-LINK: no noise 77.60 52.80
M2 after A2-LINK: mixture 79.20 54.40

Obfuscation
Baseline (LightCNN) 55.56 36.90
ArcFaceIntraInter [24] 98.92 98.43
M1 (ArcFace) 95.73 91.43
A-LINK [32] (with ArcFace) 96.84 94.02
M2 before A2-LINK 94.48 90.70
M2 without A2-LINK 96.14 92.50
M2 after A2-LINK: no noise 97.03 94.14
M2 after A2-LINK: mixture 99.00 97.20

Plastic Surgery
Baseline (LightCNN) 69.20 47.20
ArcFaceIntraInter [24] 98.40 95.60
M1 (ArcFace) 94.80 87.60
A-LINK [32] (with ArcFace) 95.20 92.00
M2 before A2-LINK 90.40 88.80
M2 without A2-LINK 91.20 89.60
M2 after A2-LINK: no noise 95.20 92.00
M2 after A2-LINK: mixture 98.80 96.00

Overall
Baseline (LightCNN-29v2) 55.74 36.50
ArcFaceIntraInter [24] 98.45 93.64
M1 (ArcFace) 95.29 88.86
A-LINK [32] (with ArcFace) 95.96 93.06
M2 before A2-LINK 93.89 88.01
M2 without A2-LINK 95.74 90.38
M2 after A2-LINK: no noise 96.90 93.26
M2 after A2-LINK: mixture 98.63 96.18

is at par with the current state-of-the-art (Table 2). Com-
pared to A-LINK [32], an average absolute increase of 2.78%
for GAR at 1% FAR, and 4.73% for GAR at 0.1% FAR is
observed. These observations imply that adding adversarial
noise to the hybrid collection of noise components signifi-
cantly helps the algorithm’s performance. Overall, as shown
in Table 3, the best performance of over 93% GAR at 0.1%
FAR is observed using ArcFace as the base model.

5.2 Exploring Variations of A2-LINK on DFW Database

Some of the steps in Algorithm 1 can be replaced with other
variations, making the approach generic to the presence of
any covariates in the data:

• Although using 50% of the available data to initially
train M2 gives the best results, varying this ratio in
the range {30, 40, 50}% does not alter the results
significantly. For instance, with 30% data, the drop in
the performance was only 2.0% and with 40% data,
the drop is about 1.1%. Thus, one can start with M2

trained on a smaller number of labeled examples from
the target domain without compromising much on the
model’s performance when fine-tuned with A2-LINK.

• Experiments with model agnostic noises (Step 7, Algo-
rithm 1) including Gaussian, Salt and Pepper, Speckle,
Poisson, Perlin, and a mixture of these were performed.
This paper also considers adversarial noise: specifically
Pixel-wise perturbations. A mixture of all these noises
is observed to perform best on the DFW datasets.

• Steps 10 and 13 (Algorithm 1) check for equality by
considering the two outputs as part of a binary classifi-
cation problem. This criterion can be replaced with:

Idiff = argsort(− | P1 − P2 |)[: sample size] (13)

sample size is a hyper-parameter and can be set as
a specific percentage of | P1 − P2 | (disparity-ratio).
This ratio is varied in {0%, 12.5%, 25%, 50%}. With
the normal criteria defined in Section 2.3 (i.e., not use
the rule described above) yields the best results. With
disparity-ratio of 12.5%, the proposed model yields
about 1.4% reduced performance, whereas with 50%
disparity-ratio, the difference increases to about 8%.
Higher disparity ratio leads to a stricter selection crite-
rion for shortlisting data points for fine-tuning, which
may lead to the algorithm missing out on potentially
useful data.

• Experiments with varying the values of ε (Step 11 of
Algorithm 1) are performed. A higher value of ε corre-
sponds to selecting more extreme cases, which leads to
fewer queries to the Oracle. At the same time, it results
in less data for fine-tuning M2. ε is varied in {0, 0.05,
0.10}, with ε = 0.05 giving the best results, where the
other two values yield at least 3% lower recognition
performance.

• Some active-learning techniques are explored as well7:
Uncertainty Sampling selects data instances based on
usefulness; 1 - maximum posterior probability (across
classes). Yang et al.utilize this in their proposed algo-
rithm for diversity maximization [46].
Margin Sampling: selects data instances based on the
difference between the highest and second-highest pos-
terior probabilities (across classes). Wu et al.propose a
weighted sampling method for deep embeddings [47].
Entropy Sampling: selects data instances based on
Shannon entropy over all the classes [48].
Experiments are performed by varying the upper cap
on the number of queries that were made by the active

7. modAL (https://modal-python.github.io/) is used for implement-
ing these active-learning algorithms.
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Fig. 4: GAR at 0.1% FAR and 0.01% FAR for Protocol 4
(overall) on DFW2019 dataset, for M1, A-LINK, and A2-
LINK, with featurization models DenseNet and L-CSSE.

learning algorithm. For all the ratios, the proposed al-
gorithm outperforms the three above mentioned active
learning techniques (Table 2).

Studying these variations shows that the proposed algo-
rithm is not highly sensitive to specific configurations of
hyper-parameters, suggesting that the boost in performance
observed across datasets and featurization models is not
specific to a particular hyper-parameter setting.

5.3 Performance on DFW2019 Dataset
As shown in Fig. 4, on the DFW2019 database, for the
configuration using DenseNet:

• at 0.1% FAR, compared to without using the A2-LINK
algorithm, the GAR of the proposed model shows ab-
solute improvements of 2.8%, 2.86%, 7.6%, and 2.89%
for the impersonation, obfuscation, plastic surgery, and
overall protocols, respectively.

• at 0.01% FAR, compared to without using the A2-
LINK algorithm, the GAR of the proposed model shows
absolute improvements of 3.2%, 4.7%, 6.4%, and 5.8%
for the impersonation, obfuscation, plastic surgery, and
overall protocols, respectively.

Results with ArcFace as base model are shown in Table 4
and Fig. 4 shows the results of LCSEE as the base model.
For comparison, results from the DFW2019 competition are
also included in Table 4. According to the competition,
LightCNN-29v2 [49] and variants of ArcFace [24] are the
state-of-the-art for this dataset. Trends in performance sim-
ilar to the case of DFW dataset are observed: A2-LINK
outperforms current state-of-the-art for almost all protocols
on this dataset (Table 4). Compared to A-LINK [32], an
average absolute increase of 2.81% in GAR at 0.1%FAR, and
2.98% for GAR at 0.01% FAR is observed.

5.4 Generalization Over CNN Models
As a proof-of-concept of the proposed approach and its
generalization capabilities across featurization models, ex-
periments with three feature extraction models are per-
formed: L-CSSE model, DenseNet, and ArcFace. As can be
observed from Figs. 3 and 4, along with Tables 2- 4, training
with A2-LINK significantly boosts the performance for all
three featurization models. Models trained with A2-LINK

even outperform A-LINK [32] by a significant margin, thus
reinforcing the importance of including adversarial noise
components in the proposed algorithm.
The core contribution of this algorithm lies in the per-
formance gain it yields while being constrained by the
amount of labeled training data available. Traditionally
trained L-CSSE and DenseNet yield limited performance on
these datasets. However, the proposed active-learning based
approach enhances their performance significantly, all the
while using a fraction of the labeled data.

5.5 Discussion
The proposed algorithm and its previous version (A-
LINK [32]) give a reasonably good increase in performance,
both when dealing with disguise and multi-resolution as
covariates. The core intuition, and thus the driving factor
behind the algorithm’s superior performance, is to help the
model adapt better to changes in the input distribution.
When switching from regular to disguised face images,
there is a significant domain shift that a vanilla model
cannot handle well. By introducing the concept of images
with added noise, the algorithm can coarsely simulate the
effects of using inputs different from the original input
distribution, without actually requiring samples from the
distribution with an additional covariate.

It may be argued that the algorithm is close to using
pure data augmentation (with an adversarial loss function,
if adding adversarial noise) while training the model. How-
ever, there are two key differences:

1) Data augmentation augments the training data while
training the model. A2-LINK, in contrast, uses passive
feedback from the model itself to efficiently sample un-
labeled data points from the target domain for labeling,
and then adds them for training.

2) Data augmentation incorporates “all” the additional
training data, whereas the objective of the proposed
A2-LINK is to identify the data points that are useful
for learning the models.

These hypotheses are also validated from the results. The re-
sults obtained using only data augmentation or only active
learning algorithms are quite far from the models trained
using A2-LINK in terms of performance.

5.5.1 Analysis
It is observed that, on average, A2-LINK required 30-35%
less labeled disguised face images while training the algo-
rithm. For all the protocols of DFW and DFW2019 datasets,
a proportionate mixture of Gaussian, Salt-Pepper, Poisson,
Speckle, Perlin, and Adversarial noise outperforms individ-
ual variations for the noises it uses. Several ablation studies
are performed to analyze the importance of individual com-
ponents of the proposed algorithm:
Noise: In order to assess the importance of noise addition
in A2-LINK, the proposed model is compared with the vari-
ation that does not add any noise (M2 after A2-LINK: no
noise). As expected, the variation of A2-LINK with no noise
is outperformed by the one with multiple types of noise
(Tables 2, 4). Tuning mixture ratio significantly alters the
performance: a 1 : 1 ratio of noisy disguised images and
clean undisguised images yields the best results. Increasing
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Fig. 5: Success and failure cases of A2-LINK: (a) pairs with
correct results where the proposed A2-LINK yields correct
results but other algorithms incorrectly classify the samples
(first pair is impostor sample and second pair is genuine
sample), and (b) challenging probe images where none of
the algorithms, including A2-LINK, are able to perform
correct classification.

the ratio of noisy images tends to make M2 overfit on noisy
images, whereas increasing the proportion of unperturbed
images tends to dilute the effect of images with added noise.
Adversarial Noise: To study the importance of including
adversarial noise, A2-LINK is compared with the variant
that contains all the noise components except adversarial
(A-LINK [32]). For all datasets and featurization models
that are considered (Figs 3, 4), Adversarial noise improves
the performance significantly compared to A-LINK. These
observations imply that the Adversarial noise component is
an important part of A2-LINK.
Active sampling: To study the effect of actively selecting
samples while fine-tuning M2, the paper performed exper-
iments on the variation in which M2 is trained without
running A2-LINK; using all available labeled disguised-
faces data (M2 without A2-LINK). The proposed model
outperforms this variation in all cases (Tables 2, 4 and
Fig. 3).

In addition to these ablation studies, we also inspect
success and failure cases of the models to get a better
understanding of the workings of the models. As shown
in Fig 5(a), the proposed A2-LINK algorithm is able to
distinguish challenging cases and yields correct classifica-
tion results. However, DFW databases contain some tough
samples with face-paint and accessories which cover almost
entire face (as shown in Fig 5(b)) where none of the algo-
rithms, including A2-LINK, are able to match them with
their genuine mated pairs correctly.

5.5.2 Future Directions
Although A2-LINK achieves state-of-the-art accuracy on
multiple datasets and feature-extraction models, there is sig-
nificant scope for improvement. Some interesting research
directions are:

1) Instead of using the same combination of noise com-
ponents in each iteration, the algorithm could use a
dynamic strategy to estimate which noise components
can be most useful for each batch of data. Such a

strategy would also scale well if using a large pool of
noise components.

2) The proposed algorithm can be extended, with relevant
modifications, to other related problem statements such
as kinship analysis [50] as well as to other problem
domains such as natural language processing.

6 CONCLUSION

The proposed A2-LINK algorithm combines concepts from
active learning, domain adaptation, and hybrid noise aug-
mentation to train models to achieve near state-of-the-art
performance while being constrained by the amount of
labeled data with covariates available. Further, A2-LINK
is faster than training a model on all the data points,
has low auxiliary storage requirements, and reduces the
number of labeled examples required significantly, without
compromising on the model’s performance. Experimental
results show that A2-LINK leads to significant improve-
ments while fine-tuning a model, for all protocols of the
DFW dataset, as well as the DFW2019 dataset. The proposed
algorithmic framework shows good generalization: both
across featurization models (L-CSSE, Densenet, ArcFace) as
well as different covariates: disguise in DFW dataset, and
bridal makeup and plastic surgery in DFW2019 dataset.
Since A2-LINK is generic, it can be used to incorporate more
sophisticated active-learning criteria, along with variations
of noise, while fine-tuning the model under consideration.

The ability to train accurate models with limited
amounts of labeled data with covariates can be crucial in
real-world applications. The proposed algorithm provides
an elegant way to perform this task and may be extended
for other applications. Furthermore, while the proposed al-
gorithm can be modified to work with multiple, sufficiently
different covariates simultaneously, it is an exciting direction
to explore.
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