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Abstract—With the advancements in technology, smartphones’ capabilities have increased immensely. For instance, the smartphone
cameras are being used for face and ocular biometric-based authentication. This research proposes finger-selfie based authentication
mechanism, which uses a smartphone camera to acquire a selfie of a finger. In addition to personal device-level authentication, finger-
selfies may also be matched with livescan fingerprints present in the legacy/national ID databases for remote or touchless authentication.
We propose an algorithm which comprises of segmentation, enhancement, Deep Scattering Network based feature extraction, and
Random Decision Forest to authenticate finger-selfies. This paper also presents one of the largest finger-selfie database with over
19, 400 images. The images in the IIIT-D Smartphone Finger-selfie Database v2 are captured using multiple smartphones and include
variations due to background, illumination, resolution, and sensors. Results and comparison with existing algorithms show the efficacy
of the proposed algorithm which yields equal error rates in the range of 2.1− 5.2% for different experimental protocols.

Index Terms—Finger-selfie, touchless fingerprint recognition, verification, fingerprint database, deep scattering networks
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1 INTRODUCTION

Attributed to the technological advancements, the capabilities
of smartphones have increased immensely. The inclusion of cam-
eras in smartphones has increased user convenience and has even
aided the biometric-based authentication process. The smartphone
camera-based biometric authentication using face [35], ocular
[34], and iris [32] has been shown to be secure, flexible, and
easy to use. As illustrated in Fig. 1, the idea can also be further
extended to finger-selfie1 based authentication [27]. Finger-selfie
employs the in-built camera for acquiring an image of the finger(s)
which can then be used for authentication.

In the current COVID19 pandemic situation and the post
COVID19 world, touchless biometric modalities would be of
significant interest to the community. Finger-selfies can provide
a good alternative to touch-based fingerprint recognition. The
usage of finger-selfies for authentication can be two-fold: (i) both
the query and probe samples are finger-selfie images and (ii)
in the scenarios of remote authentication, finger-selfie may be
matched with livescan fingerprints present in the legacy/national
ID databases. The cross-domain matching of finger-selfies as a
query against livescan fingerprints as a template holds a pivotal
role in forensic investigations [38]. For instance, the South Wales
Police recently received a finger-selfie of a drug dealer holding
drugs on his finger [49]. The drug dealer was circulating an image
of drugs placed over his fingers via Whatsapp. The scientific
support unit was able to utilize the finger-selfie to find the offender
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1. Finger-selfies are hand finger ridge impressions captured directly using

a camera in a touchless method. Fingerprint images are ridge impressions
captured using a touch-based live-scan sensor.

Fig. 1. A high resolution finger-selfie can provide distinctive ridge infor-
mation for authentication purposes.

by comparing the finger-selfie with fingerprints of past offenders.
Similarly, a hacker was able to generate fingerprints of a German
minister from an image of the minister’s fingers taken from a
DSLR camera from 3 meters away [12]. Additionally, the police
may establish the identity of deceased or unconscious individual
[33] by transferring finger-selfies of the unknown subject to a
remote server. At the remote server, the finger-selfie may be
matched with the live-scan fingerprint databases to reveal the
potential identity and contact the concerned people. Such appli-
cations showcase the need to develop an automated algorithm
for finger-selfie recognition, that can operate simultaneously for
device access control and forensic/law enforcement applications.

This research aims to design an efficient algorithm for auto-
mated finger-selfie recognition. This includes both finger-selfie-to-
finger-selfie and finger-selfie-to-livescan fingerprint matching. As
shown in Fig. 2, a finger-selfie can be captured under any envi-
ronment with any kind of smartphone camera, thereby introducing
many challenges in recognizing the image. The major challenges
[28] that affect a finger-selfie matching algorithm are:

• Finger-selfie can be obtained in a controlled indoor illumina-
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TABLE 1
A literature review of algorithms for pre-processing and comparison of finger-selfies obtained using mobile phones.

Research Database Challenges Algorithm Results
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Lee et al., 2005
[18]

840 images from 168 fingers Segmentation using color model,
ridge gradient extraction

GAR: 75.00 at 0.1%
FAR

Lee et al., 2008
[19]

120 images from 120 fingers,
1200 fingerprints

4 Pose, quality estimation using gra-
dient coherence and symmetry

Rejection rate:
5.67%, EER: 3.02%

Stein et al., 2012
[42]

492 images from 82 fingers 4 Quality estimation using edge den-
sity

EER: 19.10%

Derawi et al.,
2012 [9]

1320 images from 220 fingers Matching using VeriFinger SDK EER: 4.50%

Li et al., 2012
[21]

2100 images from 100 fingers 4 4 Matching using VeriFinger SDK
and NFIS

EER: 24.80% -
49.60%

Li et al., 2013
[20]

2100 images from 100 fingers 4 4 Quality estimation using 12 features
and SVM

Spearman
correlation = 0.53

Stein et al., 2013
[41]

990 images from 74 fingers,
66 fingervideos

4 Reflection based spoofing detection EER in the range:
1.20% - 3.00%

Tiwari and
Gupta,2015 [44]

156 images from 50 fingers 4 Matching using scale invariant fea-
tures

EER: 3.33%

Sankaran et al.,
2015 [37]

5100 fingerphotos from 128
fingers

4 4 Segmentation, enhancement, match-
ing using ScatNet and RDF

EER in the range:
5.1% - 6%

Minaee and
Wang, 2015 [29]

1480 fingerprint images 4 Matching using ScatNet, PCA, and
SVM

EER: 8.10%

Lin and Kumar,
2018 [24]

1800 3D contactless finger-
prints from 300 fingers

4 Deformation correction model, with
minutiae and ridge matching

EER: 4.46%

Deb et al., 2018
[8]

2472 fingerphotos from 1236
fingers

4 Matching using COTS fingerprint
matcher

TAR: 92.4 − 98.6%
at 0.1% FAR

Chopra et al.,
2018 [7]

3450 fingerphotos from 230
fingers

4 4 4 4 Segmentation using VGG SegNet,
recognition using ResNet50

EER: 35.48%

Wasnik et al.,
2018 [47]

720 fingerphotos from 48 fin-
gers

Verification using LBP, HOG, BSIF,
and VeriFinger

EER in the range:
6.05− 12.84%

Lin and Kumar,
2018 [23]

3920 3D contactless finger-
print from 300 fingers

4 Siamese networks to learn multi-
view representation

EER in the range:
0.81− 8.35%

Wild et al., 2019
[48]

1728 fingerphoto from 108
fingers, 2582 fingerprints

4 Skin-color segmentation, QA and
matching by VeriFinger & NFIQ

GAR: 98.70 at 0.1%
FAR

Proposed 19456 images (17024 finger-
selfies and 2432 live scan fin-
gerprints) from 304 fingers

4 4 4 Saliency based segmentation, en-
hancement, DSN + RDF matching

EER in the range:
2.11% - 5.23%

tion or in an uncontrolled outdoor illumination setting. Dur-
ing outdoor capture, ambient lighting during day and night
time varies a lot which affects the quality of images. Further,
usage of camera flash makes the preprocessing difficult.

• Real-time capture of images with varying background. The
distance of the closest background object may vary, making
foreground segmentation an arduous task.

• Cameras in various smartphones have features such as res-
olution, auto-focus, and flash LEDs. These factors can alter
the quality of the obtained image.

• Cross domain matching between finger-selfie and traditional
livescan fingerprints.

• Varying orientation and distance of the finger from the
camera results in affine and projective transformations.

1.1 Related Work

In the literature, researchers have proposed algorithms focusing
on matching finger images obtained from smartphone camera (or

web-camera). Table 1 summarizes the existing studies and their
respective performances. In 2005, Lee et al. [18] proposed a ridge
segmentation algorithm using a color model for the foreground
skin region. They enhanced the ridge information by computing
the ridge orientation using the gradient for a database of 400 im-
ages. In 2008, Lee et al. [19] performed finger quality estimation
using gradient information coherence in the local region, under
varying poses. They collected a private dataset with four subsets,
with 120 fingerphoto sequences and 1200 fingerprint images.

In 2012, Stein et al. [42] emphasized the need of a quality
estimation algorithm and proposed an algorithm using the ridge
edge density in a local region for a dataset of 41 subjects from
two mobile devices. In 2012, Li et al. [21] studied the performance
of ten-print matchers such as Verifinger by Neurotechnology and
NFIS from NIST. Their dataset constituted of 2100 fingerpho-
tos captured using three different mobile phones with varying
background and illumination. Based on this study, Li et al.
[20] observed that minutiae extraction using existing commercial
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(a) Live-scan
fingerprints

(b) Webcam
 finger images

(c) Smartphone
finger-selfie

Fig. 2. Sample images illustrating variations due to different acquisition
methods: (a) live-scan fingerprints, (b) contactless fingerprints using we-
bcam [17], and (c) contactless finger-selfies using smartphone cameras.

matchers such as Verifinger is extremely noisy and produces lots
of spurious minutiae. They proposed a learning based quality
estimation algorithm using fingerprint specific features along with
SVM classifier. Stein et al. [41] and Taneja et al. [43] presented a
study using a sequence of fingerphotos to avoid spoofing. The data
was collected in a controlled environment. Recently, Malhotra et
al. [26] showed the need for privacy preservation of finger-selfies
on social media. They learn perturbation using an adversarial
model to misclassify finger-selfies against genuine fingerprints.

Minaee and Wang [29] proposed ScatNet features followed by
PCA and SVM for matching touchless fingerprints. The images
were acquired in a controlled environment. No segmentation or
enhancement were considered, and experiments were shown on
PolyU HRF dataset [45]. As seen in Fig 2, the smartphone
captured finger-selfies are challenging and visually different from
webcam captured touchless fingerprints. Lin and Kumar [24] and
Deb et al. [8] also proposed contactless fingerprint databases. The
former had 1800 contactless fingerprints from 300 classes while
the latter had 2472 fingerphotos from 1236 classes. Lin and Kumar
reported an of EER of 4.46% when Robust Thin-Plate Spline
Model and Deformation Correction Model are used together to
perform contactless to livescan fingerprint matching. Deb et al.
used COTS to perform fingerphoto to livescan fingerprint match-
ing. Under different combinations of fingerphotos, the reported
TAR varied between 92.39% to 98.55%.

1.2 Research Contributions

The use case scenario of most of the existing studies restrict to
matching finger-selfie to either finger-selfie or livescan finger-
prints. These studies primarily focus on designing algorithms for
one or two steps of the recognition pipeline. However, as high-
lighted by [14], matching contactless fingerprints between various
contactless devices provide very poor results. Hence, additional
research is necessary to propose a robust algorithm for finger-selfie
recognition. Moreover, there is no publicly available database with
a large number of finger-selfies and fingerprint images.

In this research, we propose an end to end pipeline with
segmentation, ridge structure enhancement, feature representation,
and verification. This is an extension of our research [37], in

which we proposed a ScatNet based matching pipeline for finger-
photo images2 captured from smartphones. We created the IIIT-
D Smartphone FingerPhoto Database v1 (ISFPDv1), focusing on
background and illumination variations for finger-selfie matching
with 5100 fingerphotos.The key contributions of this research are:

• A novel combination of saliency and skin color based finger-
selfie region of interest segmentation algorithm to remove the
highly varying noisy background. The preliminary version of
the algorithm [37] used only a skin color-based segmentation.

• Study the effect of camera resolution and environmental
variations in the acquired finger-selfie, using Deep Scattering
Network representation [40] and matching algorithm.

• Creating and publicly releasing IIIT-D SmartPhone Finger-
selfie Database v2 (ISPFDv2). The database consists of
17024 finger-selfies from 304 unique fingers, acquired using
smartphones OnePlus One and MicroMax Canvas Knight.
Additionally, 2432 livescan fingerprints are also collected
using Secugen Hamster IV sensor.

• Extensive experimental analysis on the proposed dataset
to study the effect of segmentation and enhancement ap-
proaches. Further, we study the impact of (i) noisy back-
ground, (ii) environmental illumination, (iii) camera resolu-
tion, and (iv) cross-domain scenario, on the performance of
finger-selfie authentication.

2 PROPOSED FINGER-SELFIE RECOGNITION AL-
GORITHM

The proposed finger-selfie matching pipeline has four steps: (i)
finger-selfie segmentation, (ii) ridge pattern enhancement, (iii)
Deep Scattering Network (DSN) representation extraction, and
(iv) matching. The individual steps are illustrated in Fig. 3 and
explained in the sections below.

2.1 Finger-selfie Segmentation

The process of segmentation involves finding a binary mask in a
captured finger-selfie, that represents the distal phalanges of the
finger. As shown in Fig. 4, even though a finger-selfie can be
captured with different kinds of background objects, it is safe to
assume that the finger is the closest object to the smartphone cam-
era. Under this assumption, we observe two distinguishing features
that separate the finger-selfie from the rest of the background: (i)
the skin color of the finger region, and (ii) the salient nature [2]
of the finger region in the image. Thus, the proposed algorithm
combines the region covariance based saliency [10] along with
skin color measurements for effective finger-selfie segmentation.
The steps involved in the proposed segmentation algorithm are:
Step 1: For each pixel, seven visual features (represented further
as d-dimensional) are extracted: (i) intensity in L ∗ a ∗ b color
space, (ii) the edge orientation along x and y directions, and (iii)
x and y locations of the pixel. The L ∗ a ∗ b color space is chosen
due to its closeness with human perception3.
Step 2: For a region Ri in an image, a 7×7 covariance matrix Ci
is constructed using the 7-dimensional feature vector (extracted

2. Fingerphoto and finger-selfie in our context are same as they are captured
by the smartphone camera by the user themselves.

3. L∗a∗b color space has perceptual uniformity [50] [52]. Further, the a and
b components resemble human chromatic system, whereas the L component
approximates to the human perception of lightness [3]
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Gallery image

Match/ 
Non-match

Preprocessing
DSN Feature extraction

RDF Matching

Fig. 3. Illustrating the procedure involved in the proposed Deep Scattering Network (DSN) based finger-selfie verification pipeline.

Fig. 4. Challenging cases for segmentation due to natural background
and indoor/outdoor illumination variations.

Saliency based mask

Skin color based mask

Fused mask Segmented
image

Original image

Fig. 5. Illustration of the segmentation algorithm combining the saliency
based and skin color based segmentation maps.

in Step 1). The first order statistics of Ci are computed and the
extracted statistics are non-linearly aggregated, as follows,

ξ(Ci) = (µ, s1, . . . , sd, sd+1, . . . , s2d)
T (1)

where, µ and s are the mean and standard deviation, respectively.
The size of the region Ri is chosen based on the image resolution.
Step 3: The dissimilarity between any two regions, D(Ri, Rj) is
computed as a normalized difference between the representation
obtained by covariance matrices, ξ(Ci), ξ(Cj) as follows,

D(Ri, Rj) =
||ξ(Ci)− ξ(Cj)||
1 + ||xi − xj ||

(2)

where, xi and xj denote the pixel location of center of the image
regions Ri and Rj , respectively.
Step 4: The covariance based saliency map [10] of any region,
mapsal(Ri), is computed by a non-linear aggregation of the
dissimilarities of the current region Ri with the surrounding m
most similar regions of the image, as follows,

mapsal(Ri) =
1

m

m∑
j=1

D(Ri, Rj) (3)

Step 5: To compute the skin color based segmentation, the RGB
image is converted into CMYK color space. The normalized
magenta channel is used as the skin color map, mapskin, as
magenta channel retains ample amount of skin color [39].

Step 6: The overall segmentation map is obtained by combining
the saliency and the skin color based maps using a weighted sum
fusion. The segmentation map mapseg is obtained by,

mapseg = w1 ×mapsal + w2 ×mapskin (4)

where, w1 and w2 represent the weights associated to the normal-
ized saliency map and normalized skin map, respectively.
Step 7: Otsu’s thresholding method [31] is applied on the obtained
map, mapseg , to obtain the binary segmented mask.

Fig. 5 shows a visual illustration of the fusion of skin color
based segmentation and saliency based segmentation map to
obtain the final segmented result.

2.2 Finger-selfie Enhancement

The aim of enhancement is to improve the image quality so that the
finger ridge patterns can be efficiently extracted from the captured
finger-selfie. The primary challenge for ridge extraction is the
noise induced by the surrounding illumination variation which
affects the contrast between valleys and ridges. The segmented
image of the previous step is first converted to gray scale. Speckle
noise is removed using median filtering and histogram equaliza-
tion is applied to mitigate the effect of illumination variation.
Next, the image is sharpened to improve the contrast between
valleys and ridges. In the resultant image, the ridge information
constitutes the high-frequency components while the valley and
noise components constitute the low-frequency information. To
enhance the difference between the ridge and valley information,
we sharpen the image by subtracting the Gaussian blurred image
(σ = 2) from the previous image. Fig. 6 shows sample output
provided by the enhancement algorithm.

2.3 Deep ScatNet (DSN) based Feature Representation

Finger-selfie images captured at different instances observe vari-
ations in rotation, translation, and scaling along with variations
due to the environment. While researchers have explored the use
of minutiae, low resolution and varying ridge-valley contrast in
finger-selfies makes it difficult to accurately detect minutiae [20].
We propose feature representation for finger-selfies using Deep
Scattering Networks [4], [5]. DSN is a local descriptor which
incorporates multi-directional and multi-scale information. DSN
is calculated with a set of wavelet decompositions and complex
modulus. It has been shown that DSN based features effectively
encode texture patterns in images in presence of rotation, scaling,
and deformations [40]. As seen in Fig. 6, the enhanced finger-selfie
has good ridge-valley patterns and we assert that DSN features can
encode these patterns.
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Fig. 6. DSN representation of the enhanced image where R1 to R209 represent the responses from different depth of DSN.

Let the signal x(u) ∈ R2 (image in this case) represent the
input. DSN learns the features Sn at each level n ∈ J , where
0 ≤ n ≤ J , J represents the network depth. The output is a
representation obtained by concatenation of DSN features from
each level Sn.

Let φJ(u) = 2−2Jφ(2−Ju) be a low-pass averaging filter and
u be the set of parameters corresponding to the locations x and
y in the image space. Similarly, let ψθ,j(u) = 2−2jψ(2jθ−1u)
be the high-frequency, quadrature phase, complex wavelet filter
bank. This high frequency wavelet bank ψ is built by changing
the rotation θ and the scale (dilation) 2j parameters. The first
2D wavelet transform for the signal x is denoted by W1. It
consists of convolutions with both low pass and high pass filters.
Convolution with the low pass filter computes a locally affine
invariant representation S0 as follows:

S0x(u) = x ∗ φJ(u) (5)

These coefficients are the 0th-order DSN coefficients. The rep-
resentation obtained in the above equation is translation invariant
up to 2J pixels. Since the representation lacks the high frequency
information, it is recovered by convolving x with ψθ,j(u). To
make the term x ∗ ψJ(u) invariant to local translation and
diminish deviation amongst the coefficients, the complex phase is
eliminated using modulus operator. Hence, the wavelet-modulus
transform operator is given as follows:

|W1|x = (x ∗ φ(u), |x ∗ ψλ1
(u)|) (6)

where, λ1 corresponds to the set of first level filtering parameters
(θ, j). The high frequency filters supplement information to the
representation procured in Equation 5. Thus, we perform the
second wavelet transform W2 on the second term of the above
equation. This again gives two outputs, one from low pass filter
φ(u), and other from high pass filter ψ(u). The output from
low pass filter gives affine invariant representation of the high
frequency part, as described below:

S1x(u, λ1) = |x ∗ ψλ1
(u)| ∗ φJ(u) (7)

S1x(u, λ1) are the first-order DSN coefficients. S1x(u, λ1) has
all the filter responses of the wavelet bank ψλ1(u) (each succes-
sively applied with a low pass filter). For the high pass output,
the complex phase is removed by modulus operator. Higher-
order coefficients can be extracted by recursively building deeper
wavelet filter banks:

|W2||x ∗ ψλ1(u)| = (|x ∗ ψλ1(u)| ∗ φ, ||x ∗ ψλ1(u)| ∗ ψλ1 |)
(8)

These deeper DSN coefficients gives a stable translation and
rotation invariant representation for the finger-selfies, as illustrated
in Fig. 6. Since DSN filters are pre-designed or handcrafted,
obtaining a DSN representation is convolving these filters with
the finger-selfie and there is no learning involved. Hence, it can be
achieved with the computational capabilities of smartphones. The
effective representation for a finger-selfie is the concatenation of
all n-order outputs as: {S0, S1, . . . , Sn}.

In this research, we experimentally observe an optimal depth
of the DSN as J = 2, i.e., computing the second order DSN
coefficients for all the finger-selfies. Let the enhanced finger-selfie,
Ienh be of size w × h. The concatenation of all responses up to
the second order, {S0, S1, S2} contains a total of 209 filters, with
each response of dimension w

8 ×
h
8 . Thus, the size of DSN feature

representation is 209× w
8 ×

h
8 .

2.4 Feature Matching

Let Q and T be the 1 × N sized DSN representation vector
of the query (probe) and the template (gallery) finger-selfies,
respectively. A supervised binary classifier g:(X → Y ) is learned
to classify a DSN feature representation pair (Q, T ) into either a
genuine (match) or imposter (non-match) pair. The input feature
X is the difference of query and template representations (Q−T )
and the classification labels Y are {genuine, imposter}. The
classifier learns to predict if a representation pair is a genuine or
an imposter pair. Two finger-selfies that belong to the same finger
are defined as match pair, while images captured from different
fingers or different subjects are considered as non-match pairs.

In this research, we use Random Decision Forest (RDF) [13] as
the binary classifier for verifying the pair of finger-selfies. RDF is
a non-linear ensemble based classifier with multiple decision trees
[13]. It employs a repetitive random sub-sampling for bagging
which assists in obtaining robust and faster results for correlated
features. For a total of D finger-selfies in the training set, several
bootstrap aggregates of size r.D are made with replacement, for
a ratio r (0.5 < r ≤ 1). A forest having T trees is trained,
where, each decision tree is trained with a single bootstrap of the
data. Let M be the length of the vectorized DSN representation
obtained for the finger-selfie. At each node of the tree, a feature
sample m is chosen at random. This sample is utilized for taking
the split decision to maximize information gain. Each tree is
designed as a binary decision tree by assigning leaf nodes as
{genuine, imposter} corresponding to the training sample. Thus,
each decision tree in the forest classifies the input pair of finger-
selfies as a matching pair or a non-match pair. The final decision
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TABLE 2
Summarizing the characteristics and the variations captured in the

IIIT-D SmartPhone Finger-selfie Database v2.

Set Name Variations ImagesIllumination Background Resolution

I WI Controlled White 13 MP 2432
WO Uncontrolled White 13 MP 2432

II NI Controlled Natural 13 MP 2432
NO Uncontrolled Natural 13 MP 2432

III
RES5 Controlled White 5 MP 2432
RES8 Controlled White 8 MP 2432
RES16 Controlled White 16 MP 2432

IV LS - - 500 PPI 2432

is computed by taking a majority vote of all the decision trees in
the ensemble.

2.5 Implementation Details
In a real-life scenario, the finger-selfie may be acquired at any PPI
due to scale and resolution variations. Hence, we did not enforce
any constraint on the PPI. Other researchers also downscale the
acquired images to a fixed resolution to justify lower computation,
model input dimensions, or making resolutions same as live-
scan without taking PPI into consideration [7], [22], [23], [46].
Additionally, some algorithms operate directly on the resolution
of the acquired finger-selfie without any scaling [25], [44]. The
acquired image is of resolution 4208×3120 at approximately 1200
PPI. For different parameters, a grid search based approach is
used to find the optimal values. For example, α =

√
2 is used

for region covariance based saliency map extraction. Similarly,
optimal values forRi is selected as 16×16 and r as 0.66. From all
the images, the segmentation algorithm yields a fixed-size window
of 1240×800 at approximately 1200 PPI. The segmented images
are downscaled by half to 620×400 to reduce the computation
of feature extraction. While MCC and NFIS based minutiae
matching works at 500 PPI, we operate at a fixed resolution that
approximates to 600 PPI at 13 MP.

The 2nd order DSN representations are of length of 809,875
per sample. To reduce the dimensionality, we apply PCA [16]
and preserve 99% Eigen energy. It yields a vector of length 95,
which is provided as input to the classifier. Finally, T = 1000
(independent trees) is used in the RDF.

3 DATABASE AND PROTOCOL

As a part of this research, we collect the IIIT-D SmartPhone
Finger-selfie Database v2 (ISPFDv2). The details of the proposed
database and its experimental protocol are elaborated below.

3.1 ISPFDv2: Database
The ISPFDv2 consists of more than 19400 images obtained from
304 unique fingers. In the proposed database, four instances from
four fingers are collected for each of 76 subjects over two sessions.
The finger-selfies are taken using smartphones OnePlus One and
MicroMax Canvas Knight, while the corresponding livescan fin-
gerprints are taken from Secugen Hamster IV. The indoor images
in ISPFDv2 are captured in both constrained and unconstrained
environments, while outdoor images are captured without flash
during daylight and with flash during night. Auto-focus is always
kept ON. The quality of these finger-selfies, as per NFIQ 2.0,

Fig. 7. NFIQ 2.0 scores for finger-selfies (quality: 35.83 ± 9.52).

is illustrated in Fig. 7. Based on the challenges, the database is
divided into four subsets, as summarized in Table 2.

Set I - White Background: With white background, finger-
selfies are acquired indoors with controlled lighting (WI) and
outdoors with varying illumination (WO). The subsets, illustrated
in Fig. 8(a) and 8(b), capture the effect of illumination variations
over a constrained white background. The images are taken using
OnePlus One phone at 13MP resolution. Both WI and WO have
8 images each of right index, right middle, left index, and left
middle fingers of 76 subjects, totalling 4864 images for Set I.

Set II - Natural Background: Finger-selfies are acquired indoors
and outdoors, with unconstrained background. The subsets are
shown in Fig. 8(c) and 8(d). The Natural Indoor (NI) subset
highlights the outcome of background variations in controlled
lighting, whereas, Natural Outdoor (NO) conveys the simultaneous
effect of background and illumination variations. The images are
captured using OnePlus One phone at 13MP resolution. Similar to
Set I, Set II also has 4864 images.

Set III - Resolution: The set has finger-selfies captured in
three different resolutions with controlled illumination and white
background, as shown in Fig. 8(e). Two different smartphones,
OnePlus One and MicroMax Canvas Knight, are used to capture
the images at three different resolutions 5 MP, 8 MP, and 16 MP.
Camera flash is turned OFF, whereas, auto-focus is kept ON.
All the images are captured in an indoor lab environment, with
uniform lighting and a blank white paper as the background. Under
these settings, four instances of the index finger and middle finger
of the right and left hand of 76 subjects are captured at all three
resolutions, with a total of 7296 images.

Set IV - Livescan Fingerprints (LS): A subset of live-scan
fingerprints are acquired using FBI certified Secugen Hamster IV
fingerprint sensor, as shown in Fig. 8(f). These fingerprints are
acquired at 500 PPI. This set comprises of 4 fingerprint images,
each from the right index, right middle, left index, and left middle
fingers from 76 subjects, acquired under 2 sessions (a week apart).
Thus, the set has a total of 2432 images.

The IIIT-D SmartPhone Finger-selfie Database v2 is pub-
licly available to the research community at http://iab-rubric.org/
resources/spfd2.html.

http://iab-rubric.org/resources/spfd2.html
http://iab-rubric.org/resources/spfd2.html
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(a) White
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(b) White 
Outdoor

(c) Natural 
Indoor

(d) Natural 
Outdoor

(e) Resolution 
Variations

(f) Livescan 
Fingerprints

Fig. 8. Sample images from the IIIT-D SmartPhone Finger-selfie Database v2, illustrating the intra-class variations and noise present in the database.

3.2 Experimental Protocol

The experiments are performed with a subject disjoint 50%-50%
train-test split with three times random cross-validation. From a
total of 304 unique fingers (76 subjects×4 fingers), images corre-
sponding to randomly selected 152 fingers (38 subjects×4 fingers)
are used for training and the remaining 152 finger classes are used
for testing. The effect of finger-selfie matching performance is
studied using the following three experiments.

• Background-Illumination (Exp. 1): With the assumption
that gallery images can be acquired in a controlled envi-
ronment, White Indoor (WI) subset is the most constrained
acquisition of finger-selfies. The WI subset is considered as
gallery, whereas, {WO, NI, NO} subsets are taken as query,
independently. WI-WO experiment shows the performance
of finger-selfie matching under the influence of illumination,
WI-NI highlights the influence of background variations, and
WI-NO illustrates the simultaneous influence of illumination
and background on the recognition performance.

• Resolution (Exp. 2): To simulate cross-resolution experi-
ments, finger-selfies captured at 13MP in White Indoor (WI)
environment are used as the gallery images. We use three
different probe sets with capture resolution as 5MP, 8MP,
and 16MP. Thus, two probe sets have lower resolution while
one probe set has higher resolution than gallery.

• Livescan-finger-selfie matching (Exp. 3): To simulate cross-
domain experiments, fingerprints (LS) are used as the gallery.
We use seven different probe sets as WI, WO, NI, NO, 5MP,
8MP, and 16MP. Note that, since the livescan fingerprints
are already tightly cropped, segmentation is not applied on
fingerprint images. However, since since ridge flow patterns
gets mirrored during acquisition by the fingerprint sensor,
we perform a mirror operation on livescan fingerprint images
before creating the pairs.

Thus, same gallery images are used for Exp. 1 and Exp. 2,
while Exp. 3 uses livescan fingerprints as gallery. The probe sets
comprise of finger-selfies, where subsets are varied to study the
impact of capture variations on the matching performance.

4 RESULTS AND ANALYSIS

The experiments are performed to evaluate the effectiveness of
the proposed pipeline for finger-selfie recognition. This section is
structured as follows: Section 4.1 elaborates on the results of Exp.
1, 2, and 3 in terms of Equal Error Rate (EER) and Receiver
Operating Characteristic (ROC) curves. Section 4.2 provides an
analysis of traditional minutia and non-minutia based methods in
contrast to the proposed algorithm for finger-selfie recognition,
followed by Section 4.3 highlighting the importance of enhance-
ment. Lastly, Section 4.4 compares the proposed algorithm with
recent algorithms for contactless fingerprint recognition.

4.1 Performance Analysis of Proposed Pipeline
We first perform a series of experiments to evaluate the effective-
ness of the feature extractor and classifier in the proposed algo-
rithm. Table 3 summarizes the algorithms used for segmentation,
enhancement, feature extraction, and matching. The algorithms are
validated with the proposed ISPFDv2 database and the results are
shown in Table 4 and Fig. 11. The DSN+NN algorithm utilizes the
same pipeline as DSN+RDF, except the fact that it utilizes fully
connected layers to classify instead of RDF. The DSN+l2 involves
a training-free approach to match features using l2 distance.

Analyzing the results in a column-wise fashion shows a
comparison of the proposed algorithm against existing algorithms.
It can be distinctly observed that the DSN features learnt with a
supervised classifier provide better performance as compared to
other algorithms, suggesting the importance of training a classifier
for verification. DSN + RDF and DSN + NN provide EER in
the range of 2.11 − 10.35%, while DSN + `2 distance match-
ing provides EER in the range 15.72 − 20.82%. Further, RDF
performs better than NN under all variations. We also observed
that there is a negligible deviation in the performance of the
proposed algorithm across the cross-validation experiments. With
respect to existing feature descriptors, CompCode and MCC, DSN
+ RDF provides up to 20% improvement in EER. This can be
attributed to the rich feature representation obtained using the
high-frequency information in Deep Scattering Networks, and also
its affine invariance property.
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TABLE 3
The algorithmic pipeline of the different techniques used for comparison along with the proposed pipeline.

Type Technique Segmentation Enhancement Feature Extraction Matching

Minutia based
NFIS nfseg 7 mindtct bozorth3

MCC [6] Saliency + skin color Median filter + sharpen VeriFinger SDK Minutiae Cylinder Code
Wild et al. [48] Skin color 7 VeriFinger VeriFinger

Non-Minutia CompCode [53] Saliency + skin color Median filter + sharpen Competitive Code `2-distance

Deep Architectures Chopra et al. [7] VGG SegNet 7 ResNet50 (pre-trained) Cosine Similarity
Lin and Kumar [23] FCN 7 6 Convolutional layers Pairwise Siamese

DSN Based
DSN + `2 Saliency + skin color Median filter + sharpen DSN + PCA `2-distance
DSN + NN Saliency + skin color Median filter + sharpen DSN + PCA Neural network

DSN + RDF (Saliency + skin color) (Median filter + sharpen) DSN + PCA RDF

TABLE 4
Performance of different feature extraction and matching algorithms in terms of EER (%). The preprocessing pipeline (segmentation +
enhancement) is consistent for the first six columns. The last four columns use preprocessing as proposed in their respective papers.

Gallery Probe DSN
+l2

DSN
+NN

DSN+RDF
(Proposed) NFIS MCC

[6]
Comp

Code [53]
Minaee &
Wang [29]

Chopra
et al. [7]

Lin &
Kumar [23]

Wild et
al. [48]

Exp. 1
White
Indoor
(WI)

WO 16.95 3.27 3.00 50.00 16.50 19.07 23.34 13.96 4.51 17.64
NI 20.39 6.49 3.21 49.71 12.36 16.22 22.04 16.91 3.77 15.49
NO 20.59 5.34 2.11 49.99 17.03 21.40 22.96 16.58 7.74 19.26

Exp. 2 Resolution
(13 MP)

5 MP 15.72 7.53 5.23 49.96 10.35 14.32 13.65 15.20 9.79 8.44
8 MP 17.93 5.42 4.74 49.88 10.01 13.03 16.21 14.41 5.09 8.97
16 MP 17.07 3.73 2.98 50.00 48.48 10.84 21.38 11.78 4.69 44.50

Exp. 3
Livescan

Fingerprints
(LS)

WI 20.50 7.24 3.41 49.75 15.74 16.70 28.54 30.67 18.42 17.40
WO 19.15 4.18 3.29 49.31 17.31 16.91 32.09 39.12 14.06 18.69
NI 18.15 7.62 2.79 38.07 18.40 17.45 35.12 27.50 17.11 16.41
NO 20.40 5.43 2.49 48.29 18.22 18.35 36.68 41.67 19.24 19.95

5 MP 16.68 10.35 5.05 49.62 13.10 14.83 41.68 29.68 25.41 12.30
8 MP 17.57 7.99 3.88 49.60 14.09 14.98 30.10 32.60 20.95 14.18
16 MP 20.82 5.75 2.91 49.92 11.49 11.08 34.05 28.69 20.64 45.57

As explained in the protocol, three times random cross vali-
dation is performed and the standard deviation values reported in
the supplementary file. It is observed that the standard deviation
values under 0.4% for most cases of the proposed algorithm.
Additionally, the ROC curve for finger-selfie to livescan matching
is also included in Fig. 3 and Fig. 4 of the supplementary material.

We next evaluate the performance across different variations
- Exp. 1 and Exp. 2. From Table 4, it can be inferred that the
proposed matching pipeline with RDF classifier provides the best
performance across different variations. The consistently low error
rates of (2.1−3.2%) for Exp. 1 shows that the proposed algorithm
is robust to the variations in background (WO and NO) and illumi-
nation (NI and NO). In the cross resolution matching experiments
(Exp. 2), as summarized in the rows 4-6 of Table 4, we observe that
matching high-resolution images (EER: 2.98%) yields slightly
better results than matching low-resolution images (EER: 5.23%).
It is important to note that different individuals have different
kinds of phones and the camera resolution across different phones
also varies. This result shows that using a phone camera with
lower resolution leads to a small reduction in accuracy but not
very significant - matching 8 MP with 13 MP finger-selfies gives
4.74% EER while matching 5 MP with 13 MP yields 5.23% EER.

To further study the impact of filter responses on overall
performance, we perform response selection and response pruning
experiments. In response selection, top-k responses are chosen
based on Laplacian score for feature selection [11], Local Learning
clustered feature selection [51], and ReliefF feature selection algo-
rithm [36]. Experiments for response pruning are also performed
where we select 50 random and 100 random responses/filters. We

observe that in most of the cases, the proposed algorithm with all
the filter responses outperforms selection and pruning approaches
by at least 0.5%. It can be attributed to the fact that responses from
different layers encode distinctive information, which is required
for finger-selfie authentication. The results are presented in detail
in Table 2 of the supplementary material.

The performance analysis for cross-domain experiment (Exp.
3) of matching finger-selfies with livescan fingerprints is shown
in the last seven rows of Table 4. The robustness of the proposed
algorithms can be inferred from consistently low error rates in
(i) constrained setup (row 8: LS-WI), (ii) varying background-
illumination (rows 9-11: LS-WO, LS-NI, and LS-NO), and (iii)
resolution variations (row 12-14: LS-Res5, LS-Res8, and LS-
Res16). On the contrary, the performance of other algorithms
remains poor for all scenarios of Exp. 3. For instance, the per-
formance of DSN+l2 weakens when the resolution is increased
to 16 MP, while, the error rate worsens for DSN+NN under the
low-resolution scenario of 5 MP.

4.2 Minutia and Non-minutia Matching Pipeline

The acquired finger-selfie has a lot of background noise. To
compare the performance of the proposed saliency-based seg-
mentation algorithm, we segment finger-selfies with NFIS’s nfseg
module. Nfseg is a popular algorithm for the segmentation of
fingerprints. The enhancement, feature extraction, and matching
protocols remain the same during the comparison. The perfor-
mance is summarized in Table 5 for both Exp. 1 and Exp. 2.
We observe that nfseg based segmentation has an overall EER
in the range 11.4-15.9%, while for the proposed saliency-based
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TABLE 5
Effect of pre-processing on finger-selfie matching using minutiae and
the proposed matching framework. Subscript P denotes the proposed

module. The results are reported in terms of EER (%).

Exp. Gallery Probe Nfseg SegP
Nfseg+
EnhP

SegP +
EnhP

mindtct+bozorth DSN+RDF

1 WI
WO 50.00 48.68 14.78 3.00
NI 49.71 49.09 15.61 3.21
NO 49.99 48.44 15.91 2.11

2 13 MP
5 MP 49.96 49.26 11.38 5.23
8 MP 49.88 49.55 13.45 4.74
16 MP 50.00 49.75 14.73 2.98

segmentation, the EER reduces to merely 2.1-3.2% for Exp. 1 and
3.0-5.2% for Exp. 2. As seen in Fig. 10(c), the segmented image
has a segregated ridge-valley region without noisy background,
thereby, allowing better DSN features to be extracted. Similarly,
we keep feature extraction and matching as mindtct+bozorth and
vary segmentation algorithm to understand why NFIS algorithm
performs poor. From Table 5, we observe that poor performance
of NFIS algorithm can primarily be attributed to the spurious
minutiae detection.

Analyzing the performance of MCC descriptor shows poor
results for outdoor images in Exp. 1, as minutia extraction is
highly spurious due to the capture variations. Further in Exp.
2, the performance of MCC descriptor drops suddenly when the
resolution of probe images is higher than the gallery images. This
can be attributed to the observation that MCC descriptor constructs
fixed radius cylinders around each minutia to extract its descriptor.
When the resolution of the probe image becomes higher than that
of the gallery, no minutia is found within the constructed cylinder,
and hence the matching performance drops. Dynamic prediction
of the cylinder parameters can be performed for MCC descriptor,
however, it is an independent research challenge.

The results of CompCode descriptor show that it is better
at handling resolution variations as compared to handling envi-
ronmental noise. However, DSN + RDF is more robust and is
not much affected by the capture variations. Overall, we observe
that partial finger-selfies and images with out-of-focus regions are
better handled by DSN based matching algorithm. NFIS based
pipeline also yields lower finger-selfie matching performance.
Based on manual observation, we found that nfseg has a very high
failure rate in segmenting the finger-selfie foreground region. It is
primarily because nfseg is designed for fingerprints with a white
background. Despite that, nfseg fails to segment finger-selfies with
white backgrounds (WI and WO). Further, mindtct is not trained
for extracting minutia from finger-selfies, thus, we observed more
than 35% of the images to have zero minutia extracted. From these
experiments, we infer that the public NFIS matcher from NIST
cannot be used for matching smartphone captured finger-selfies.

4.3 Effectiveness of Enhancement
We next study the importance of the ridge-valley enhancement
algorithm in the proposed finger-selfie verification pipeline. While
segmentation is required to remove the background noise, en-
hancement improves the ridge-valley contrast and removes noise.
The impact of enhancement on the matching performance is
summarized in Table 6. The ROC curves are shown in Fig. 1
and Fig. 2 of the supplementary material. While the enhanced
images in Fig. 9(a) may look similar to the grayscale version of

(a) Successful cases
Segmented Enhanced Segmented Enhanced

(b) Failure cases

Fig. 9. Successful and failure cases of enhancement on the ISPFDv2.

segmented images, the enhanced image has better ridge-valley
contrast. For benchmarking, the matching results of only the
segmented images (without any enhancement) are shown for both
the experiments, Exp. 1 and Exp. 2. These matching results for
the segmented images are computed by converting the segmented
image to grayscale, followed by feature extraction, and matching.
The feature extraction and matching is performed by (i) MCC, (ii)
CompCode, (iii) DSN+l2, (iv) DSN+NN, and (v) DSN+RDF.

Without any enhancement, DSN+RDF produces EER in the
range of 2.8− 5.6% for Exp. 1 and in the range of 9.5− 11.7%
for Exp. 2. With the proposed enhancement algorithm, the EER
reduces to 2.1− 3.2% for Exp. 1 and 3.0− 5.2% for Exp. 2. This
highlights that the proposed ridge-valley enhancement in the pre-
processing is essential to improve the performance of DSN+RDF,
and is better than the performance of grayscaled segmented
finger-selfie. The results also show that the enhancement algo-
rithm has minimal influence on CompCode features. CompCode
aims to extract the Gabor (variant) filter response of an image
which allows the signals of a specific frequency band. During
the enhancement phase, as image sharpening and smoothing are
performed, certain frequency signals are removed that are essential
for CompCode features. On the other hand, DSN extracts signals
from all the frequency bands in a tree-like fashion and combines
them. Similarly, as illustrated in Exp. 2 in Table 6, enhancement
algorithm shows limited improvement for MCC descriptor during
cross-resolution matching. Further, DSN+NN demonstrate similar
behavior. While there is no theoretical evidence to explain this
pattern, it is hypothesized that these algorithms are robust against
the proposed enhancement procedure.

As observed in Fig. 9, enhancement algorithm fails if there
are no ridge-valley details visible due to a blurry acquisition. In a
few scenarios where segmentation fails, the image tends to have
more background regions than finger region. In such cases, the
proposed algorithm might enhance some background detail instead
of enhancing ridge-valley information. Hence, the success criteria
of enhancement rely on the steps former to enhancement, namely,
acquisition and segmentation.

4.4 Comparison with Recent Algorithms

In this subsection, we compare the performance of the proposed
algorithm with recent algorithms for related tasks. The comparison
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TABLE 6
Effect of enhancement on finger-selfie matching with background-illumination variations (Exp. 1) and cross-resolution variations (Exp. 2). The

results are reported in terms of EER (%).

Algorithm Template
(Gallery)

Query (Probe)
Exp. 1

Without With Query (Probe)
Exp. 2

Without With
Enhancement Enhancement

MCC WI
(13 MP)

WO 19.05 16.50 5 MP 11.95 10.35
NI 16.99 12.36 8 MP 12.61 10.02
NO 19.87 17.03 16 MP 46.32 48.28

CompCode WI
(13 MP)

WO 18.26 19.07 5 MP 15.69 14.32
NI 18.41 16.22 8 MP 15.14 13.03
NO 21.40 21.40 16 MP 13.15 10.84

DSN + l2
WI

(13MP)

WO 22.20 16.95 5 MP 15.44 15.72
NI 22.72 20.39 8 MP 19.48 17.93
NO 18.81 20.59 16 MP 26.29 17.07

DSN+ NN WI
(13 MP)

WO 7.16 3.27 5 MP 7.41 7.53
NI 6.83 6.49 8 MP 5.59 5.42
NO 7.49 5.34 16 MP 4.22 3.73

DSN + RDF WI
(13MP)

WO 5.46 3.00 5 MP 9.67 5.23
NI 5.58 3.21 8 MP 11.71 4.74
NO 2.78 2.11 16 MP 9.48 2.98

is performed with different segmentation, feature extraction and
matching algorithms.

4.4.1 Segmentation

Inspired from Chopra et al. [7], we utilized a supervised VGG
SegNet [1] based framework for comparison. The VGG SegNet
model is trained on the finger-selfie dataset [7] and tested on
the ISPFDv2. However, the trained VGG SegNet model failed to
segment the majority of fingers. Fig. 10 shows samples of finger-
selfies and segmented images from the ISPFDv2.

It can be inferred that saliency-based finger-selfie segmentation
outperforms segmentation using deep architectures. Additionally,
we strongly believe that applications running on smartphones
should use minimal resources (memory, time, and battery/power).
The current deep learning algorithms require GPU resources,
which is challenging in many smartphones. On the contrary, the
proposed saliency-based segmentation has an added advantage of
being computationally efficient.

(a) Finger-selfies from 
different sets of ISPFDv2

White 
Indoor 
(WI)

White 
Outdoor 

(WO)

Natural 
Indoor 

(NI)

Natural 
Outdoor

(NO)

(b) VGG SegNet (c) Proposed Saliency +
Skin color Segmentation

Fig. 10. Visual comparison between the segmented output of VGG Seg-
Net and the proposed saliency based segmentation for finger-selfies.

4.4.2 Feature extraction and matching
A related work in the literature by Minaee and Wang [29] showed
results on PolyU HRF dataset [45], which has high-resolution
fingerprint images captured in a highly controlled environment.
Their approach, when applied on a challenging task of matching
smartphone captured finger-selfies on ISPFDv2 yields an EER in
the range of 15− 20%. They used ScatNet with a 2D filter bank,
which can only incorporate spatial variance. Hence, their features
are only robust towards translation invariance. On the contrary,
the proposed method builds over 2D filter bank to incorporate
orientation variations. The first step is to obtain a 3D signal by
extracting rotation orbits over the 2D signal. The result is a 3-
dimensional matrix, where the first two dimensions are the spatial
position and the third dimension corresponds to orientation. Fi-
nally, a set of high pass and low pass Morlet filters are applied both
along spatial and orientation variable to obtain a roto-translation
convolution. Thus, the resultant feature representation is rotation
and translation invariant. Additionally, our proposed algorithm is
also aided with preprocessing stages of foreground segmentation
and enhancement. We also compare results with a recent study
by Wild et al. [48], which performs skin color segmentation,
followed by feature extraction and matching using VeriFinger. As
illustrated in Table 4, the proposed algorithm also outperforms the
VeriFinger based recognition algorithm.

We next compare the feature extraction and matching with
deep learning architectures. The results are compared with the
following two algorithms:
(a) Chopra et al. [7]: Post semantic segmentation using VGG

SegNet, we extract features from pre-trained ResNet50
(trained for ImageNet dataset classification) and matched
using cosine similarity.

(b) Lin and Kumar [23]: The semantically segmented finger-
selfies are used to train a 6-conv layer network using a
Siamese configuration. During testing, the model is given
finger-selfie pairs to evaluate if they belong to same finger
or not. Note that, the original research used three siamese
networks for 3D contactless fingerprint recognition for three
different views of the finger (2 side views and one frontal).
However, we used a single siamese network since finger-
selfies in ISPFDv2 only have frontal views.
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Fig. 11. ROC curves for different scenarios of feature extraction and matching algorithms. (Best viewed in color, x-axis in logscale).

Due to lack of source codes, the results on the ISPFDv2
database are reproduced by self-implementation of respective
algorithms and summarized in Table 4 and Fig. 11. It can be
observed that training deep networks significantly improves the
recognition performance with EER in the range of 11.78% to
16.58% in Chopra et al. [7] and 3.77% to 9.79% in Lin and
Kumar [23]). However, under different gallery-probe scenarios
of ISPFDv2, the proposed algorithm has a lower EER by up to
5.63% in comparison to the state-of-the-art algorithm [23]. Also,
compared to the baseline EER of 35.48% on the UNFIT database
[7], the proposed algorithm outperforms with 31.74% EER.

Despite the effectiveness of deep learning architectures for
different tasks of fingerprint matching such as pore extraction and
liveness detection [15], [30], the research for contactless finger-
prints is in nascent stages. It is primarily because researchers have
focused only on constrained scenarios of contactless fingerprint
matching. In reality, variance introduced due to environmental and
sensor variations can lead to an unconstrained acquisition. Exist-
ing algorithms fail under these challenging cases. For instance,
feature matching in Wild et al. [48] is performed using Verifinger.
The scale variations due to 16 MP resolution results in a poor
error rate of more than 44% in both Exp. 2 and Exp. 3. Similarly,
under highly unconstrained acquisition of natural outdoor (NO),
all the four algorithms ( [7], [23], [29], [48]) are found to be
deficient in Exp. 3. For the same subset, the proposed DSN+RDF
algorithm reports a competitive error rate of 2.49%. DSN, with
filter banks varying in scale and orientation, encode ridge-valley

contrast of finger-selfies. Hence, DSN+RDF based finger-selfie to
finger-selfie and finger-selfie to livescan matching performance,
aided by segmentation and enhancement framework, yields state-
of-the-art performance for the ISPFDv2.

5 CONCLUSION

This paper highlights the challenges associated with the recogni-
tion of finger-selfies acquired by a smartphone camera. A Deep
Scattering Network (DSN) based finger-selfie representation is
proposed which is matched using an RDF classification. A finger-
selfie segmentation and enhancement algorithm is also presented
to assist the recognition process. To address the real-world chal-
lenges of: (i) background variation, (ii) environmental illumina-
tion, (iii) resolution of the camera, and (iv) matching legacy
livescan fingerprints, IIIT-D SmartPhone Finger-selfie Database v2
(ISPFDv2) is created and made publicly available for the research
community. The database consists of four sets with 19,456 images
pertaining to 304 classes. The experimental results show a con-
siderable performance improvement with the proposed algorithm
over existing algorithms under both finger-selfie to finger-selfie
matching and finger-selfie to livescan fingerprint matching.
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