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A B S T R A C T

Globally, cataract is a common eye disease and one of the leading causes of blindness and vision impairment.
The traditional process of detecting cataracts involves eye examination using a slit-lamp microscope or
ophthalmoscope by an ophthalmologist, who checks for clouding of the normally clear lens of the eye. The
lack of resources and unavailability of a sufficient number of experts pose a burden to the healthcare system
throughout the world, and researchers are exploring the use of AI solutions for assisting the experts. Inspired
by the progress in iris recognition, in this research, we present a novel algorithm for cataract detection using
near-infrared eye images. The NIR cameras, which are popularly used in iris recognition, are of relatively
low cost and easy to operate compared to ophthalmoscope setup for data capture. However, such NIR images
have not been explored for cataract detection. We present deep learning-based eye segmentation and multitask
network classification networks for cataract detection using NIR images as input. The proposed segmentation
algorithm efficiently and effectively detects non-ideal eye boundaries and is cost-effective, and the classification
network yields very high classification performance on the cataract dataset.
. Introduction

Cataract is an age-related ocular disorder in which the eye lens
evelops a cloudy layer due to the breaking down of proteins in the eye,
hich makes it opaque, leading to blurry vision. Both eyes of a person

an have a different level of cataract and can develop at the different or
ame time. It is one of the most common eye diseases and is one of the
rimary causes of blindness (Pascolini and Mariotti, 2012). According
o the National Blindness and Visual Impairment Survey of India 2015–19,
eople above the age of 50 years may develop blindness due to cataract.
he condition contributes to the 66.2% blindness cases, 80.7% of severe
isual impairment cases, and 70.2% moderate visual impairment cases
n this age group. According to Murthy et al. (2008a), in India, 50%–
0% of bilateral blindness cases can be attributed to cataract. These
umbers demonstrate the need of detecting and correcting cataract in
ime.

The current process for cataract detection involves using a slit-
amp or an ophthalmoscope for capturing the eye images, and an
phthalmologist examines and tests the eyes of the patient to diagnose
he presence of a cataract. While this is the gold standard, the rate of
lindness, particularly in remote rural areas, is more than the trained
phthalmologists and resources (Murthy et al., 2008b). On the other
and, for biometrics authentication, the low cost near infra-red (NIR)
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E-mail address: mvatsa@iitj.ac.in (M. Vatsa).

cameras are used in iris recognition. These cameras are available in
different form factors, i.e. single eye and dual eye, and they are easy
to use. We postulate that eye images obtained from these cameras can
help design low cost, accessible, and easy-to-use solutions for cataract
detection.

As shown in Fig. 1, NIR eye images provide iris and pupil region
which can be utilized to explore whether these images are useful for
cataract detection. However, these samples also highlight the chal-
lenges involved in designing an automated algorithm. As shown in
Fig. 2, the captured images may not be ideal because of: (i) drooping
eyelids due to old age, (ii) inadequate camera-to-eye distance and
angle, and (iii) excessive contraction or dilation of pupil due to other
medical conditions (or ongoing medications such as blood thinner).
Therefore, as the first step, designing an efficient segmentation al-
gorithm that segments the iris and pupil regions from the acquired
non-ideal images is important. Once the iris and pupil are segmented,
the proposed approach involves designing the feature extraction and
classification algorithm to differentiate between healthy eye images
and images with cataract. In the feature extraction and classification
stage as well, the primary challenges are irregular shape and size of
iris and pupil. Depending on the kind of occlusion present in the eye
image, the angle of capture, and the shape of iris/pupil, the segmented
iris and pupil regions can be of different shapes. The classification
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Fig. 1. Showcasing the affected samples of pre and post cataract from NIR
pectrum(top row) and visible spectrum (bottom row).

Fig. 2. Showcasing the visual differences in pupil and iris in the pre and post cataract
amples. Top row shows the images with cataract and before surgery. Bottom row
hows images with cataract removed after surgery.

lgorithm should account for these variabilities and perform accurate
lassification.

To address the above-mentioned challenges, this research presents
n automated algorithm, termed as MTCD, for cataract detection from
IR images. As shown in Fig. 3, the input NIR eye image is first
rocessed using the proposed hierarchical pyramid network termed as
𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 to segment iris and pupil patterns from images of eyes
cquired in unconstrained environments, in the presence of five dif-
erent covariates, viz. at-a-distance, clouding for pupil due to cataract,
unctured iris due to cataract surgery, and excessive contraction or
ilation. After post-processing, the segmented eye image (with iris
nd pupil boundaries) are then used by a multitask deep learning
pproach that performs two tasks: the first task classifies the image
s healthy or unhealthy, and the second task classifies the images to
ne of three classes: pre-cataract, post-cataract, and others. The class

others’ consists of samples that are neither suffering from cataract
or have undergone surgery. The results of the proposed cataract
etection algorithm are demonstrated on the publicly available IIITD
ataract Surgery dataset (Nigam et al., 2019). We further evaluate the
erformance of the proposed 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 on four challenging eye (iris)
atasets that comprise the covariates mentioned above. Since cataract
s assessed in the presence of eye drops used for dilating the pupil, we
ave also prepared a Pupil Dilation dataset comprising images before
nd after the use of eye drops.1 The results on different datasets show
hat the proposed algorithm yields the best performance in terms of
oth computation efficiency and memory requirements.

1 To the best of our knowledge, this is the only dataset in the research
ommunity and it will be released to the research community.
2

Fig. 3. Proposed Pipeline of the MTCD Approach (Best viewed in color). Architecture
of Segmentation Network and Classification Network are shown in Fig. 4 and Fig. 7,
respectively. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

2. Related work

Literature review is divided into two subsections: (i) cataract related
and (ii) iris and pupil segmentation related.

2.1. Literature on cataract prediction

There are limited efforts in automating cataract detection. Srivas-
tava et al. (2014) have proposed a method to grade the nuclear cataract
slit-lamp images using gray level image gradients. Yang et al. (2016)
used an ensemble approach on models by exploiting three independent
feature sets; wavelet, sketch, and texture-based features for grading the
cataract fundus images. Ran et al. (2018) have extracted features from
fundus images using a three-layer deep convolution neural network
(CNN) and random forests (RF) to grade the cataract. They have
demonstrated that RF improves grading accuracy. Pratap and Kokil
(2019) have used pre-trained AlexNet for feature extraction for fundus
image and support vector machines (SVM) for classifying images in
different categories of cataract.

Zhang et al. (2019) have implemented a framework to grade the
cataract into six levels using feature fusion approach obtained via
ResNet18 model and handcrafted GLCM features. Xu et al. (2019b)
aimed at grading cataracts from slit-lamp photos using Faster-RCNN
to locate the nuclear region and finally used ResNet101 to grade the
samples. Xu et al. (2019a) have used the deep model to learn useful
features directly from input fundus images for grading the cataract and
employed the deconvolution network method to investigate how CNN
characterizes cataract layer-by-layer. Grammatikopoulou et al. (2019)
have proposed an approach for semantic segmentation in cataract
surgery videos. Zhang et al. (2020) proposed GraNet, a CNN-based
model, by introducing a point-wise convolution method to learn high-
level features for the classification of nuclear cataract from anterior
segment optical coherence tomography (AS-OCT) images. To the best
of our knowledge, no work has been reported which utilizes images
acquired in the NIR spectrum. The proposed work aims to use NIR eye
images as the input to cataract classification.

2.2. Literature on iris and pupil segmentation

The literature on iris and pupil segmentation in iris biometrics is
very rich. Starting with pre-deep learning approaches such as Daugman
(1993), Vatsa et al. (2008) and Zhang et al. (2010) to learning-based
approaches (Zhao and Kumar, 2015; Radman et al., 2017), most of
the algorithms focus on near-ideal eye imaging. In the recent lit-
erature, Convolutional Neural Network (CNN) based approaches are
more prevalent. These approaches provide an end-to-end mechanism
to search for optimal iris and pupil boundaries. Since segmentation
requires the model to correctly segment very fine regions such as iris
pixels occluded by eyelashes and specular reflections present in the
pupil or iris, the targeted models are designed for segmentation in non-
cooperative scenarios (Liu et al., 2016; Arsalan et al., 2017; Lakra et al.,
2018; Hofbauer et al., 2019; Hu et al., 2019; Wang et al., 2020). To the
best of our knowledge, there is no segmentation algorithm designed
for eye images affected due to cataract or post-cataract surgery. Ex-
isting algorithms which work well on normal eyes but may not work

properly due to the artifacts due to cloudy pupil (or any other medical
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Fig. 4. Presents the proposed architecture, 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 for iris and pupil segmentation in an unconstrained environment. The dotted boxes represent the pyramid structure. The
upsampling level increases in the 𝑥-direction, and the hierarchical level increases in the 𝑦-direction. The intermediate feature maps in L1–L5 levels present the different information
stored in each map which results in preserving the fine and global structure of the iris and pupil in the final output. (Best viewed in color). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
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Fig. 5. Illustrating the difference in the local information present in the intermediate
outputs when the feature maps are directly upsampled compared to the when the
upsampling is done in the proposed pyramid like fashion.

conditions), small punctures or irregularities in iris that may have
resulted due to cataract surgery, or pupil may be medically dilated.
In this research, one of the contributions is proposing a segmentation
algorithm that helps to segment iris and pupil boundaries in medically
affected eyes.

3. Proposed MTCD approach

The broad pipeline of the proposed MTCD algorithm is shown in
Fig. 3. The eye image acquired from the NIR camera is given as input
to the segmentation network. The segmented image is then used by
the multitask network for classification. In this pipeline, the segmenta-
tion algorithm has to be robust to address real-world challenges such
as specular reflections, eyelashes, de-pigmentation, irregularities due
to cataract and cataract-removal surgery. In this section, we present
the proposed PyramidNet for iris and pupil boundaries segmentation
followed by the classification network.
 T

3

3.1. Proposed PyramidNet for iris and pupil segmentation

Fig. 4 presents a diagrammatic representation of the proposed al-
gorithm. The input image is processed by the proposed algorithm
which produces its binary mask. This mask is multiplied with the
original input image to extract the region of interest with iris and pupil
boundaries.

The proposed algorithm uses DenseNet (Huang et al., 2017) as the
backbone network. Let the input image be 𝐼0 and 𝑃𝑡(⋅) be the non-linear
ransformation of the 𝑡th layer. Input to the 𝑡th layer is a concatenation
f all the feature maps from the preceding layers, 𝐼0, 𝐼1,… , 𝐼𝑡−1, i.e.,

𝑡 = 𝑃𝑡(𝑐(𝐼0, 𝐼1,… , 𝐼𝑡−1)) (1)

here, 𝑐(𝐼0, 𝐼1,… , 𝐼𝑡−1) denotes the concatenation of the feature-maps
roduced in layers 0,… , (𝑡𝑡−1). To allow down-sampling of the feature
aps, the DenseNet architecture has been divided into multiple densely

onnected blocks known as dense blocks. We represent the set of these
ense blocks as 𝐷𝑖

0 where the range of 𝑖 is from 1 to the total number
f dense blocks. For the task of image classification, DenseNet is trained
sing categorical cross-entropy loss function. In the proposed method,
enseNet has been used in the Pyramid Structure for iris and pupil

egmentation.

psampling using Pyramid Structure: Deep learning architectures
Arsalan et al., 2017, 2018; Lakra et al., 2018; Liu et al., 2016; Long
t al., 2015), directly upsample the intermediate outputs to the size
f the final predicted mask resulting in a coarse mask. Upsampling
ne resolution up, fusing with the previous intermediate output, and
ontinuing the upsampling process in this manner preserves the finest
etails. For instance, if the feature map of size 𝑛×𝑛 is directly upsampled
o 4𝑛 × 4𝑛, then the local structure is not fully preserved. However,
f the 𝑛 × 𝑛 feature map is first upsampled to 2𝑛 × 2𝑛 followed by an
psampling to the size, 4𝑛 × 4𝑛, then the maximum local structure is
reserved. We refer to this kind of upsampling procedure as upsampling
n a pyramidic manner. Fig. 5 presents the difference in the feature
aps fused to create the final output.

As shown in Fig. 4 we first reduce the number of channels of each
ense block, 𝐷𝑖

0 to two and consider the segmentation as a two-class
emantic segmentation problem, viz. iris class and background class.

his creates the first deep pyramid structure. Each deep pyramid is
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Fig. 6. Illustrating the process of calculating the loss that is back-propagated through
the segmentation network.

represented as 𝑓 𝑖
𝑗 where 𝑖 denotes the hierarchy of the feature maps in

the 𝑦-direction, and 𝑗 represents the upsampling level in the 𝑥-direction.
Stacking multiple such deep pyramids creates a structural pyramid where
each level is represented as Lr, where 𝑟 is equal to the number of deep
pyramids.

Deep Pyramid: As represented in Eq. (2), the output of each of the
ense blocks is convolved with a 1 × 1 kernel to reduce the number of

channels to two. This convolution operation sets the beginning point
of our upsampling path and creates the first deep pyramid, symbolized
s 𝑓 𝑖

1 where the range of i is from 1 to the number of outputs in a
ierarchical level, in this case, the maximum value of i is equal to the
umber of blocks present in the base architecture. Mathematically, 𝑓 𝑖

1
epresents the set of feature maps present in this level, [𝑓 1

1 ,… , 𝑓 𝑛𝐵𝑙𝑜𝑐𝑘𝑠
1 ],

here nBlocks is equivalent to the number of dense blocks in the base
rchitecture.

1
𝑖 = 𝐶𝑜𝑛𝑣1×1(𝐷0

𝑖), 𝑤ℎ𝑒𝑟𝑒, 𝑖 ∈ [1,… , 𝑛𝐵𝑙𝑜𝑐𝑘𝑠] (2)

The next deep pyramid, whose set of feature maps is represented
s [𝑓 1

2 ,… , 𝑓 𝑛𝐵𝑙𝑜𝑐𝑘𝑠−(𝑗−1)
2 ] utilizes [𝑓 1

1 ,… , 𝑓 𝑛𝐵𝑙𝑜𝑐𝑘𝑠
1 ]. It is mathematically

efined as:

2
𝑖 = 𝑓 1

𝑖 ⊙𝐷𝑒𝑐𝑜𝑛𝑣(𝑓 1
𝑖+1),

𝑤ℎ𝑒𝑟𝑒, 𝑖 ∈ [1,… , 𝑛𝐵𝑙𝑜𝑐𝑘𝑠 − 1] (3)

here the ⊙ symbol denotes a set of fusion operations to combine the
eature maps. After deconvolution, the upsampled features maps are
oncatenated with the features maps of the previous hierarchical level.
fter this, a 3 × 3 convolution filter is applied to this two-channel
utput. This convolution operation is done for two reasons. Firstly, it
educes the aliasing effect that may have occurred due to upsampling of
ower resolution feature maps. Secondly, it helps in removing the noise
resent in the higher resolution feature maps. Due to the concatenation
peration, the number of channels in the fused output increases from
wo to four. To reduce the number of channels back to two, we apply
× 1 convolution on the fused output. We continue fusing the outputs

f each of the deep pyramid until the hierarchy level becomes the same
s the number of blocks. Mathematically, every deep pyramid can be
efined as:

𝑗
𝑖 = 𝑓 𝑗−1

𝑖 ⊙𝐷𝑒𝑐𝑜𝑛𝑣(𝑓 𝑗−1
𝑖+1)𝑤ℎ𝑒𝑟𝑒,

𝑗 ∈ [2,… , 𝑛𝐵𝑙𝑜𝑐𝑘𝑠], 𝑖 ∈ [1,… , 𝑛𝐵𝑙𝑜𝑐𝑘𝑠 − (𝑗 − 1)] (4)

here 𝑖 denotes the hierarchy of the feature maps in the 𝑦-direction,
nd 𝑗 represents the upsampling level in the horizontal upsampling
ath. Due to the fusion of feature maps, the number of hierarchy levels
eeps decreasing as we move forward in the horizontal upsampling
ath.

As shown in Fig. 4 it can be observed that each deep pyramid con-
tains varied information. The feature map set of the highest hierarchical
level has the maximum resolution. It contains maximum noise along
with very fine details of the iris. The last hierarchical level feature
map set of least resolution contains minimum noise and preserves the
maximum global iris and pupil structure. Hence, when these feature
maps are fused to create the next deep pyramid, the maximum amount
of noise is removed while keeping the local and global iris and pupil
 c

4

Fig. 7. Multitask classification network for cataract classification.

tructures intact. Further, the total computation cost while adding
he feature maps is minimal. Consequently, accurate masks can be
btained without introducing too many overhead parameters to the
ase network.
Structural Pyramid: Fusing all the deep pyramids in the proposed

anner creates a structural pyramid. Each level of structural pyramid
ontains feature maps of the same resolution and is represented as
r, where r is equivalent to the number of deep pyramids. It can be
isually seen from Fig. 4 that each set of feature maps in a particular
tructural pyramid level presents different information towards the final
rediction. For instance, in level 𝐿5 (represented in Magenta), some
eature maps preserve the edge information, whereas others preserve
he global structure of the iris and pupil, resulting in an accurate mask.

ris and Pupil Mask Prediction: Once we have only one set of feature
aps in the deep pyramid, it is flattened and softmax is applied to obtain
er-pixel classification, i.e.

(𝑦 = 𝑗|𝛩(𝑖)) =
𝑒𝑥𝑝

(

𝛩(𝑖)𝑥(𝑝,𝑞)
)

∑𝑘
𝑗=0 𝑒𝑥𝑝

(

𝛩(𝑖)
𝑘 𝑥(𝑝,𝑞)

) (5)

where, 𝑘 represents the number of classes, viz. two in our case and
𝛩(𝑖) symbolizes the softmax parameters and the probability map, 𝑃 (𝑦 =
𝑗|𝛩(𝑖)) is achieved. To get the eye mask, each pixel is allocated the
channel with the highest probability. Fig. 6 illustrating the process of
predicting the mask. Finally, a binary morphological post-processing
is performed where the mask is first dilated, followed by erosion
operation. Finally, the eroded output is multiplied with the original
image to generate a region of interest, i.e. eye region only.

3.2. Cataract classification using multitask learning

For the given problem of cataract detection, a segmented eye can
be healthy or unhealthy and if unhealthy, it can be a cataract or any
other disorder. The cataract affected eye may further be categorized
into pre-cataract surgery or post-cataract surgery. In this research, we
present this problem as a multitask learning problem with the following
two tasks:

• Task 1 (T1): the first task is to classify the input image into one
of the classes: 𝑦𝑇1 ∈ {healthy, unhealthy}

• Task 2 (T2): second task is to classify the input image into three
classes, i.e. 𝑦𝑇2 ∈ {pre-cataract, post-cataract, others2}.

Multitask learning can be accomplished in various ways, such as
oint learning of multiple related tasks Liu et al. (2019) and learning
uxiliary tasks to support main task (Liebel and Körner, 2018). Due to
vailability of limited number of images in the dataset, we have per-
ormed transfer learning. Pre-trained ResNet50 (He et al., 2016) is used

2 The ‘others’ class consists of samples which are neither affected by
ataract nor by surgery.
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as the base model and it is trained for learning feature representations
for cataract detection.

Fig. 7 illustrates the block diagram of the proposed multitask net-
work. To train this network, joint optimization of the losses pertaining
to these two tasks are performed. The final loss function is computed as
the weighted sum of two classification losses. We have used the binary
cross-entropy (BCE) loss and categorical cross-entropy (CCE) loss for
Task 1 and Task 2, respectively. The two individual losses and the final
loss are defined as follows:

𝐵𝐶𝐸 = −𝑦𝑇1 𝑙𝑜𝑔(𝑝) − (1 − 𝑦𝑇1 )𝑙𝑜𝑔(1 − 𝑝) (6)

𝐶𝐶𝐸 = −
3
∑

𝑖=1
𝑦𝑖𝑇2 𝑙𝑜𝑔(𝑦

𝑖
𝑇2
) (7)

𝐹 𝑖𝑛𝑎𝑙𝑙𝑜𝑠𝑠 = 𝜆 ∗ 𝐵𝐶𝐸 + 𝐶𝐶𝐸 (8)

where, i is the class index and p is the class probability.

3.3. Implementation details

This section provides the implementation details of the proposed
approach.

Segmentation Network: The proposed segmentation architecture,
𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 utilizes the DenseNet model with 43 convolution lay-
ers and is trained from scratch using the CASIAv4-distance dataset,3
UBIRISv2 (Proença and Alexandre, 2005) and IIITD Cataract Surgery
dataset (Nigam et al., 2019). The model is trained for 60 epochs using
adaptive moment estimation (Kingma and Ba, 2014), Adam optimizer
with initial learning rate of 0.001. During training, contrast normal-
ization and flip operations are used to augment the dataset size by 10
times. For contrast normalization, 5 different contrast factors have been
used. Size of the input images for all the datasets in the NIR spectrum is
640 × 480. The ROI is extracted using SegDenseNet (Lakra et al., 2018).
After extraction of ROI the size of the image reduces to 224 × 224
which is then fed into the proposed 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡.

Classification Network: For training the classification network, we
have used IIITD Cataract Surgery, IIITD alcohol and (the proposed)
pupil dilation datasets. The cataract samples (pre-cataract and post-
cataract surgery) are considered as unhealthy for Task 1 and then two
separate classes in Task 2. The other two datasets are used as the
healthy class (more details about the dataset are in the next section).
For Task 1 and Task 2, we have used sigmoid and softmax activation
functions, respectively. For feature extraction, transfer learning concept
is utilized where pre-trained (on ImageNet dataset) ResNet50 is used
as the base model and fine-tuning is performed on the train sets of
the above mentioned datasets. As shown in Fig. 4, a global average
pooling (GAP) layer and two fully connected (FC) layers are added
on the pre-trained ResNet50 model. These two fully connected layers
are added for the two classification tasks, Task 1 and Task 2. The best
results are obtained with a model trained on 100 epochs with a learning
rate of 0.00001, 𝜆 = 0.5, Adam as an optimizer, and a batch size of
4 on NVIDIA V100 32GB GPU. To achieve better generalization, we
have also performed data augmentation with contrast normalization by
various factors and flip operations, which increased the dataset size by
five times.

4. Datasets

The proposed deep learning based segmentation and classification
method is evaluated on three datasets, viz., IIITD Cataract Surgery
(Nigam et al., 2019), IIITD Alcohol (Arora et al., 2012), and on the
proposed Pupil Dilation dataset. These datasets are chosen since they

3 http://biometrics.idealtest.org/dbDetailForUser.do?id=4
5

Table 1
Characteristics of the proposed Pupil Dilation dataset.

Characteristics Pupil Dilation

Sensor Vista Sensor
Environment Indoor
Sessions Two
No. of individuals 88
No. of images 276 (pre) and 276 (post)
Resolution 640 × 480
Challenges Excessive dilation due to the administered eyedrops.

comprise various covariates of eye image, making them suitable choices
for evaluating the efficiency of the proposed models.

Pupil Dilation Dataset: The proposed dataset contains images show-
casing variations due to Pupil Dilation. Tropicacyl Plus, a prescription
drug used to treat paralysis of the ciliary muscle and dilate pupils before
and after ophthalmic surgery, is used to create the dataset. The dataset
consists of 528 images acquired from human subjects before and after
the medicine is administered by the ophthalmologist. The pupil dilation
dataset contains 528 images, 264 pre-eyedrop treatment and 264 post-
eyedrop treatment images of 44 subjects. Fig. 8 shows sample images
acquired pre and post eyedrop treatment. Table 1 presents various
characteristics of the images. To the best of our knowledge, this is
the first dataset of its kind and is released to the research community
via http://iab-rubric.org/resources.html. For experiments, 50 samples
are used for testing while the remaining form the training set. After
augmentation, the number of training samples is 1815.

IIITD Cataract Surgery Dataset contains 880 samples from 132 in-
dividuals, 440 each representing catarct and post cataract surgery
samples (represented as pre and post cataract surgery). 100 samples
from both the classes are kept in the test set and the remaining comprise
the train set. After augmentation, the number of training samples is
4080.

IIITD Alcohol Dataset Arora et al. (2012) studied the effect of alcohol
on pupil dilation/constricts. The pupil dilates/constricts due to intake
of alcohol which results in affecting the iris recognition performance.
Also, it is clearly shown in Fig. 8 (row c and d) how the alcohol can
affect the size of the pupil which in turn can affect the iris recognition.
More details about this dataset can be found in Arora et al. (2012).
This dataset contains 440 images pertaining to 110 subjects. Of these,
50 randomly selected samples are used for testing, while the remaining
comprise the training set. After applying the augmentation, the number
of training samples is 1170.

Data Preparation: For learning the segmentation model, we have pre-
trained the model on the CASIAv4-distance and UBIRISv2 (Proença and
Alexandre, 2005) datasets and then IIITD Alcohol and IIITD Cataract
Surgery datasets are used for fine-tuning. For learning the cataract
classification model, the ImageNet pre-trained base model is used and
then IIITD Alcohol, IIITD Cataract Surgery, and the proposed Pupil Di-
lation datasets are used. Data augmentation is applied so as to minimize
the data imbalance problem. IIITD Alcohol and Pupil Dilation datasets
belong to one class, and the IIITD Cataract Surgery belongs to the other
class, thus making the overall data balanced. Ground truth segmen-
tation masks for iris and pupil have been manually annotated using
Adobe Photoshop. We will release the proposed database, annotations,
and train–test partition details via http://iab-rubric.org/.

5. Experimental results

The performance of the proposed MCTD approach is presented in
two parts, (i) segmentation and (ii) classification. The effectiveness of
the algorithm is compared by varying the base model and comparing
the results with existing algorithms. We have also performed an abla-
tion study to demonstrate the effectiveness of various components of

the algorithm.

http://biometrics.idealtest.org/dbDetailForUser.do?id=4
http://iab-rubric.org/resources.html
http://iab-rubric.org/
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Fig. 8. Sample images: (a) and (b) are pre and post cataract surgery; (c) and (d) are
pre and post alcohol; (e) and (f) are pre and post pupil dilation from the Pupil Dilation
dataset.

5.1. Segmentation performance

The performance of the segmentation algorithm is measured using
the average classification error rate proposed in the NICE-I competi-
tion (NICE.I).

𝐸𝑟𝑟𝑜𝑟 = 1
𝑁 × 𝑚 × 𝑛

𝑚,𝑛
∑

𝑖,𝑗=1
𝑀 𝑡𝑒′

𝐺 (𝑖, 𝑗)⊕𝑀 𝑡𝑒′
𝑃 (𝑖, 𝑗) (9)

where, 𝑀 𝑡𝑒′
𝐺 , 𝑀 𝑡𝑒′

𝑃 , 𝑁 , 𝑚 and 𝑛 denote the ground truth mask, the
predicted mask, total number of test samples, height, and width of
the mask, respectively. The logical exclusive-OR operator calculates the
correspondent disagreeing pixels’ proportion between the ground truth
and the predicted segmentation mask. We compare results with a non-
deep learning method (Zhao and Kumar, 2015) and two deep learning
methods: IrisParseNet (Wang et al., 2020), and SegDenseNet (Lakra
et al., 2018).

Fig. 9 shows the sample results on the IIITD Cataract Surgery
dataset where the masks are overlaid on the iris and pupil regions.
These examples show that the proposed algorithm is able to detect
the fine boundaries of iris and pupil region. Table 2 presents segmen-
tation errors obtained from the proposed algorithm and the existing
algorithms. The percentage error has reduced by 21.4%, 11.9%, and
31.8% (from the next best performing model on these datasets) on
the IIITD Cataract Surgery, IIITD Alcohol, and Pupil Dilation datasets,
respectively compared to existing techniques. It is observed that the
proposed method yields state-of-the-art accuracies on all these datasets.
Further, Fig. 10 compares the performance across the methods based on
the classification accuracy. It can be observed that the proposed method
is able to classify each iris pixel more accurately compared to existing
deep learning methods for iris segmentation.

Fig. 11 shows sample masks generated by the proposed method
and comparison with existing algorithms on the three datasets. As can
be visually observed, the proposed method can predict very accurate
masks, implying that it preserves both global and fine structures of the
iris and pupil. The first row shows how the model can segment the
6

Fig. 9. Illustrating the segmentation output by FCN-8s (first row) and the proposed
𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 (second row) algorithms on the IIITD Cataract Surgery dataset. The masks
are overlaid on the images to visually demonstrate segmentation with respect to the
iris and pupil boundaries. The results demonstrate that the proposed algorithm yields
finer boundaries compared to FCN-8s approach.

Fig. 10. Showcasing the classification accuracy of existing and proposed segmentation
methods on the datasets used in the paper.

iris region even when it is severely occluded by reflection. Further,
all the masks predicted by the proposed method have fine-details,
such as removing areas secluded by fine eyelashes. Also, unlike the
SegDenseNet (Lakra et al., 2018), the proposed method can predict the
mask for sample images of the IIITD Cataract dataset, which contains
bubbles. It is our assertion that the proposed method can overcome
this because upsampling in pyramid fashion preserves both the local
and global structures. Further, as shown in Fig. 11, when the contrast
difference between the iris and the sclera region is extremely low, the
proposed algorithm is still able to detect the boundaries. It can be
directly observed that both SegDenseNet (Lakra et al., 2018) and Zhao
and Kumar (2015) fail to segment the boundaries correctly. However,
𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 can handle these cases with great precision because it re-
stores the information in a pyramid manner. The fine edge information
and global structure present in the structural pyramid 𝐿5 when fused can
accurately predict the boundaries even when the contrast difference is
extremely low.

We also compare the performance of the proposed algorithm with
the FCN architecture (Long et al., 2015). In this approach, a deconvo-
lution operation has been used to upscale the image and combine with
the previous layer output feature maps. However, in the 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡
architecture, the second and third blocks of the DenseNet (as shown
in Fig. 4) are utilized in two ways. This results in multiple feature
maps of the same resolution. Combining these incorporates both the
coarse and fine structures of iris and pupil in the segmentation pro-
cess. The difference between the proposed 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 and FCN-8s
outputs has been shown in Fig. 9. The results for FCN-8s are com-
puted using our implementation of FCN-8s. On the cataract dataset,
FCN yields 1.35% segmentation error and 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡 achieves 0.77%
segmentation error. This comparison shows that for iris and pupil
boundary segmentation, it is imperative to combine feature maps at
each upsampling level.
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Table 2
Comparisons of the proposed and existing iris segmentation techniques using average segmentation error (%). For fair comparison no
post-processing is performed for Wang et al. (2020).
Method IIITD Cataract Surgery IIITD Alcohol Pupil Dilation

IrisParseNet (Wang et al., 2020) 9.87 3.06 8.16
(Zhao and Kumar, 2015) 6.28 8.51 7.67
SegDenseNet (Lakra et al., 2018) 0.98 1.42 3.46
Proposed Method 0.77 1.25 2.36
Fig. 11. Showcasing the results of iris segmentation on multiple datasets. (a) The input image; masks obtained by (b) Zhao and Kumar (2015) method, (c) SegDenseNet (Lakra
et al., 2018) (the next best performing deep learning approach), (d) proposed PyramidNet, and (e) ground truth.
T
C
(

kra
To further show the efficacy of each component of 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡
rchitecture, ablation study is performed. In the proposed method the
umber of structural levels is equivalent to the number of dense blocks
resent in the base architecture. To understand the effect of each
tructural pyramid level on the final output, we have computed the
egmentation error. In our ablative study, the least segmentation error
s achieved when all the dense blocks are used for building the structural
yramid. This is so because for iris and pupil segmentation both global
nd fine structures must be preserved. It is our assertion that maximum
mount of fine structure is preserved by the output of the first level of
he structural pyramid and the maximum global information is stored
n the last i.e. fifth level of the structural pyramid. We have observed
hat there is a small decrease in segmentation error if the feature maps
btained at structural pyramid level 𝐿3 are directly upsampled to the
ize of the output image compared to upsampling of feature maps of 𝐿2
evel. However, on upsampling the feature map obtained at 𝐿5 level,
here is a significant decrease in the segmentation error because the
aximum amount of local information/the finest details of the iris and
upil are preserved in it.
 (

7

able 3
haracteristics of the models proposed for iris segmentation. Details for Wang et al.
2020) have been directly taken from the paper.
Algorithms Model size (MB) No. of parameters (M) Test time (sec)

IrisParseNet
(Wang et al., 2020) 119.0 31.28 0.15
SegDenseNet
(Lakra et al., 2018) 57.30 8.00 0.024

Proposed PyramidNet 11.9 0.92 0.017

The proposed PyramidNet has significantly lower number of param-
eters compared to IrisParseNet (Wang et al., 2020) and SegDenseNet (La
et al., 2018)4. As shown in Table 3, the number of parameters has
reduced by 30 times and the size of the model has reduced by 10 times.
Further, the testing time of PyramidNet is also the least. It yields state-
of-the-art results on three datasets and is the optimal model both in

4 Parameters are calculated using our own implementation of Liu et al.
2016) methods
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Table 4
Summarizes the performance of the proposed approach of multitask eye image classi-
fication by changing the segmentation algorithm. We used SegDenseNet (Lakra et al.,
2018) as a baseline and replaced it with the proposed PyramidNet, which outperformed
the baseline results. It is also evident from the table that the post-processing step on
the segmentation masks of PyramidNet improves the overall performance of both the
tasks.

Segmentation Algorithms Accuracy (%) Precision Recall F1 score

Baseline T1 97.34 0.96 0.97 0.97
SegDenseNet T2 92.34 0.92 0.92 0.92

PyramidNet T1 100 1.0 1.0 1.0
T2 95.67 0.96 0.96 0.96

PyramidNet + T1 100 1.0 1.0 1.0
Post-Processing T2 96.67 0.97 0.97 0.97

terms of computation cost and memory consumption. To be uniform, all
the algorithms are implemented and run on the same machine, keeping
all the configurations same.

5.2. Cataract classification

The cataract classification performance is reported in terms of the
classification accuracy, precision, recall, and F1 score. The output of
segmentation algorithm, i.e. segmented iris and pupil region, is used
as input to the classification algorithm. For comparison, we have used
SegDenseNet (Lakra et al., 2018) approach (2nd best segmentation
approach — from Table 2). Further, in order to showcase the effect
of binary morphological operations (post-processing) after the pro-
posed PyramidNet, we have shown the results with and without post
processing. Table 4 summarizes the results of the proposed multitask
classification algorithm with three segmentation approaches. It can
be clearly observed that PyramidNet yields improved performance
compared to the baseline results of SegDenseNet. PyramidNet differen-
tiates between the healthy and unhealthy classes with 100% accuracy.
Further, PyramidNet with post-processing does not deteriorate the
performance in Task T1 but improves the classification performance
in Task T2. For differentiating between the diseased classes, i.e., task
T2, PyramidNet with post-processing yields an error of only 3.3%. An-
alyzing the precision and recall, we have observed that both precision
and recall of healthy class is 1. This result is due to the fact that there
is no overlap between the samples of healthy and unhealthy classes. It
is further supported by Table 5 (confusion matrix) that very few pre-
cataract and post-cataract samples are misclassified into each other.
Interestingly, among the remaining two classes, the precision of post-
ataract class is lower than the others class, while the recall of the
ost-cataract class is higher than the others class. After post-processing,
he overall performance and precision of post-cataract performance
mproves, however, the recall reduces marginally by 0.03.

Fig. 12 shows the tSNE plots of the healthy and unhealthy classes
Task 1), the first one is for the image space and the second one is for
he feature space. It is observed that the affected class (pre and post
ataract) is well distinguishable from the healthy class. Fig. 13 shows
he sample results of the proposed method. In the experiments, for Task
, we have observed that some of the pre-cataract and post-cataract
amples are misclassified with each other (as shown in Table 5).

We next analyze the effect of base model, learning rate, and number
f epochs:

ffect of changing the base model: For cataract classification, the
erformance of different deep learning models, viz. InceptionV3 (IV3)
Szegedy et al., 2016), VGG16 (Simonyan and Zisserman, 2014),
esNet50 (RN50), and DenseNet121 (DN121) are compared. As re-
orted in Table 6, ResNet50 outperforms all other architectures for both
he tasks and is an effective choice as a base model.

hanging the learning rate: In this experiment, the learning rate is

aried from 0.01 to 0.000001. We observe that the learning rate of

8

Table 5
Illustrates the confusion matrix for the two tasks.

Predicted/Actual Healthy Unhealthy

Task 1 Healthy 1.0 0.0
Unhealthy 0.0 1.0

Predicted/Actual Pre-Cataract Post-Cataract Others

Task 2
Pre-Cataract 0.96 0.4 0.0
Post-Cataract 0.6 0.94 0.0
Others 0.0 0.0 1.0

Table 6
Shows the F1 scores obtained by varying the pre-trained models on the two tasks T1
and T2.

Model VGG16 IV3 DN121 RN50

T1 1.0 0.96 0.99 1.0
T2 0.94 0.84 0.91 0.97

Fig. 12. Illustrating the tSNE plot for Task 1: left plot shows the samples in the original
image space and the right plot shows the samples in the feature space.

Fig. 13. Shows some correctly classified and misclassified samples from the dataset
(best viewed in color). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

0.00001 outperforms the others yielding 100% test accuracy for Task
1 and 96.67% accuracy for Task 2.

Changing the number of epochs: We have also evaluated the per-
formance by varying the number of epochs, and reported the results.
It is shown that 100 epochs with learning rate = 0.00001 yields the
best results for this classification problem. If we increase the number
of epochs by 20, the results remain the same, beyond which the model
starts overfitting.

6. Conclusion

Cataract is one of the primary causes of visual impairment world-
wide and cataract surgery is the most common surgical interven-
tion. Typically, the prognosis, regular monitoring, and the decision of
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whether a patient should be taken up for surgery mostly depends on
the discretion of the ophthalmologist. In resource constrained settings
with limited experts, it is very important to have a clinical decision-
support technique to improve sensitivity and specificity of cataract
detection and monitoring. This paper presents a deep learning algo-
rithm for cataract detection. To the best of our knowledge, this is the
first work which proposes to use near infrared eye images, popularly
used in iris biometrics, for cataract detection. A deep learning-based
architecture, 𝑃𝑦𝑟𝑎𝑚𝑖𝑑𝑁𝑒𝑡, is proposed for segmenting iris and pupil
boundaries where the model fuses the coarse and fine information
extracted from convolution blocks at different levels in a pyramid-like
fashion. The segmented iris and pupil regions are then used for cataract
classification via a multi-task network. Experiments performed on the
cataract dataset show that (i) effective cataract detection is possible
in NIR domain, (ii) the proposed segmentation algorithm is effective
in detecting iris and pupil boundaries even with challenging scenarios,
and (iii) the overall cataract detection performance encourages such
an approach to be used in automated decision support system. It is our
assertion that the findings of this research and the availability of our
datasets, will spur further research in this domain.
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