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Abstract— In the COVID pandemic situation, crowd counting
became one of the tools to monitor if the social-distancing norms
are being followed or not. However, in designing crowd counting
algorithm, there are several challenges such as background
noise, camera-to-objects distance, occlusion, and variations
due to illumination, scale, and viewpoint. In this research,
we propose a novel pipeline for density estimation in crowd
counting. The proposed pipeline makes use of an encoder-
decoder-based architecture in which we explore the family of
EfficientNets for the encoder architecture. For the decoder, we
propose a deeper attention network to assist the model in a
better distinction between foreground and background pixels.
We empirically show that for a crowd counting dataset, the use
of average pooling operation for any backbone architecture
of encoder gives a significant improvement in performance.
In terms of Mean Absolute Error, the proposed pipeline
outperforms existing state-of-the-art techniques by a large
margin on large-scale and small-scale counting datasets, UCF-
QNRF and UCF_CC_50 dataset. We also achieve state-of-the-art
results on the ShanghaiTech and Mall datasets. We additionally
propose a crowd counting dataset captured using drones. We
perform benchmark experiments on this dataset with existing
and the proposed methods.The proposed dataset can be found
at http://www.iab-rubric.org/resources/CrowdUAV.html.

I. INTRODUCTION

Counting the number of people in a crowd through an
image or video is a tedious and challenging task in computer
vision. This is due to the occlusion of heads in the image,
scale variation due to distance from the capturing device,
variation in the orientation of capturing the input, and vari-
ation in illumination conditions. Some of these challenges
have been illustrated in Fig. 1. The early work on crowd
counting through deep learning includes head detection [23],
[34] in which the count is estimated through detecting the
heads in a crowd. However, such techniques fail in densely
crowded regions. Other techniques for count estimation is
direct count regression [22] where image features are fed to
fully-connected regression layers or to a regression support
vector machine [22]. These regression models directly pre-
dict the count of people in an input image. Such techniques
generally lack explainability and do not generalize well in
real-world scenarios.

The recent trend in crowd counting through aggregating
density maps still prevails and predominates other algo-
rithms. The technique of count estimation through density
maps was first introduced by Lempitsky Zissermann[13] and
has become the de-facto approach for crowd counting. For
a given annotation map, a density map is generated using
the convolution of original labels with a Gaussian kernel,
the sum of which results in the crowd count. Recent works
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Fig. 1.

Challenges observed in crowd counting datasets.

for the crowd counting problem emphasize designing multi-
column architectures [2], [33] and incorporating attention
mechanisms [21], [32] to reduce the influence of background
information and manage attention towards the crowd propor-
tional to its density. Segmentation maps generated through
point annotations are also being used for adding attention to
networks [30].

In this research, we propose a novel encoder-decoder-
based pipeline with a combination of attention and regression
networks for crowd counting via density map generation. In
the encoder, we show the effectiveness of average-pooling
layers with the chosen backbone architecture. The feature
maps from the encoder are fed to a decoder network and
a regression network. The decoder network consists of
an attention sub-network and density map generator sub-
network. Since the crowd datasets contain a large amount
of background noise, the attention network in the decoder
forces the model to focus on relevant foreground features
only. For training, the loss from the regression network is
added to the loss obtained from the generated segmentation
and density maps.

We also propose a novel dataset called CrowdUAV for
crowd counting. The CrowdUAV dataset is captured using a
drone or Unmanned Aerial Vehicle (UAV) from various alti-
tudes and viewpoints under diverse illumination conditions.
Recently, a large-scale drone-based database DroneCrowd
was introduced [31]. It contains videos captured at different
illumination, scale, and densities. While the database has ex-
tensive annotations for various tasks such as object detection,
tracking, and counting, it is fairly limited in image viewpoint.
In the proposed dataset, we cover various viewpoints and
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at a much lower altitude. The crowd density varies from a
minimum of 3 people per frame to a maximum of 191 people
per frame. We provide benchmark results using existing and
proposed algorithms for the dataset.

II. RELATED WORK

Various approaches have been proposed for crowd count-
ing in the literature such as detection-based, regression-
based, convolutional neural networks, density map estimation
and attention-based mechanisms.

Detection-based techniques Early works on crowd counting
are based on estimating count through detection of different
body parts of a person [5]. Object detectors such as RCNN
,YOLO and SSD were used for detection. This was efficient
only for low density images and could not perform well
on dense crowd images. Bounding box annotation for such
techniques is also a time consuming task.
Regression-based techniques Regression-based techniques
directly estimate the count of people from a patch of image.
This method involves extracting global [4] and local [19]
features from images, and then uses some regression function
to learn the image to count mapping.

Density map estimation techniques Due to the limitations
of regression based techniques, density map based crowd
counting techniques were introduced [13].

CNN-based techniques The density map estimation was
improved using Convolutional Neural Networks (CNNs) [6].
Initial work used basic CNN models for density map gener-
ation [27], [29]. Multi-column network architectures usually
adopt different columns to capture multi-scale information
corresponding to different receptive fields which worked well
in handling high scale variation in images. MCNN [33],
Switching-CNN [1], DadNEt [8] and CrowdNet [2] are some
examples of Multi-column architecture. Deeper CNNs are
also used in crowd counting [3], [14] .

Multi-task techniques Multi-task architectures employing
multi-task learning are also popular which combine density
generation with detection and segmentation. Some of these
multi-task architectures are DecideNet [15], PCCNet [7].

Attention-based techniques Attention networks using
segmentation maps are also being actively used for crowd
counting, to focus on important features of images. Some
models use it for detecting heads in the image [32], while
some are used for foreground-background separation in
crowded images. Scale variation is also handled by different
attention models [12], [26].

III. PROPOSED AECNET APPROACH

In the proposed network, we make use of an encoder-
decoder architecture with a regression neural network. We
start by addressing the problem of scale variation in the
crowd density estimation datasets by taking the 224x224
size RGB image from a mini-batch of size 24. We then gen-
erate two scaled versions of the same image. As image pre-
processing steps, we augment the images in the mini-batch
by horizontal mirroring, varying the contrast and rotating the
image by 5° in both clockwise and anti-clockwise direction

followed by Gaussian smoothing. The input image is divided
into four patches which are given as input to the model.
These input images are fed to the EfficientNet [24] based
encoder. The feature maps from this encoder are fed to a
decoder architecture and a regression neural network. Fig. 2
illustrates the entire pipeline of proposed EACNet and the
algorithms are explained in the following sections.

A. Encoder

Deep Convolutional Neural Networks have been used
as encoders to extract features from crowd images in the
literature. These features are then consumed to generate
crowd predictions. Various backbone models have been ex-
plored to extract features from crowd images like VGG16
[8], Inception-V3 [30] among others. This paper makes the
first attempt to use the family of EfficientNets [24] as the
backbone model due to its high accuracy and better efficiency
over existing CNNs. Since the datasets for crowd counting
are generally small (due to tedious annotation), we use
EfficientNet-BO or EfficientNet-B1 as the backbone feature
extractor to prevent overfitting.

Generally, the crowd datasets are point annotated repre-
senting the head of a person in the given image. We observe
that the heads in the images for crowd counting are usually
of relatively darker pixels. Inspired by this observation, we
propose to use average pooling layers. Since max-pooling
layers propagate brighter pixels better, they are less likely
to provide important information represented in head pixels.
With this notion, we add some average pooling layers in
the encoder of the proposed network. This transmits the
pixels indicating heads which provides for better feature
representation. This effect is further studied in Section V-
C. The features F°" from the encoder are then utilized by
the decoder network and the regression neural network.

B. Decoder

The decoder network utilizes the features F* from
the encoder network to output the segmentation map
M? € {0,1}"W*H and density map M? € RW*H where W
and H are the width and height of the image. We begin
with using Pixel Shuffling [20] for upsampling the feature
map which rearranges the pixels to obtain features with
higher dimensions. This operation is performed to reduce
the risk of error probability caused by bilinear interpolation.
After pixel shuffling, we employ the Transpose Convolution
layers (TConv layers) in the decoder network. The output
from TConv layers is then passed onto two modules: 1) the
Attention Network (AN) and 2) the Density Map Generator
(DMG). The Attention Network is used to generate the
segmentation map corresponding to a given image and is
used for foreground-background separation. The Density
Map Generator outputs the density map.

Attention Network: We employ a deeper attention network
consisting of two transpose convolution-based attention lay-
ers followed by a sigmoid activation. A max-pool layer is
sandwiched between the two attention layers to propagate
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Fig. 2. The steps involved in the proposed AECNet. AECNet uses scaling in image space and EfficientNet-BO with average pooling layers as the backbone
for the encoder network. The extracted features from this encoder network are given to 1) the decoder network. The decoder uses pixel shuffling, transpose
convolution, Attention Network (AN), and Density Map Generator Network (DMG) and outputs the segmentation map and the density map. 2) A regression
neural network that predicts the head count in the input image. We combine the losses from both networks to train the entire network.

only the most sensitive information to the next attention
layer. Here each transpose convolution layer is followed
by a 1 x 1 convolution operation and we term it as the
attention convolution layer (AConv layer). For this, we give
the feature maps from the second last decoder layer F'~—2
into the attention network. We employ the segmentation map
as an attention map to focus on the foreground consisting of
point-annotated heads while ignoring the background region.
These generated segmentation maps are then compared with
the ground-truth segmentation maps, and the Binary Cross-
Entropy Loss Lgyyy, is calculated. The attention network is
partly inspired by the work of [30].

M? = o(((F'~% ® AConv,) ® Maxpool) ® AConvy) (1)

This output generated from the attention network is the
segmentation map of the given image. Next, we take the
Hadamard product of the output segmentation map M?® with
the feature maps F'™1, i.e., the feature maps from the last
TConv layer and give it as an input to the DMG module.

Fl=M*GOF"! 2)

The segmentation map generated from the attention
network has pixel values of 1 where the person can be
identified and O elsewhere. This brings attention in the final
feature map by magnifying the weights of the locations
where persons exist in the crowd. In other words, this
attention mechanism forces the model to focus more on the
foreground and neglect the background region in the image.

Density Map Generator (DMG): The other module in
the decoder network is the DMG which outputs the final

density map M?. The summation over this density map
is calculated to estimate the count of people in the input
image. For this, we make use of two convolutional layers
which input the attention-weighted feature map F'. Here,
the density loss L, is computed as the L2 loss between the
predicted density map and the ground truth density map for
training.

Regression Network: The regression neural network is a
multilayer perceptron that uses the flattened features from
the encoder and predicts a single value greater than or equal
to zero. The predicted value is the estimation of people in
the crowd, and we calculate the L2 loss L., between the
predicted value and the ground truth value.

C. Overall Loss

In the crowd counting datasets, the information corre-
sponding to the crowd image is the point head annotation
map Yy, € RW>H and the total number of people Yo € Z
in the crowd image. Here, the crowd counting problem is
formulated as a regression of the density map. We generate
the ground truth density map and segmentation map from
the available point head annotations. For the generation of
ground truth segmentation maps M’ and density maps Md,
we refer to [33]. We use a box matrix B, (x) of ones of size
n X n, centered at x for generation of segmentation maps
and Gaussian matrix G, for the generation of density maps.

N
M (z) = Yuy(z—2;) ® By() 3)
=1

Mz — ;) ® Gy(x) )

H'Mz



In the experiments, we set n = 25 as the size of box
matrix and o = 4 for the variance of Gaussian filter.

We enforce the binary cross-entropy loss between pre-
dicted segmentation maps M and the ground truth segmen-
tation maps Ms and call it Attention loss Lg¢n:

N
attn—_ ZMS@ZOQ MS) (1—Mf)@lOg(1—Mf)]

From the DMG module of the decoder, we calculate the L2
loss (referred as the density loss Lq) between the predicted
density map M, and the ground truth density map M ;:

1 N
Lg=——— M¢
= "oy 2 M

=1

- M{|[3 (5)

In parallel, the Mean Squared loss between the ground
truth count Y¢ and the value Y predicted from the regres-
sion neural network is calculated. This loss is termed as the
regression loss L,.g4, given by:

N
1 O 2
Lreg = — 5 ; Yo, — Yeull2 (6)

The total loss Ly, is calculated as the weighted sum of
the above three losses and the loss is backpropagated through
the entire network.

Liotar = AlLattn + AoLg + )\SLreg (7)
where \1, A2 and A3 are the hyperparameters. In the exper-
iment, the value of \; is set to be 100, A9 is 10 and, A3 is
0.5.

Implementation Details: We perform patch-wise training
by dividing an image into four equal parts. For each patch
of an image, we generate multiple augmentations followed
by Gaussian smoothing. For data augmentation, contrast
variation, horizontal flipping at 0.5 probability, and rotation
at 5 degrees is performed, and the variance is set to four for
smoothing. EfficientNet-BO and EfficientNet-B1 pre-trained
on the ImageNet dataset are used as backbone networks for
extracting features. We add three average pooling layers in
the backbone network after the 37%, 6" and, 8" MBCon-
vBlocks. We also replace these layers with max-pooling for
experiments in Section V-C. The network is trained using
Adam optimizer with an initial learning rate of le-4 for
200 epochs, and the learning rate is decayed after every 20
epochs.

IV. DATASETS AND EVALUATION METRICS

The results of the proposed algorithm have been evaluated
on several existing datasets and the proposed CrowdUAV
dataset. This section summarizes the details and protocols of
the databases.

A. Existing Databases

We have used four existing databases for evaluation.
ShanghaiTech [33] is one of the largest large-scale crowd
counting datasets in recent few years which consists of 1198
images with 330,165 annotations. It is divided into two parts
i.e, PartA and PartB. PartA has images with high crowd
density and consists of 300 training images and 182 testing
images, whereas PartB has 400 training images and 316
testing images with relatively lower density.

UCF_CC_50 [9] contains very high density 50 crowd images
which makes it a very challenging dataset. It was created by
scraping from publicly available web images. It is enriched
with high perspective and illumination variation. Since the
dataset contains only 50 images, a 5-fold-cross-validation is
performed for training and testing.

UCF_QNRF [10] is another challenging dataset, which
contains 1535 images with large scale variation and The
number of people in images ranges from 49 to 12,865. In
this dataset, images have different scenes and a wide variety
of viewpoints, densities, and illumination variations. 1201
images are used for training, and the remaining 334 images
are used for testing.

Mall dataset [4] is collected from a surveillance video
from a shopping mall, containing 2000 video frames having
62,325 annotations in total. We use 800 images for training,
and the remaining 1200 images are used for testing.

B. Proposed CrowdUAV Database

The CrowdUAV dataset is captured using a drone or
Unmanned Aerial Vehicle (UAV). The dataset contains 500
images with a maximum of 191 people and a minimum of
3 people in a single frame. The dataset offers variations
across pose, illumination, occlusion, and varying degrees
of density in images. Some samples from the database can
be seen in Fig. 4. In the CrowdUAV dataset, the images
have been captured at a much lower altitude compared to
the DroneCrowd dataset [31] and have a larger variation
in viewpoint. The dataset will be publicly released to the
research community.

Data Collection and Annotation: The data is collected
as videos using the DIJI Phantom-4 drone, which is a
high-end, entry-level professional drone. The videos have
been captured at a frame rate of 30fps, and at a resolution
of 720p. From the collected videos, frames are extracted
at a rate of 30fps. Each of the frames is of dimension
3840 x 2160. After removing the redundant and blurry
frames, we perform experiments on a total of 500 frames.
These frames are annotated by the point annotation method
using the online VGG annotator tool'. The annotations are
saved in MAT format for all the images.

Dataset Statistics and Protocol: The proposed CrowdUAV
dataset contains a total of 500 images. The dataset has been
partitioned into two disjoint sets. The training set contains

Uhttps://www.robots.ox.ac.uk/ vgg/software/via/via.html



Test Image

GT Density Map

Fig. 3.

Predicted Density Map

GT Segmentation Map Predicted Segmentation Map

Visualization of density maps and segmentation maps on images from different datasets. First row is a sample from ShanghaiTech Part-A, second
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Fig. 4. A snapshot of samples from the proposed CrowdUAV dataset.

70% of the total images i.e., 350 images, while the testing
set contains the remaining 150 images. The training and
test set contains a balanced combination of crowd densities,
illumination, and viewpoint variations. Table I provides the
statistics of the proposed dataset along with existing crowd
counting datasets.

SSIM and PSNR metrics are used to evaluate the quality of
generated density map. Crowd count is calculated by taking a
summation over all the pixels of the density map. Following
[18], [28], [30], Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are computed on the test set to evaluate
the performance of different models based on the predicted
and true crowd count.

N
1 .
MAE = =S Yo, — Ve, 8
N ;| c, c.il ¥
1 .
RMSE = N (Yc,i — YC,z‘)2 9
i=1

TABLE I
DATASETS AND THEIR STATISTICS. COLS 1-2 DESCRIBE THE NAME OF
THE DATASET AND THE NUMBER OF IMAGES IN EACH DATASET,
RESPECTIVELY. COLS 3-5 DESCRIBE THE TOTAL, MINIMUM AND
MAXIMUM ANNOTATIONS, RESPECTIVELY, AVAILABLE IN THE DATASET.

Dataset No. of Images Total Min Max
Mall [4] 2,000 62,325 13 53
UCF_CC_50 [9] 50 63,974 94 4,543
UCF_QNREF [10] 1535 1,251,642 | 49 12,865
SHT_A [33] 482 241,677 33 3,139
SHT_B [33] 716 88,488 9 578
CrowdUAV (Proposed) 500 44,542 3 191

V. EXPERIMENTS AND RESULTS

The performance of the proposed approach is tested ex-
tensively on multiple databases, and the performance is com-
pared with several state-of-the-art approaches. The results are
shown in Table III.

A. Comparison with state-of-the-art

The experiments have been performed on four benchmark
datasets - ShanghaiTech [33], UCF-CC_50 [9], UCF_-QNRF
[10], and Mall dataset [4]. The results of the proposed and
existing algorithms have been summarized in Table III. It
is evident that the proposed pipeline outperforms all the
existing frameworks, including the state-of-art MAE on all
datasets, with the best RMSE on ShanghaiTech PartB and
UCF_QRNF, and the second-best on UCF_CC_50 and Mall
datasets. Especially for UCF_CC_50 dataset, we achieve
significantly better MAE. With improvement in performance,
we observe that the proposed pipeline converges relatively
faster and to a lower loss value. Essentially, this happens
because the EfficientNet backbone uses a relatively smaller
number of parameters to train and hence, converges faster.



TABLE I
SSIM AND PSNR COMPARISONS ON SHANGHAITECH-A DATASET.

Method SSIM | PSNR
MCNN [33] 0.52 2140
CSRNet [14] 0.76 23719
TedNet [11] 0.83 25.88
CFANet [18] 0.88 30.11
AECNet 0.91 30.12

As shown in Fig. 5, our pipeline achieves the lowest MAE
at 60 epochs, whereas the convergence for other techniques
starts after 80 to 120 epochs.

We also compare the quality of the density maps obtained
using mean SSIM and mean PSNR values. These values
are calculated on the ShanghaiTech PartA dataset and are
available in Table II. The results suggest that the proposed
pipeline generates the best quality density maps.

From Fig. 3, we illustrate the ground truth density and
segmentation map and compare it with the maps generated
through the proposed pipeline. The visualization shows that
the distribution of crowd in the predicted density and seg-
mentation maps is very close to the ground truth maps.
Benchmark results on CrowdUAV: The results on Crow-
dUAV using the various existing algorithms(MCNN[33],
CSRNet[14], CFANet[18] and SGANet[30]) and the pro-
posed algorithms are summarized in Table IV. For compari-
son, we chose recent deep learning techniques whose codes
are publicly available. The proposed algorithm provides the
best results among all the other algorithms that have been
recently proposed.

B. Effect of Backbone Architecture

We also empirically study the effect of different backbone
networks in the encoder for feature extraction. For this,
we experiment with multiple models from VGG, ResNet,
Inception, and EfficientNet families on the ShanghaiTech
PartB dataset. The results are presented in the supplementary.
The results suggest that EfficientNets perform best. We
prefer the EfficientNet-B0 baseline model because the crowd
counting datasets are generally small, and a deeper model
generally overfits.

C. Effect of Average Pooling

Most of the off-the-shelf CNN architectures uses max-
pooling layers. In crowd counting datasets, heads generally
acquire relatively darker pixels. This paper hypothesize that it
is difficult for the feature extractor to generate the activation
from darker pixels and propagate it through a max-pooling
operation. We first train the proposed pipeline to validate the
idea by adding three max-pool layers to the backbone for the
ShanghaiTech PartA dataset. Next, we train the same pipeline
but with average pooling layers. After convergence of both
the models, we visualize the feature maps obtained from the
last pooling layer (i.e, pooling layer after MBConvBlock 8)
in Fig. 6. For the visualization, we choose samples such that
the crowd regression scores predicted from the model with
average-pool and max-pool are close. We then aggregate all

CSRNet
PGCNet
CANNet
SGANet
Ours

MAE

0 20 40 60 80 100 120
No. of epochs

Fig. 5. The convergence graph of different techniques. The proposed
pipeline with EfficientNet-BO backbone converges significantly faster than
existing algorithms. It is also able to achieve a lower Mean Absolute Error
(MAE) for ShanghaiTech-B dataset.

the feature maps, upsample them and superimpose it over the
input image. It can be seen that both the models predict the
crowd count to be very close to the ground truth. However,
the output from the average pooling correctly focuses only
on the heads of each person. In contrast, in the case of max-
pooling, the activations are propagated from areas other than
the head region and the background regions.

To study the efficacy of using average pooling, we perform
the experiment by replacing all the max-pool layers of ex-
isting deep learning-based crowd counting techniques' with
average-pool layers. The results are summarized in Table V.
They depict a gain in performance of each of the techniques
with average pooling layers. We achieve lower MAE and
RMSE values from all the existing techniques on replacing
all the max-pool layers with average-pool layers.

The observations from these experiments validate our
hypothesis. We propose to prefer the average-pooling op-
eration instead of the max-pooling operation in the encoder
backbone for the problem of crowd counting.

D. Ablation Study

In this section, we study the impact of the different com-
ponents in the pipeline of the proposed AECNet. We conduct
the ablation study on ShanghaiTech Part B dataset and ana-
lyze the impact of different components of the pipeline on the
performance. Our observations are summarized in Table VI.
We begin by training a simple encoder-decoder architecture
with EfficientNet-BO as encode. For decoder architecture, we
add pixel-shuffling (PS) and observe a gain in performance.
This gain is observed because pixel shuffling enables better
feature reconstruction. We then use the Attention Network
(AN) in the decoder which leads to a significant performance
gain. The gain in the performance is because AN guides the
model to focus more on the foreground region and ignore the
background region. We also test this model with a regression
network. After this, we add max-pool and average-pool

'We chose recent deep learning techniques whose codes are publicly
available.



TABLE III
COMPARISON OF RESULTS OBTAINED FROM THE PROPOSED PIPELINE WITH EXISTING ALGORITHMS. THE BEST PERFORMANCE ON EACH DATASET IS
HIGHLIGHTED BY BOLD AND SECOND BEST IS HIGHLIGHTED BY UNDERLINED. IN THE TABLE, EFFICIENTNET-BO IS USED AS THE BACKBONE
ARCHITECTURE FOR SHANGHAITECH AND UCF_CC_50 DATASETS, WHILE EFFICIENTNET-B1 1S USED FOR UCF_QRNF AND MALL DATASET.

ShanghaiTechA ShanghaiTechB UCF-CC50 UCF-QRNF Mall
Algorithms MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE MAE | RMSE
MCNN [33] 110.2 173.2 26.4 41.3 377.6 509.1 277 426 - -
DRSAN [16] 69.3 96.4 11.1 18.2 219.2 250.2 - - 1.72 2.1
CSRNet [14] 68.2 115 10.6 16 266.1 397.5 - - - -
SANet [3] 67 104.5 8.4 13.6 258.4 334.9 - - - -
DADNet [8] 64.2 99.9 8.8 13.5 285.5 389.7 113.2 189.4 - -
DecideNet [15] - - 20.75 29.42 - - - - 1.50 1.92
CANNE [17] 62.3 100 7.8 12.2 212.2 243.7 107 183 - -
SGANet [30] 57.6 100.4 6.3 9.8 221.9 289.8 - - - -
M-SFANet [25] 57.55 94.48 6.32 10.06 162.33 276.76 85.60 147.78 - -
DM-count [28] 59.7 95.7 7.4 11.8 211 291.5 85.6 148.3 - -
CFANet [18] 56.1 89.6 6.5 10.2 203.6 287.3 89 152.3 1.20 1.56
[ AECNet [ 552 | 924 | 512 | 96 | 15278 | 2516 | 842 | 1427 | 117 | 162 |
TABLE IV Input Image MaxPool Average Pool

BASELINE RESULTS ON THE PROPOSED CROWDUAYV DATASET.

Method MAE | RMSE

MCNN [33] 182.6 245.8

CSRNet [14] 142.8 210.0

CFANet [18] 94.1 152.8

SGANet [30] 97.4 163.2

AECNet (Proposed) 75.7 116.9
TABLE V

COMPARISON OF DIFFERENT ALGORITHMS WITH AND WITHOUT
AVERAGE POOL ON SHANGHAITECH-A DATASET.COLS 2-3 SHOW THE
TESTING PERFORMANCE OF DIFFERENT TECHNIQUES WITH THE
DEFAULT SETTING (I.E., WITH MAX-POOLING OPERATION). THE
EXPERIMENTS WITH AVERAGE-POOLING (COLS 4-5) SHOW THE TESTING
PERFORMANCE AFTER REPLACING ALL THE MAX-POOL LAYERS WITH
AVERAGE-POOLING IN THE ENCODER MODEL.

Without Avg Pooling With Avg Pooling
Method MAE RMSE MAE RMSE
CSRNet[14] 68.2 115 62.7 1124
CANNet[17] 62.3 100 61.6 99.9
SGANet[30] 57.6 100.4 58.61 100.2
AECNet 62.8 98.8 55.2 93.4

layers to the encoder and check the performance individually.
We notice the performance with average-pool is better than
max-pool. We then test the performance after using both
pixel-shuffle and attention network and notice a significant
performance gain compared to the initial encoder-decoder
architecture. We then use average pooling in the encoder
and the pixel-shuffle with attention network in the decoder.
With this pipeline, we achieve the state-of-the-art results on
the ShanghaiTech PartB dataset. Finally, we train the entire
pipeline with a regression network that consumes the features
extracted from the encoder and regress the crowd count. The
loss from this network is added to the total loss for the
training of the entire pipeline and it pushes the performance
even further. We also study the impact of different backbone

Fig. 6. Effect on average pool on feature maps. First column represents
the test image, second column represents the feature map extracted from
last max-pool layer, and the third row represents the feature map from the
last average pool layer of the proposed model.

architectures using the proposed pipeline, and the results are
made available in the supplementary text.

VI. CONCLUSION

Crowd counting has several applications, particularly in
the pandemic situation. This is an arduous research problem
when the camera is at a large stand-off distance and there are
multiple occluded individuals in a given frame. To address
this research challenge, we propose a novel encoder-decoder-
based pipeline for crowd counting. In the encoder block, we
use EfficientNets, and empirically show that they should be
preferred over other feature extraction architectures. We also
explore the use of average-pooling over max-pooling and
observe that for the problem of crowd counting, average-
pooling should be preferred in the encoder block. We also
build over existing attention mechanisms and propose a
deeper attention network while maintaining the dimensions
of the feature maps. We additionally append a regression



TABLE VI
ABLATION STUDY W.R.T TO EACH MODULE OF THE PIPELINE ON

SHANGHAITECH-B DATASET WITH EFFICIENTNET-B0O BACKBONE. (PS:
PIXEL SHUFFLING, AN: ATTENTION NETWORK, AVG POOL AND MAX
POOL: THREE MAX-POOL LAYERS AND AVERAGE-POOL LAYERS IN

ENCODER RESPECTIVELY, AND RN: REGRESSION NETWORK.

Components Present in the Pipeline MAE RMSE
EfficientNet 13.05 26.34
EfficientNet + PS 11.75 20.12
EfficientNet + AN 10.45 16.87
EfficientNet + RN 12.8 232
EfficientNet + Max Pool 12.8 24.6
EfficientNet + Avg Pool 11.9 22.8
EfficientNet + PS +AN 9.45 14
EfficientNet + PS + AN + Max Pool 7.0 11.5
EfficientNet + PS + AN + Avg Pool 5.25 10.2
EfficientNet + PS + AN + Max Pool + RN 6.72 11.6
EfficientNet + PS + AN + Avg Pool + RN 5.12 9.6

neural network with the encoder-decoder architecture and
enhance the state-of-the-art results. This paper also presents
a crowd counting-based dataset which is captured through a
drone along with benchmark results.
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