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Abstract

With increasing number of COVID-19 cases globally, all the countries are ramp-

ing up the testing numbers. While the RT-PCR kits are available in sufficient

quantity in several countries, others are facing challenges with limited availabil-

ity of testing kits and processing centers in remote areas. This has motivated

researchers to find alternate methods of testing which are reliable, easily accessi-

ble and faster. Chest X-Ray is one of the modalities that is gaining acceptance

as a screening modality. Towards this direction, the paper has two primary

contributions. Firstly, we present the COVID-19 Multi-Task Network (COMiT-

Net) which is an automated end-to-end network for COVID-19 screening. The

proposed network not only predicts whether the CXR has COVID-19 features

present or not, it also performs semantic segmentation of the regions of interest

to make the model explainable. Secondly, with the help of medical professionals,

we manually annotate the lung regions and semantic segmentation of COVID19

symptoms in CXRs taken from the ChestXray-14, CheXpert, and a consolidated

COVID-19 dataset. These annotations will be released to the research commu-
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nity. Experiments performed with more than 2500 frontal CXR images show

that at 90% specificity, the proposed COMiT-Net yields 96.80% sensitivity.

Keywords: X-ray, COVID-19, Detection, Diagnostics, Deep Learning,

Explainable Artificial Intelligence, Multi-task Learning

1. Introduction

The COVID-19 pandemic has affected the health and well-being of people

across the globe and continues its devastating effect on the global population.

The total cases have increased at an alarming rate and have crossed 116 million

worldwide [1]. Increasing cases of COVID-19 patients raises the concern for ef-5

fective screening of infected patients. The current process of testing for COVID-

19 is time-consuming and requires availability of testing kits. This necessitates

the requirement for alternative methods of screening, which is available to the

general population, cost effective, time efficient, and scalable.

Dyspnea is a common symptom for COVID-19. Analyzing the chest X-ray,10

radiologists have observed that it introduces specific abnormalities in a patient’s

lungs [2]. For instance, COVID-19 pneumonia has a typical appearance on chest

radiographs with bilateral peripheral patchy lung opacities, lower lung distribu-

tion, rounded morphology and absence of pleural effusion and lymphadenopathy.

Figure 1 shows samples of chest x-ray images with different lung abnormalities15

including COVID-19. Motivated by this observation and the fact that x-ray

imaging is faster, cheaper, accessible, and has scope for portability, many recent

studies have proposed machine learning algorithms to predict COVID-19 using

CXRs [3].

1.1. Literature Review20

Researchers have proposed AI-based techniques to detect COVID - 19 using

chest CT and x-ray images. Apostolopoulos and Mpesiana [4] explored trans-

fer learning through various CNNs and observed that MobileNet v2 [5] yields

the best results. Narin et al. [6] proposed to use three CNN models, namely,
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Pneumonia Cardiomegaly Atelectasis

Effusion Pneumothorax Infiltrate

(a) Different kinds of lung abnormalities. The bounding box highlights the diseased region.

AP

CheXpert

PA

ChestXray-14 COVID-19

(b) AP (anteroposterior) and PA (posteroanterior) views corresponding to CheXpert and

ChestXray-14, and COVID-19 datasets.

Figure 1: Samples of chest x-ray images used as a part of this research.

ResNet50 [7], InceptionV3 [8], and InceptionResNetV2 [9] for detecting COVID-25

19 using chest x-ray. The authors fine-tuned these pre-trained deep models for

distinguishing COVID-19 from normal x-rays and found that ResNet-50 per-

formed the best. They used 50 chest x-ray images of COVID-19 patients from

Github repository [10] and 50 normal chest X-ray images [11]. Nishio et al. [12]

used a VGG-16 based model for differentiating between COVID-19 pneumonia,30

non-COVID-19 pneumonia, and healthy CXR images.

Horry et al. [13] proposed a CXR and CT based multi-modal classification

for COVID-19 detection. In their work, they propose a data pre-processing
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technique and performs transfer learning on various deep learning architec-

tures. Their finding suggests that VGG16 and VGG19 gives promising results35

for COVID-19 vs Pneumonia or normal classification. Further, Oh et al. [14]

proposed a patch-based CNN approach for COVID-19 diagnosis. During test-

ing, majority voting from multiple patches at different locations of lungs is

performed for final decision.

For interpretation and explainability, there are limited studies. Mangal et40

al. [15] and Jaiswal et al. [16] utilized DenseNet121 and DenseNet201 [17] for

classification, respectively. They showed Class Activation Maps (CAM) for

interpretation. With an emphasis on explainability, the authors showed CAM

and confusion matrix. On similar lines, Ghoshal and Tucker [18] showed the

application of ResNet50v2 [19] for the above four classes. Authors interpret the45

results using CAM, confusion matrices, Bayesian uncertainty, and Spearman

correlation. Similarly, Shi et al. [20] and Tsiknakis et al. [21] used CAM for

better interpretation of COVID detection. Their approach aimed to extract

relevant features while suppressing inadmissible ones.

The problem of small sample size of COVID-19 chest X-ray images was tack-50

led by Loey et al. [22], where they generate new COVID-19 infected images using

GANs. Wang and Wong [23] introduced COVID-Net for detecting COVID-19

cases. Further, the authors investigate the predictions made by COVID-Net to

gain insights on the critical factors associated with COVID-19 cases. In their

work, a three-class classification is performed to distinguish COVID-19 cases55

from regular and Non-COVID cases. In another work, Afshar et al. [24] pro-

posed a capsule-network based framework referred as COVID-CAPS that uses

X-ray images for COVID-19 detection. The results from the proposed frame-

work looks promising as the capsule networks have few parameters to train and

work well on small datasets. Similarly, Shorfuzzaman et al. [25] proposed a60

n-shot meta learning framework. In their work, they use a Siamese neural net-

work for feature extraction with contrastive loss function in a few-shot learning

setting for small dataset.

These research demonstrate that AI-driven techniques can diagnose COVID-
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19 using chest x-ray images. It could potentially overcome the challenges of lim-65

ited test kits and speed up the screening process of COVID-19 cases. However,

a significant limitation of existing studies is that the algorithms work as a black

box. These algorithms predict if the input x-ray is affected by COVID-19 or

some related disease. Most studies fail to explain the decisions - for instance,

which lung regions are salient for the specific decisions. Secondly, existing stud-70

ies do not focus on radiological abnormalities such as consolidation, opacities,

or pneumothorax. Without a clear emphasis on the lung or the abnormality,

it is hard to have the explainability of an algorithm in a crucial application of

COVID-19 diagnosis. Further, most of these studies work with a limited number

of COVID-19 samples, with around 100 samples under most scenarios. Thirdly,75

as shown in Figure 1(b), the posteroanterior (PA) and anteroposterior (AP)

views of CXR images vary due to the acquisition mechanisms. While training,

samples from both classes need to be considered but existing algorithms are

generally silent on these details.

1.2. Research Contributions80

In this research, we propose a deep learning network termed as COVID-

19 Multi-Task Network (COMiT-Net), which learns the abnormalities present

in the chest x-ray images to differentiate between a COVID-19 affected lung

and a Non-COVID affected lung. For medical applications, the explainability

of machine learning systems is of paramount importance [26]. In reality, the85

black-box nature of the deep algorithms refrain us from knowing which regions

are getting focused. Furthermore, these algorithms fail to deliver what and

where the disease is, which is essential for radiologists and doctors to back their

decision. Hence, the proposed network incorporates additional tasks of lung and

disease segmentation to provide post-hoc explainability.90

The proposed COMiT-Net simultaneously processes the input X-ray for se-

mantic lung segmentation, disease localization, and healthy/unhealthy classi-

fication. Incorporating additional tasks while performing the primary task of

COVID classification has multiple advantages. While processing for COVID

5



classification, the additional segmentation tasks enforce the network to focus on95

lung regions and disease-affected areas only. Further, inclusion of healthy/unhealthy

classification aids the COMiT-Net to effectively identify a healthy lung. Fur-

ther, assistance from other tasks reduces dependence on enormous amounts of

data required during training. The key research highlights are:

1. Develop COVID-19 Multi-Task Network (COMiT-Net) for classification100

and segmentation of the lung and disease5 regions. The COMiT-Net fur-

ther predicts if lungs are affected with COVID-19 or Non-COVID-19 dis-

orders and differentiate them from healthy lungs.

2. Inclusion of simultaneous disease segmentation in the COMiT-Net helps

in making the decisions explainable.105

3. Extensive evaluation and comparison against the existing deep learning

algorithms for COVID-19 prediction, lung, and disease segmentation.

4. Assemble frontal chest x-rays from various sources, that can be used for

diverse tasks such as classification and semantic segmentation of lungs

and disease. For the assembled dataset, the CXR reports and the CXR110

were manually verified by a radiologist to affirm the presence/absence

of COVID-19 related abnormalities. From different sources, a total of

2513 frontal x-rays of COVID-19 affected patients are collected. Further,

these manual annotations for lung and disease semantic segmentation for

healthy, unhealthy, and COVID-19 affected X-ray images will be released115

to the research community.

2. COVID-19 Multi-Task Network (COMiT-Net)

This section provides the details of the proposed COMiT-Net. Multi-task

networks are known to learn similar and related tasks together based on the

input data. As shown in Figure 2, multi-task networks have a base network120

5In our context, the terms ‘abnormality’, ‘disease’, and ‘radiological finding’ are used syn-

onymously.
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Figure 2: The proposed COMiT-Net to perform multiple related tasks to improve the classifi-

cation performance for COVID-19 disease diagnostics using frontal x-ray. The figure contrasts

the multitask network with single task network.

with multi-objective outputs. Since each task shares the same base network,

the weights are learned to be optimal for all functions jointly. The four tasks

of COMiT-Net are (i) lung localization, (ii) disease localization, (iii) healthy/

unhealthy classification and (iv) multi-label classification for COVID-19 pre-

diction. These tasks are accomplished by using five loss functions: two for125

segmentation and three for classification. The details of these loss functions are

described in the following subsections.

Let X be the train set with n images and Xi represent an image. Xi is associ-

ated with five labels, {Li,Di, Hi, Ci, Oi} where, Li and Di represent the ground

truth binary mask for lung and disease localization, respectively. Hi = {0, 1},130

Ci = {0, 1}, and Oi = {0, 1} represents the healthy/unhealthy, COVID/Non-

COVID, and Non-COVID diseases discriminator labels, respectively. Let f be

the proposed COMiT-Net that performs the four different tasks. The task

set T is defined as T = {t1, t2, t3, t4}, where, t1 and t2 represent the task of
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Figure 3: Architecture of the proposed COVID-19 Multi-task Network (COMiT-Net), which

is based on a Encoder-Decoder architecture (Best viewed in color).

lung and disease localization, respectively. t3 and t4 represents the task of135

healthy/unhealthy and COVID/Non-COVID classification, respectively.

2.1. Segmentation Loss

Chest x-ray of lungs contain peripheral organs along with lung regions. The

primary objective of this research is to differentiate between COVID and Non-

COVID samples. Since the key information lies in the lungs, the initial task is140

that of lung segmentation. The second segmentation loss aims to learn semantic

segmentation of the diseased regions.

Lung segmentation can be achieved by learning a model that differentiates

between the background and foreground lung regions. The COMiT-Net ac-

complishes this by utilizing a VGG16 Encoder-Decoder architecture [27]. The145

encoder has VGG16 as a base network. It has five blocks with 2, 2, 3, 3, and 3

layers of convolution + batch norm + ReLu layers, respectively. The decoder

network builds upon the representation obtained from the encoder network,

with a transposed architecture of the encoder network. At the final layers, the

output is derived from a SoftMax layer. The output dimension equals the input150

spatial resolution of the X-ray image with the number of channels equaling the

number of segmentation classes. Hence, the final layer consists of two channels,
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lung and non-lung.

Similar to lung localization, the disease localization also builds upon the

encoder representation. However, the disease localization task has a separate155

decoder branch and is optimized for localizing more than 20+ lung-related dis-

orders. For both the lung and disease localization, the gradients are backprop-

agated via decoder network into the encoder layers.

Let ft1 and ft2 represent the sub-networks for lung and disease localization,

respectively. For any image Xi, the output predicted binary masks for lung and160

disease localization are represented as:

L̂i = ft1(Xi) and D̂i = ft2(Xi) (1)

In this research, binary cross entropy loss is used for lung and disease localiza-

tion. Mathematically, it is represented as:

Z1i = −
∑
x,y

[
Li(x, y) log(L̂i(x, y)) + (1− Li) log(1− L̂i(x, y))

]
(2)

Z2i = −
∑
x,y

[
Di(x, y) log(D̂i(x, y)) + (1−Di) log(1− D̂i(x, y))

]
(3)

where, Z1i and Z2i are the lung and disease loss, respectively for image Xi.

Li(x, y) and Di(x, y) represent the pixel value at location (x, y) for lung and165

disease masks, respectively.

2.2. Classification Loss

The two classification tasks are t3 = Healthy/Unhealthy classification of the

lung X-ray, and t4 = Multi-label classification for the presence of COVID-19 or

other abnormalities. These tasks are performed using three classification loss170

functions. The lung and disease localization provides supervision for the three

classification tasks. For healthy/unhealthy, COVID/Non-COVID, and Non-

COVID diseases discrimination classification, two branches are derived over the
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compact encoder representation (after GAP). Each branch has three fully con-

nected layers (FC). For both branches, the first two layers use ReLu activation.175

The healthy/unhealthy branch uses SoftMax activation at the last FC layer.

The multi-label COVID/Non-COVID and Non-COVID diseases discrimination

classification branch uses Sigmoid activation at the last FC layer (Figure 3).

Let ft3 and ft4 represent the sub-networks for healthy/ unhealthy and multi-

label classification, respectively. The output of ft3 for image Xi is:180

P (Hi|Xi) = ft3(Xi) (4)

where, P (Hi|Xi) is the probability of predicting image Xi to Hi. The loss

function for healthy/unhealthy classification is represented as:

Z3i = −
∑

Hi={0,1}

Hi log(P (Hi|Xi)) (5)

where, Z3i represents the healthy/unhealthy loss for image Xi. For multi-label

classification, the output of sub-network ft4 for an image Xi is written as:

[Ĉi, Ôi] = ft4(Xi) (6)

where, Ĉi and Ôi represent the output predicted score (∈ [0, 1]) for COVID/Non-185

COVID and Non-COVID diseases discriminator, respectively. The radiological

findings of COVID-19 pneumonia may overlap those of other viral pneumonia

and acute respiratory distress syndrome due to other etiologies. The network

needs supervision to segregate COVID-19 pneumonia from Non-COVID lung

diseases. Hence, the joint optimization for COVID/Non-COVID along with190

Non-COVID diseases discrimination helps differentiate COVID-19 affected lungs

from lungs affected with diseases other than COVID-19. The joint loss for pre-

dicting both COVID/Non-COVID and Non-COVID diseases discrimination is

written as:

Z4i = −
[
Ci log(Ĉi)+(1−Ci) log(1−Ĉi)

]
−
[
Oi log(Ôi)+(1−Oi) log(1−Ôi)

]
(7)
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Table 1: Details of the databases used in the experiments.

Database Healthy View Images

Chest X-Ray-14 [28]

Healthy
PA 4088

AP 2688

Unhealthy
PA 3469

AP 3115

CheXpert [29]

Healthy
PA 1331

AP 2163

UnHealthy
PA 3279

AP 11305

Overall Loss Function: It is possible that the ground truth labels or segmen-195

tation masks are not available for all the images during training. In this case,

all branches of the networks will not be active during training of COMiT-Net.

For instance, if the ground truth mask is unavailable for disease segmentation,

then the sub-network ft2 will remain inactive and the loss Z2i for image Xi

will become zero. In the same manner, other losses can have a 0/1 “switch”.200

Therefore, the total loss L is computed as:

L =
∑
i

T1iZ1i + T2iZ2i + T3iZ3i + T4iZ4i (8)

where, T1i, T2i, T3i, and T4i are the switches pertaining to the tasks t1, t2, t3,

and t4, respectively. The values of these switches are either 0 or 1 depending

on the availability of ground truth labels/masks of the respective tasks for the

ith image.205

3. Experimental Details

We next summarize the databases used for training and testing, the lung and

disease annotations performed as part of this research, and the implementation

details.
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Table 2: Details for the COVID-19 databases used in the experiments.

Source AP View PA View Total Images

GitHub [10] 50 26 76

Italy [30] 30 39 69

Spain [31] 0 110 110

RadioPaedia [32] 9 85 94

BSTI [33] 3 39 42

EuroRad [34] 6 18 24

BIMCV-COVID19+ [35] NA NA 2098

Total 2513

3.1. Database and Protocol210

For different tasks of the network, we require a chest X-ray database with

multiple annotations and diverse properties. Thus, the database for experiments

is created by combining subsets from the ChestXray-14, CheXPert, and COVID-

19 infected X-ray databases. We only use frontal X-ray in our experiments from

the following publicly available databases:215

• ChestXray-14 [28]: The dataset contains healthy and unhealthy x-ray

images. It has a total of 112,120 chest x-ray images, out of which 67,310

are PA view images, and remaining 44,810 are AP view. Multiple radio-

graphs of the same patient taken at different times are also present. From

the database, we derive a subset of 13,360 images, spanning both PA and220

AP views. The unhealthy X-rays are labeled for one or more classes in a

total of 14 classes. The 14 classes are: Atelectasis, Cardiomegaly, Con-

solidation, Edema, Effusion, Emphysema, Fibrosis, Hernia, Infiltration,

Mass, Nodule, Pneumonia, Pneumothorax, and Pleural Thickening. Ad-

ditionally, the dataset provides localization information of abnormalities225

for 880 X-rays. The details of the subset drawn from ChestXray-14 is

illustrated in Table 1.
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Table 3: Details of train-test split across different parameters. Train set for COVID-19 includes

augmentation. Cols 1-2 specify number of samples for segmentation tasks. Cols 3-5 specify

number of samples for classification task. Cols 6-7 specify total number of AP/PA view

samples in the database.

Mask Disease-wise Views

Lung Disease Normal Covid Others PA AP

Train 8730 1456 8173 1740 16551 10161 16690

Test 1837 251 2077 2223 4097 2464 3968

Total 10567 1707 10250 3963 20648 12625 20658

• CheXpert [29]: The CheXpert dataset contains a total of 223,414 chest

x-ray images, out of which 29,420 are PA view, 161,590 are AP view,

and the remaining are lateral or single lung view images. Multiple case230

studies of the same patient are available in the dataset. This dataset

contains healthy and unhealthy X-ray images. We selected a subset of

18,078 images. Based on the radiological findings, each X-ray image is

labeled positive/negative for 14 pre-defined classes (few overlapping with

ChestXray-14). The 14 classes are: No Finding, Enlarged Cardiom, Lung235

Lesion, Edema, Consolidation, Pneumonia, Atelectasis, Pneumothorax,

Cardiomegaly, Pleural Effusion, Pleural Other, Lung Opacity, Fracture,

and Support Devices. The details of the x-ray images selected from CheX-

pert database is shown in Table 1.

• COVID-19: For this study, we collected a total of 415 X-rays from vari-240

ous internet sources. The sources have a mixed number of PA and AP view

frontal chest x-ray. The number of X-rays collected from each source has

been summarized in Table 2. Further, we have also performed additional

experiments with 2388 images from the BIMCV+ COVID-19 Database

[35]. Details and experimental results of the BIMCV+ database can be245

found in Section 4.4.

Since the above COVID-19 subset has a limited number of images, we per-
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(a) Labelled COVID X-ray (c) Corresponding Binary Masks

-Right mid peripheral, lower 
patchy infiltration
-Left lower patchy infiltration
-Right CP angle bunting 
suggests right pleural effusion

-Right mid peripheral, lower 
peripheral patchy infiltration 
-Right lower zone patchy 
infiltration
-Left lower patchy infiltration

-Right mid peripheral, lower 
diffuse infiltration
-Right upper, lower peripheral 
patchy infiltration
-Left upper, mid peripheral, lower 
peripheral patchy infiltration
-Left lower diffuse infiltration

-Right upper, mid, lower, lower 
peripheral patchy infiltration
-Left lower, mid peripheral, 
mid lower peripheral 
patchy infiltration
-Cardiomegaly present 

-Right upper patchy infiltration
-Right lower reticular infiltration 
-Left mid, lower peripheral 
patchy infiltration

(b) Radiological Finding

Figure 4: Annotations provided for COVID-19 affected frontal lung x-ray images as a part

of this study: (a) Labeled COVID-19 X-ray for locations of radiological finding, (b) Descrip-

tion of the radiological finding, (c) Corresponding binary masks for training deep semantic

segmentation algorithms for disease segmentation.
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form data augmentation. Each image is augmented five ways - clockwise ro-

tation by 10o, anti-clockwise rotation by 10o, translation by 10 pixels in the

X, Y, and XY-directions. Since pneumonia is a closely related pathology to250

COVID [36], we select all the pneumonia samples of the ChestXray-14 and

CheXPert datasets. Further, to accommodate the variations in non-healthy

x-ray samples, about 50% more unhealthy samples are selected compared to

healthy samples. AP view x-rays are prominent compared to PA views in the

CheXpert dataset. Hence, we select more AP view X-ray images.255

The data is split into training and testing ensuring that there is no patient

overlap in the train and test sets. The details of the train-test data split across

different properties are specified in Table 3. The first two columns specify the

number of samples for the task of segmentation, i.e. the samples for which dis-

ease and lung masks are available. The next three columns specify the number260

of samples present in different classes (normal, COVID, others) for the task of

classification. The last two columns specify the characteristics of the overall

database by subdividing the total number of samples into two categories- AP

and PA. AP and PA views of chest x-rays are substantially different, and we

attempt to balance the two views to provide balanced training. Note that all265

the train set numbers mentioned in the table are post-augmentation.

3.2. Lung and Disease Region Annotation

The datasets mentioned above lack lung localization details. The proposed

COMiT-Net requires a ground-truth lung location to identify the lung region

from the x-ray. For this purpose, we manually annotated a total of about 9000270

lung x-rays. These x-rays include well-balanced healthy/unhealthy, AP/PA

subsets taken equally from the CheXpert and ChestXray-14 datasets. All x-ray

images available for COVID-19 are also manually annotated for lung segmenta-

tion. Mask for each x-ray image has been created by drawing two solid bounding

boxes, corresponding to the area covered by each lung. As a part of this study,275

we also plan to release the ground truth masks for the manually annotated lung

regions.
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The datasets included as a part of this study have only 880 disease localiza-

tion annotation images (from ChestXray-14 database). For COVID-19 affected

frontal lung x-ray images, we lacked disease segmentation masks. Hence, as a280

part of this study, the x-ray images are annotated by a radiologist for various

radiological findings. The findings radiologists looked for includes: (i) atelec-

tasis, (ii) consolidation, (iii) interstitial shadows (reticular, nodular, ground

glass), (iv) pneumothorax, (v) pleural effusion, (vi) pleural thickening, (vii) car-

diomegaly, and (viii) lung lesion. The experts annotated a total of 200 COVID-285

19 affected chest x-rays. A few sample annotations for the same can be seen

in Figure 4(a) and the corresponding description in Figure 4(b). While train-

ing deep learning algorithms, the model requires binary masks as annotation.

Hence, we created these masks based on the annotations (Figure 4(c)). We will

release the ground truth binary masks to promote the training of deep semantic290

segmentation algorithms for abnormality localization.

3.3. Implementation Details

The proposed Multi-task network requires input X-ray images of size 224 ×

224 × 3. The encoder stream is initialized using a pre-trained VGG16 model.

With a batch size of 16, the model is optimized over binary cross-entropy loss295

using Adam optimizer (learning rate = 5×10−5). Each loss is weighted equally.

The model is trained for 30 epochs6 on NVIDIA GeForce RTX 2080Ti and

implemented in PyTorch.

UNet and SegNet models are trained on Nvidia RTX 2080Ti using a Py-

Torch (v.1.4.0) implementation. The input size is kept the same as 224 x 224300

x 3 with batch size of 4. The model is trained for 25 epochs by minimizing

binary Cross-Entropy loss using Adam optimizer with an initial learning rate of

0.0001. Other Python library requirements include torchvision (v.0.5.0), tqdm

6It is observed that the loss of the model converges around the 30th epoch. To make sure

the model is trained and does not overfit, we track the training losses and early stop at 30th

epoch.
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(v.4.45.0), tensorboardX (v.1.1), and Pillow (7.0.0). Similarly, Mask-RCNN op-

erates on same sized images with a training batch size of 16. The model is305

trained for 25 epochs by minimizing binary Cross-Entropy loss using SGD op-

timizer with a learning rate of 0.001 and momentum 0.9. The model is trained

on Google Colab with Nvidia Tesla T4 as the GPU accelerator using a PyTorch

(1.6.0+cu101) implementation.

The comparitive algorithms include DenseNet121 [15, 16, 17], MobileNetv2 [4,310

5], ResNet18 [6, 37, 7], and VGG19 [13, 38]. For each of these networks, the

ImageNet pre-trained version is selected. The model is then fine-tuned with

the dataset and protocol used for the proposed COMiT-Net. The input size,

batch size, and epochs are kept same as COMiT-Net, i.e., 224×224×3, 16, and

30 respectively.315

4. Results and Analysis

We next evaluate the performance of the proposed COMiT-Net for classifi-

cation and localization tasks. The performance is compared with existing deep

learning algorithms for COVID-19 chest radiograph studies. Further, to study

the effectiveness of the proposed COMiT-Net, we perform experiments by select-320

ing different combinations of sub-networks from the COMiT-Net in subsection

5.3. Lastly, subsection 5.4 specifically tasks about prediction of COVID-19 af-

fected CXR. The predictions are presented on a large COVID-19 positive CXRs

database, validated against predictions from radiologists.

4.1. Lung and Disease Localization325

In this subsection, the segmentation results of the proposed COMiT-Net

are compared against region predictions from UNet [39], Mask RCNN [40], and

SegNet [27]. For lung segmentation, sample predictions of the proposed and

existing algorithms are shown in Figure 5. Inferring the sample prediction,

we observe that all four algorithms perform well and give comparable results.330

However, the proposed COMiT-Net yields the most precise bound for lung seg-

mentation. To support the visual results presented in Figure 5, we additionally
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Figure 5: Samples of lung segmentation output for existing algorithms and the proposed

COMiT-Net.

report the Intersection over Union (IoU) for lung segmentation. The IoU scores

corresponding to the U-Net, Mask-RCNN, SegNet, and COMiT-Net are 0.82,

0.85, 0.83, and 0.85, respectively. The reported IoU for COMiT-Net is same as335

the state-of-the-art segmentation method Mask-RCNN. We can also visually ob-

serve in Figure 5 that COMiT-Net provides the tightest bound for lungs. Since

lung and disease localization tasks are performed simultaneously, and diseases

are present within the lungs, the lung decoder network learns to focus more on

the lung regions rather than the outside the lungs.340

The results of disease segmentation are shown in Figure 6. The first two

rows of Figure 6 illustrate abnormalities in COVID-19 affected lungs while last

two rows have abnormality localization in unhealthy but Non-COVID affected

lungs. For disease localization, a more relevant metric is True Positive Rate

(TPR). When localizing a disease, we would not want to miss detection of345

diseased regions (even if some non-diseased regions get predicted as diseased).

Hence, the reported TPR corresponding to the U-Net, Mask RCNN, SegNet,
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(a) Ground-Truth (b) UNet (c) Mask RCNN (d) SegNet (e) COMiT-Net (Proposed)
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Figure 6: Samples of semantic disease segmentation for existing algorithms and the proposed

COMiT-Net. The x-ray images and corresponding abnormality localization for “Unhealthy”

are derived from ChestXray-14 database [28].

and COMiT-Net are 0.42, 0.51, 0.31, and 0.87, respectively. The masks for

all the four algorithms are predicted at a constant threshold of 0.5 (disease

treated as foreground; label=1). Using the predicted mask, we calculate the350

TPR for the foreground disease classification. From the perspective of shape,

Mask-RCNN tends to provide well-defined shape boundaries for Non-COVID

unhealthy lungs. SegNet and COMiT-Net provide irregularly shaped predic-

tions, localizing the radiological findings compactly. Overall, we observe that

each of the four algorithms predict additional regions for the abnormalities. The355

detected abnormalities have false positive regions when compared to the ground-

truth. As shown in Figure 7(c) and (d), these false positives sometimes arise due

to better localization by SegNet and proposed COMiT-Net. The comparative
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(a) (b) (c) (d)

Figure 7: Non-COVID affected unhealthy lung, with (a) ground-truth annotation from

ChestXray-14 database, (b) abnormality manually marked by a radiologist (as a part of this

study), (c) disease prediction from SegNet, and (d) disease prediction from the proposed

COMiT-Net.

ground-truth provided with the database is shown for reference in Figure 7(a).

Further, we observe that for certain abnormalities in ‘Unheathy’ case, deep360

models fail to localize the abnormality. One of the reasons for this is the lim-

ited training data for abnormality localization with large variations in the dis-

eased regions. The unhealthy Non-COVID lung abnormalities are derived from

ChestXray-14, which has 700 samples corresponding to 14 labels. As a result of

a small sample size for each abnormality, the networks cannot localize diseases365

properly. However, the proposed COMiT-Net has assistance from other tasks.

For instance, the lung prediction task would implicitly reinforce COMiT-Net to

predict diseases within the lung. Hence, of the four algorithms, the proposed

COMiT-Net provides the most overlapping prediction with the ground truth.

Compared to 700 samples for 14+ different radiological findings (approx. 50370

images per abnormality), there are 290 COVID-19 affected lung x-rays (prior

to augmentation). A majority of the COVID-19 affected chest radiographs

demonstrate consolidations, which tend to be bilateral and more common in

lower zones [41]. Hence, deep models have more samples to learn the local-

ization of COVID-19 specific abnormalities than other diseases (290 vs. 50).375

In retrospection, the first two rows of Figure 6 illustrate that all four models

perform relatively better for COVID-19 localization than the last two rows of
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“unhealthy” localization. In most cases, each of the four models predict affected

regions in the lower lung zones bilaterally. However, the proposed COMiT-Net

outperforms other algorithms. For instance, in the first row of Figure 6, both380

Mask-RCNN and SegNet tend to leave out the darker region in the right lung,

while ground-truth and COMiT-Net have that region marked as diseased. Fur-

ther, in the low contrast x-ray in row two, the less opaque part of the right

lower lung looks darker (though being diseased). Hence, UNet fails to detect

any finding in the right lower lung, while Mask RCNN and SegNet detects a few385

small region(s). Nevertheless, the proposed COMiT-Net can detect such faint

differences in lung density.

4.2. Classification

Next, we evaluate the COMiT-Net’s performance for healthy/unhealthy

(Task 3) classification and multi-label classification of COVID-19 and other dis-390

eases (Task 4). For COVID/Non-COVID classification, a branch is derived from

the last layer of the encoder network i.e., GAP which outputs the embedding of

the input samples. The branch has three fully connected layers (FC) where the

first two layers use ReLu activation and the last FC layer uses sigmoid activation

for classification. The results of the COMiT-Net are compared against popular395

deep networks. These include DenseNet121 [15, 16, 17], MobileNetv2 [4, 5],

ResNet18 [6, 37, 7], and VGG19 [13, 38]. Further, we draw a comparison with

Random Decision Forest (RDF) [42] and Support Vector Machines (SVM) [43]

with three different kernels- sigmoid, gaussian, and radial basis function (RBF).

In the COMiT-Net Embedding + RDF, the embeddings of the input samples400

are obtained from the GAP layer of the encoder network and are further used

to train the RDF classifier. Similarly, for the COMiT-Net Embedding + SVM

(Sigmoid), COMiT-Net Embedding + SVM (Gaussian), and COMiT-Net Em-

bedding + SVM (RBF), the output embeddings are used to train SVM classifier

with sigmoid, gaussian, and rbf kernels.405

The results for classification performance are presented in Table 4. In the

Table, the sensitivity results are reported at two fixed specificities, i.e., 90% and
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Table 4: Evaluation and comparison of the proposed COMiT-Net with existing algorithms

for COVID-19 prediction (FC = Fully Connected Classification Layers). Y denotes varying

specificity values. Col 1 with Y=99% denotes the sensitivity of the network at 99% specificity.

Sensitivity@Y Specificity
EER (%)

Y = 99% Y = 90%

DenseNet121 + FC 60.80 90.40 9.82

MobileNetv2 + FC 67.20 93.60 8.04

ResNet18 + FC 56.00 81.60 13.78

VGG19 + FC 50.40 82.40 13.70

COMiT-Net Embedding + RDF 79.20 95.20 7.34

COMiT-Net Embedding

+ SVM (Sigmoid)
6.40 24.00 41.46

COMiT-Net Embedding

+ SVM (Gaussian)
82.40 88.80 11.38

COMiT-Net Embedding

+ SVM (RBF)
82.40 88.80 11.38

COMiT-Net (Proposed) 87.20 96.80 7.30

99%. At these fixed specificity values, the observed sensitivity is 96.80% and

87.20%, respectively. Further, for COVID classification, we observe an overall

test classification performance7 of 98.79%. Lastly, we also computed precision410

and recall for the proposed method. At 99% specificity, the precision is 64.12%

and recall is 87.20%. Additionally, using precision and recall, the F1 score is

found as 73.90%.

The proposed COMiT-Net achieves the highest TPR and lowest EER com-

pared to the existing algorithms. With the implicit supervision from lung and415

disease localization tasks, the proposed COMiT-Net outperforms all other ex-

isting algorithms. To show the stability of different algorithms with different

7The overall test classification accuracy is = TP+TN
TP+TN+FP+FN
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Figure 8: Standard deviation (±) of Sensitivity (at 1% FAR) for different algorithms. The

performance is computed for different initialization of deep networks. The results show the

stability in sensitivity for COMiT-Net, delivering consistent results for different initializations.

initialization, the networks are three-times trained with different initialization

parameters. Across different training initializations, we report the standard de-

viation in Sensitivity to evaluate the stability (lower standard deviation implies420

higher stability). As shown in Figure 8, the proposed COMiT-Net is the most

stable algorithm across different initializations. Classifiers that use embeddings

from COMiT-Net also report lower standard deviation. Hence, it can be in-

ferred that COMiT-Net consistently provides a discriminative representation,

resulting in a stable performance. Figure 9 further shows the comparison using425

the ROC curves of the proposed COMiT-Net and existing algorithms.

The COMiT-Net’s classification performance for the COVID-19 samples into

the healthy and unhealthy class is also analyzed. The proposed network classifies

97.25% of COVID-19 samples into unhealthy class and 2.75% in healthy class.

The high TPR of the COVID-19 class and the majority of the COVID-19 sam-430

ples being classified into unhealthy class showcase the effectiveness of the pro-

posed network for COVID-19 detection. Overall, the classification performance

of healthy/unhealthy classification is 75.17% for all the test samples, while for
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(a) Comparison of the proposed COMiT-Net with existing deep learning models.
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(b) COMiT-Net embedding in combination with different classifiers.

Figure 9: ROC curves summarizing the performance for COVID-19 classification.

Non-COVID disease classification is 73.87%. Based on the proposed COMiT-

Net, Figure 10 shows some of the misclassified samples where the network pre-435

dicts COVID-19 positive instances (as per the RT-PCR test) into healthy (Task

3). Correspondingly, the same samples are also predicted as Non-COVID by

Task 4 of the proposed COMiT-Net. In retrospection, we believe that minimal

opacities in the lung region could be the probable cause of misclassification.

This led us to check the ground truth for the hospitalization day. Of the four440
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Figure 10: COVID-19 positive case misclassified as both healthy and Non-COVID by the

proposed COMiT-Net.

misclassified samples shown in Figure 10, three turned out to be the early days

of the patient’s hospitalization (up to day 3). Based on these observations,

we believe that the COMiT-Net predicts an x-ray being affected when there is

presence of symptoms such as opacities and consolidations.

4.3. Ablation Study445

To study the importance of different tasks in the proposed COMiT-Net, we

perform an ablation study by choosing different combinations of tasks. The

four tasks in the COMiT-Net are Task 1: Semantic lung segmentation, Task

2: Semantic disease segmentation, Task 3: Healthy/Unhealthy classification

of the lung X-ray, and Task 4: Multi-label classification for the presence of450

COVID-19 or other diseases. We perform eight different ablation experiments,

presented in the Table 5. It is observed that for COVID-19 prediction, each task

(loss function) has an important role. Removing either of the three assisting

tasks deteriorates the performance. Of all these three assisting tasks, the lung

segmentation task holds a pivotal role. In a COVID-19 affected x-ray, a common455

trait is that the lungs get affected bilaterally. Hence, a comprehensive view

provided by the lung segmentation task provides more weight to lung regions,

resulting in better performance with Task 1 than any other task. We perform
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Table 5: An ablation study on reducing the number of tasks and observing its effect on

COVID-19 prediction.

COVID-19 (Sensitivity %)

All 4 Tasks 96.80

Task 4 Only 84.40

Task 1 and 4 94.40

Task 2 and 4 57.60

Task 3 and 4 67.80

Task 1, 2 and 4 92.80

Task 1, 3 and 4 87.20

Task 2, 3 and 4 54.40

disease segmentation and healthy/unhealthy classification since their efficacy

improves in conjunction with lung segmentation and has a positive impact on the460

Non-COVID disease classification prediction. As validated by the ground-truth

t-SNE feature space plot (shown in Figure 11(a)), the predictions of the test

COVID-19 samples (Figure 11(b)) are well separated from Non-COVID samples.

It shows that the model can distinguish COVID-19 affected samples and can

predict unseen test labels correctly. Further, we use Grad-CAM [44] which is465

a popular tool for producing ‘visual explanations’ for decisions obtained from

deep learning architectures. As observed in the Grad-CAM analysis (Figure

12), the proposed COMiT-Net focuses on diseased regions, in both COVID-19

and unhealthy test samples, to make its prediction.

In the real-world scenario, annotating disease and lung masks for chest x-470

rays is a time consuming and challenging task. The performance of the proposed

COMiT-Net is dependent on the available annotated data for the different tasks.

It might not be feasible to have an adequate amount of disease and lung masks

for the X-ray images in the training set. Moreover, the performance of the

proposed model for the task of COVID/Non-COVID classification is dependent475

on the task of lung and disease segmentation. Removing either of these assisting
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(a) t-SNE with true labels

(b) t-SNE with predicted labels

Figure 11: Interpretation of feature representation based on (a) ground-truth and (b) predicted

labels using t-SNE plot for COVID/Non-COVID classification.

UNHEALTHY

Disease Mask (GT) Grad-CAM

COVID-19

Disease Mask (GT) Grad-CAM

Figure 12: Interpretation of regions focused by COMiT-Net using Grad-CAM. As seen from

heat maps, the supervision from disease and lung annotation helps the COMiT-Net to focus

on unhealthy regions.
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Figure 13: Few instances of semantic disease segmentation from the proposed COMiT-Net for

the BIMCV+ COVID-19 database.

tasks deteriorates the performance of the COMit-Net.

4.4. Prediction on Unseen COVID X-ray Database

Recently, BIMCV-COVID19+ database has been released by the Medical

Imaging Databank in Valencian Region (BIMCV). To demonstrate the per-480

formance of the proposed COMiT-Net in a real-world scenario, we report the

results on the BIMCV-COVID19+ database as well. At the time of download,

the database had 2388 frontal x-ray images. The x-ray is captured from COVID

positive patients during hospitalization. For each patient, the database has one

or more x-ray along with the report of one or more COVID-19 diagnostics tests485

(RT-PCR, IGM, IGG) with its timestamps. It is to be noted that the times-

tamp of the x-ray does not coincide with the timestamp of the diagnostics test.

Hence, if an x-ray is taken closer to a negative diagnostics test or is at least

14 days away from the nearest positive diagnostics test, the x-ray is considered

as COVID-19 negative. Otherwise, we label the x-ray as COVID-19 positive.490

With this procedure, there are a total of 2,098 COVID-19 positive x-rays which

are used for testing purposes only (no training is performed on this dataset).

For reproducibility, we will release these labels along with filenames of the ra-

diographs.
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Figure 14: Sample instances that were labeled by BIMCV-COVID19+ as positive but the

COMiT-Net and radiologists predicted negative.

Out of 2,098 COVID-19 positive x-rays, the trained COMiT-Net correctly495

classifies 1,793 samples and misclassifies 305 samples (at 10% FAR). Hence, at

90% specificity, the COMiT-Net has a sensitivity of 85.46%. Sample instances

of disease segmentation from the correctly classified 1,793 samples are shown in

Figure 13. Similar to previous disease segmentation instances, COMiT-Net is

able to localize abnormalities bilaterally.500

To further understand the behavior of the 305 misclassified instances, each of

these samples is verified by radiologists to affirm if any radiological abnormality

is present or not. Of these 305, there are 115 instances where radiologists con-

firmed the absence of any abnormality. Few sample instance of these cases where

the COMiT-Net and radiologists predicted negative yet BIMCV-COVID19+ la-505

belled positive is shown in Figure 14.

Lastly, we show additional results on COVID-19 subsets of the COVID-19

Radiography dataset8. Of the six COVID subsets presented in the dataset, our

proposed method had already used four (BIMCV, EuroRad, Github, SIRM).

For the remaining two subsets, at 90% specificity threshold, the sensitivity is510

98.75% for the ARMIRO subset (400 images) and 99.45% for the ML-workgroup

subset (183 images).

8https://www.kaggle.com/tawsifurrahman/covid19-radiography-database
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5. Conclusion and Future Work

In the face of the SARS-CoV2 pandemic, it has become essential to perform

mass screening and testing of patients. However, many countries around the515

world are not equipped with enough laboratory testing kits or medical person-

nel for the same. At the same time, X-rays are amongst the most popular,

cost-effective and widely available imaging technology across the world. This

paper presents an “explainable solution” for detecting COVID-19 pneumonia

in patients through chest radiographs. We propose COMiT-Net which per-520

forms the tasks of classification and segmentation simultaneously. Experiments

conducted on different chest radiograph datasets show promising results of the

proposed algorithm in COVID prediction. The ablation study supports the uti-

lization of different tasks in the proposed multi-task network. We believe that

the proposed COMit-Net can be used as an attractive alternative solution that525

can assist the doctors and the research community to speed up the screening

process of COVID cases.

In future, we plan to extend this work and use the proposed framework

for the task of COVID-19 prediction using modalities other than X-ray such

as CT and ultrasound. Since these modalities provide complementary infor-530

mation such as nature and formation of abnormalities present in the diseased

region, incorporating them will help in crafting a robust solution. Further, we

need to understand distinguishable traits between COVID-19 pneumonia and

non-COVID viral pneumonia. Learning these traits can be useful in detecting

COVID-19 pneumonia.535
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A. H. Karantanas, et al., Interpretable artificial intelligence framework for

covid-19 screening on chest x-rays, Experimental and Therapeutic Medicine

20 (2) (2020) 727–735.

[22] M. Loey, F. Smarandache, N. E. M Khalifa, Within the Lack of Chest

COVID-19 X-ray Dataset: A Novel Detection Model Based on GAN and610

Deep Transfer Learning, Symmetry 12 (4) (2020) 651.

[23] L. Wang, Z. Q. Lin, A. Wong, Covid-net: A tailored deep convolutional

neural network design for detection of covid-19 cases from chest x-ray im-

ages, Scientific Reports 10 (1) (2020) 1–12.

[24] P. Afshar, S. Heidarian, F. Naderkhani, A. Oikonomou, K. N. Plataniotis,615

A. Mohammadi, Covid-caps: A capsule network-based framework for iden-

tification of covid-19 cases from x-ray images, Pattern Recognition Letters

138 (2020) 638–643.

[25] M. Shorfuzzaman, M. S. Hossain, Metacovid: A siamese neural network

framework with contrastive loss for n-shot diagnosis of covid-19 patients,620

Pattern Recognition 113 (2021) 107700.

[26] C. M. Cutillo, K. R. Sharma, L. Foschini, S. Kundu, M. Mackintosh, K. D.

Mandl, T. Beck, E. Collier, C. Colvis, K. Gersing, V. Gordon, R. Jensen,

B. Shabestari, N. Southall, M. in Healthcare Workshop Working Group,

33



Machine intelligence in healthcare—perspectives on trustworthiness, ex-625

plainability, usability, and transparency, Digital Medicine 3 (1) (2020) 47.

[27] V. Badrinarayanan, A. Kendall, R. Cipolla, Segnet: A deep convolutional

encoder-decoder architecture for image segmentation, IEEE Transactions

on Pattern Analysis and Machine Intelligence 39 (12) (2017) 2481–2495.

[28] P. Rajpurkar, J. Irvin, K. Zhu, B. Yang, H. Mehta, T. Duan, D. Ding,630

A. Bagul, C. Langlotz, K. Shpanskaya, et al., Chexnet: Radiologist-level

pneumonia detection on chest x-rays with deep learning, arXiv preprint

arXiv:1711.05225.

[29] J. Irvin, P. Rajpurkar, M. Ko, Y. Yu, S. Ciurea-Ilcus, C. Chute, H. Mark-

lund, B. Haghgoo, R. Ball, K. Shpanskaya, et al., Chexpert: A large635

chest radiograph dataset with uncertainty labels and expert comparison,

in: AAAI Conference on Artificial Intelligence, Vol. 33, 2019, pp. 590–597.

[30] SIRM, COVID-19 Database[Accessed: 6-Sept-2020].

URL https://www.sirm.org/category/senza-categoria/covid-19/

[31] C. Imaging, COVID-19 CXR Spain[Accessed: 6-Sept-2020].640

URL https://threadreaderapp.com/thread/1243928581983670272.

html#

[32] RadioPaedia, Search results for “covid 19”, [Accessed: 6-Sept-2020].

URL https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid+19&

scope=all&lang=us645

[33] BSTI, COVID-19 BSTI IMAGING DATABASE, [Accessed: 6-Sept-2020].

URL https://www.bsti.org.uk/training-and-education/

covid-19-bsti-imaging-database/

[34] EuroRad, EuroRad Search results for COVID-19, [Accessed: 6-Sept-2020].

URL https://www.eurorad.org/advanced-search?search=covid-19650

34

https://www.sirm.org/category/senza-categoria/covid-19/
https://www.sirm.org/category/senza-categoria/covid-19/
https://threadreaderapp.com/thread/1243928581983670272.html
https://threadreaderapp.com/thread/1243928581983670272.html#
https://threadreaderapp.com/thread/1243928581983670272.html#
https://threadreaderapp.com/thread/1243928581983670272.html#
https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid+19&scope=all&lang=us
https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid+19&scope=all&lang=us
https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid+19&scope=all&lang=us
https://radiopaedia.org/search?utf8=%E2%9C%93&q=covid+19&scope=all&lang=us
https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/
https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/
https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/
https://www.bsti.org.uk/training-and-education/covid-19-bsti-imaging-database/
https://www.eurorad.org/advanced-search?search=covid-19
https://www.eurorad.org/advanced-search?search=covid-19


[35] BIMCV, BIMCV-COVID19, [Accessed: 16-Oct-2020] (2020).

URL https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/

[36] B. Nazari, Coronavirus and Pneumonia, [Accessed: 10-Nov-2020] (2020).

URL https://www.webmd.com/lung/covid-and-pneumonia#1

[37] M. Z. Che Azemin, R. Hassan, M. I. Mohd Tamrin, M. A. Md Ali, COVID-655

19 Deep Learning Prediction Model Using Publicly Available Radiologist-

Adjudicated Chest X-Ray Images as Training Data: Preliminary Findings,

International Journal of Biomedical Imaging 2020 (2020) 1988–1996.

[38] K. Simonyan, A. Zisserman, Very deep convolutional networks for large-

scale image recognition, arXiv preprint arXiv:1409.1556.660

[39] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for

biomedical image segmentation, in: International Conference on Medical

image computing and computer-assisted intervention, Springer, 2015, pp.

234–241.

[40] K. He, G. Gkioxari, P. Dollár, R. Girshick, Mask R-CNN, in: IEEE Inter-665

national Conference on Computer Vision, 2017, pp. 2961–2969.

[41] J. Sawani, How Does COVID-19 Appear in the Lungs? (2020).

URL https://labblog.uofmhealth.org/lab-report/

how-does-covid-19-appear-lungs

[42] H. T. Kam, et al., Random decision forest, in: International Conference on670

Document Analysis and Recognition, Vol. 1, 1995, pp. 278–282.

[43] J. A. Suykens, J. Vandewalle, Least squares support vector machine clas-

sifiers, Neural Processing Letters 9 (3) (1999) 293–300.

[44] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Ba-

tra, Grad-cam: Visual explanations from deep networks via gradient-based675

localization, International Journal of Computer Vision 128 (2) (2020) 336–

359.

35

https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://bimcv.cipf.es/bimcv-projects/bimcv-covid19/
https://www.webmd.com/lung/covid-and-pneumonia#1
https://www.webmd.com/lung/covid-and-pneumonia#1
https://labblog.uofmhealth.org/lab-report/how-does-covid-19-appear-lungs
https://labblog.uofmhealth.org/lab-report/how-does-covid-19-appear-lungs
https://labblog.uofmhealth.org/lab-report/how-does-covid-19-appear-lungs
https://labblog.uofmhealth.org/lab-report/how-does-covid-19-appear-lungs

	Introduction
	Literature Review
	Research Contributions

	COVID-19 Multi-Task Network (COMiT-Net)
	Segmentation Loss
	Classification Loss

	Experimental Details
	Database and Protocol
	Lung and Disease Region Annotation
	Implementation Details

	Results and Analysis
	Lung and Disease Localization
	Classification
	Ablation Study
	Prediction on Unseen COVID X-ray Database

	Conclusion and Future Work

