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Abstract

Biometric-based authentication for smart handheld de-
vices promises to provide a reliable and alternate security
mechanism compared to traditional methods such as pins,
patterns, and passwords. Although fingerprints are a viable
source for authentication, they generally require installa-
tion of an additional hardware such as optical and swipe
sensors on mobile devices, and are only available in ex-
pensive, high-end smartphones. Alternatively, fingerphoto
images captured using the smartphone camera for authenti-
cation is one of the promising biometric approaches. How-
ever, using fingerphotos for authentication brings along a
major challenge of fingerphoto spoofing. This research is
aimed at understanding the effect of spoofing on fingerpho-
tos. There are three major contributions of this research:
(i) create a large spoofed fingerphoto database and make it
publicly available for research, (ii) to establish the effect of
print attack and photo attack in fingerphoto spoofing, and
(iii) understand the performance of existing spoofing detec-
tion algorithms on fingerphoto spoofing.

1. Introduction
With the increasing usage of handheld smart devices,

users have started saving personal data and using multiple
confidential services. For instance, many banking applica-
tions use multiple user authentication techniques such as
pins, patterns, and passwords which happen to be inconve-
nient and are highly susceptible to over-the-shoulder surfing
attacks. Incorporating biometrics as a method for authenti-
cation is a suitable alternative. Various smartphones such
as Apple iPhone 5s, Nexus 5, and OnePlusTwo use finger-
prints for unlocking the device. However, this requires an
additional hardware component or an optical scanner which
is only present in expensive high-end smartphones. In addi-
tion to that, there have been many instances where unau-
thorized users have been able to access confidential and
secure documents by successfully spoofing the biometric
sample [5]. For example, in 2013, German Hackers group
Chaos Computer Club spoofed the fingerprint scanner in

(a) Fingerphoto image (b) Fingerprint image

Figure 1: Sample images illustrating the contrast between
(a) a fingerphoto and (b) a fingerprint.

Apple iPhone 5s by using a counterfeited fingerprint [1].
A team from University of Hanoi (Vietnam) demonstrated
the trick to spoof face recognition tool of Lenovo, Asus, and
Toshiba laptops by using photographs of a genuine user [2].

Using fingerphoto images captured using a mobile cam-
era, as shown in Figure 1, an alternative biometric approach
provides a potential option for user authentication in smart-
phone devices [14]. Applications of fingerphoto biometrics
can be beyond unlocking mobile devices, such as banking
and law enforcement applications1. However, capturing fin-
gerphoto images is also susceptible to spoofing attacks and
hence, it becomes an important research problem to study.
Although it is established in the literature, mentioned in Ta-
ble 1, that fingerprint based images can be spoofed, there is
a lack of experimental study on spoofing using fingerphoto
images. In addition to that, there is no publicly available
database having spoofed and original images of the same
finger, captured using a smartphone camera. Therefore,
there are three major contributions in this research:

1. We experimentally study different kinds of spoofing
1http://goo.gl/x2wjVO



Research Modality Spoofed Using Algorithm Database Results
Pan et al.
[9]

Face Replay face
videos

Measuring eye-blink
behavior using adaptive
boosting

ZJU Eyeblink 95.7% GAR@0.1%FAR

Ohana et
al. [12]

Fingerprint Ink, Mikrosil
mold, Gelatin

Device Dongle & RFID
Middleware

Non-public finger-
print database

No accuracy reported

Akhtar et
al. [4]

Face, Fin-
gerprint

Silicon, Latex
molds, Photo,
print attack

Train a serially fused
multi-biometric system

LivDet2011, Photo
attack, Print attack

Photo attack: 62%
FAR@EER, print attack:
40% FAR@EER

Akhtar et
al. [5]

Face, Fin-
gerprint,
Iris

Silicon mold,
Photo, Print
attack

LUCID, CENTRIST,
POEM features based
detection

Print attack,
NUAA, ATVS-FIr,
ATVS-FFp

HTER - Iris: 0.01%,
Face: 0.1%, Fingerprint:
0.25%

Stein et
al. [16]

Fingerphoto Silicon, Gelatin
molds, print,
photo attack

Measure light reflection
by adaptive threshold

In-house non-
public fingerphoto
database

1.2− 3% EER

Table 1: A literature survey of existing biometric spoofing detection algorithms in mobile devices.

attacks, such as print attack and photo attack, on fin-
gerphotos to establish the extent to which fingerphotos
can be spoofed.

2. We evaluate the performance of different features such
as Local Binary Patterns (LBP), Dense Scale Invari-
ant Feature Transform (DSIFT), and Locally Uniform
Comparison Image Descriptor (LUCID) features along
with Support Vector Machine (SVM) based finger-
photo spoofing detection algorithm to distinguish be-
tween spoofed and non-spoofed images.

3. We extend the IIITD SmartPhone Fingerphoto
database [14] to create the Spoofed Fingerphoto
database 2 with six different photo attack mecha-
nisms and two different print attack mechanisms. This
database is made publicly available for research.

2. Spoofed Fingerphoto Database
Since fingerphoto detection is a comparatively newer

paradigm for biometric authentication, fingerphoto spoof-
ing has not been well explored in the literature. As there
is no publicly available spoofed fingerphoto database,
we created one using the existing IIITD FingerPhoto
Database [14]. As shown in Figure 3, the setup used
to create spoofed fingerphoto database has a display
mechanism and a capture mechanism kept apart at a fixed
distance. The spoofed database was collected under indoor
controlled illumination environment. Typically, the display
device/mechanism is the system that is being spoofed
while the capture device/mechanism is the spoofing de-
vice/mechanism that is used in place of the actual biometric
modality. In the literature, most of the spoofing attempts

2http://iab-rubric.org/resources/sfd.html

have been made with state-of-the-art high resolution phone
cameras. However, in this research, we also wanted to
study the effect of camera variation, therefore, we utilized
two different resolution cameras as capture mechanisms:
(1) OnePlusOne (OPO): 13MP camera with High Dynamic
Range (HDR) imaging, Flash-OFF mode, and Auto-focus
and (2) Nokia C5: 3.15MP camera with Flash-OFF mode
which has no Auto-focus feature.

With these two devices, we have captured two kinds of
attacks: print attack and photo attack. Considering different
modalities of photo attack, three types of display mecha-
nisms are used to capture the spoofed samples.

• Print Attack: A colored paper-printout is placed in
front of the capture device/mechanism to spoof the
original fingerphoto. Colored images are printed with
HP Color-LaserJet CP2020 Series PCL6 printer at 600
ppi.

• Photo Attack: The original image is displayed on an-
other display device in front of the capture mechanism.
Three different display mechanisms used for spoofing
are: (1) Apple iPad with Retina Display with 2048 ×
1536 resolution (2) Nexus 4 with 1280 × 768 resolu-
tion, and (3) Dell Inspiron N5110 Laptop with 1280 ×
720 resolution.

This results in two different capture mechanisms and
four different display mechanisms resulting in a total of
eight different ways of spoofing. Figure 3 illustrates the
setup for spoofing attempts. Original non-spoofed im-
ages are obtained from the IIITD SmartPhone FingerPhoto
Database [14] which has two sets of fingerphotos, contain-
ing a total of 4096 images. There are 128 classes × 4 vari-
ations × 8 instances in the original dataset. The spoofed
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Figure 2: Eight different types of spoofing mechanisms used to create the proposed database, having two different display
mechanisms and four different capture mechanisms.
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Figure 3: Camera apparatus and environmental setup used
to create the spoofed fingerphoto database.

Spoof/Non-spoof Display Capture # Images Total

Print attack Color print
Nokia 1024

2048
OPO 1024

Photo attack

iPad
Nokia 1024

6144

OPO 1024

Nexus
Nokia 1024
OPO 1024

Laptop
Nokia 1024
OPO 1024

Non-spoofed 4096 4096

Table 2: A summary of the subsets in the Spoofed Finger-
photo database.

database is created by choosing 2 out of the 8 instances and

spoofing it in 8 different ways. Thus, there are in total 128
classes × 4 variations × 2 instances × 2 capture mecha-
nisms × 4 display mechanisms (1 print + 3 photo) = 8192
spoofed photos. Table 2 summarizes the characteristics of
the created database and Figure 2 shows sample fingerphoto
images from the collected dataset. The proposed database
has certain non-ideal constraints such as the effect of dif-
ferent camera resolutions, inter-sensor variations, different
display mechanisms, and varying capture mechanisms, that
can affect the performance of spoofing. For example, we
use Nokia C5 which has a 3.15MP camera as well as OPO
which has 13MP.

3. Can Fingerphoto Images be Spoofed?
The primary objective of this section is to address the

question, ‘Can fingerphoto images be spoofed?’ and to
study the extent to which a fingerphoto matching system can
be spoofed. The ideal environment is when a fingerphoto
matching system provides high matching performance for
original images, while providing a poor matching perfor-
mance for spoofed input images. Thereby, ensuring that the
matching system cannot be spoofed.

3.1. Fingerphoto Matching Algorithm

For matching fingerphoto images captured using a smart-
phone camera, we use a state-of-the-art fingerphoto ap-
proach recently proposed by Sankaran et al. [14]. As ex-
plained in [14], the algorithm involves applying two levels
of segmentation with a coarse cropping followed by the ROI
extraction using skin color segmentation in CMYK channel.
The segmented image is enhanced using median filtering,
histogram equalization, and sharpened by subtracting the
original image with the Gaussian blurred image. Scattering
Network (ScatNet) based features are used as a robust rep-



                  (a)  ScatNet + L2                                                       (b) ScatNet + NN                                               (c) ScatNet + RDF

Figure 4: Receiver operating characteristic (ROC) curves for different spoofing and non-spoofing subsets establishing the
effectiveness of different spoof attacks.

Equal Error Rate (%)
Spoof Attack Display Capture ScatNet + L2 ScatNet + NN ScatNet + RDF

Print Attack Color print Nokia 11.18 ± 0.35 1.02 ± 0.46 1.37 ± 0.66
OPO 12.55 ± 3.37 1.30 ± 0.43 1.63 ± 0.54

Photo Attack

iPad Nokia 7.66 ± 1.35 4.71 ± 0.48 2.53 ± 1.08
OPO 14.11 ± 1.88 3.65 ± 0.93 1.52 ± 0.66

Nexus Nokia 10.41 ± 1.09 3.68 ± 0.86 1.94 ± 0.48
OPO 11.47 ± 0.46 3.31 ± 0.28 1.41 ± 0.38

Laptop Nokia 13.54 ± 2.76 1.83 ± 0.12 0.96 ± 0.11
OPO 13.70 ± 2.15 1.50 ± 0.28 0.86 ± 0.10

Original images not used for spoofing 11.46 ± 1.53 4.23 ± 0.34 0.48 ± 0.22
Original images used for spoofing 11.43 ± 1.77 3.58 ± 0.62 0.80 ± 0.15

Table 3: The performance of different matching algorithms across the spoofed and non-spoofed subsets, captured in terms of
EER % (mean ± standard deviation across three times cross validation).

resentation for fingerphoto images. ScatNet is a sequential
application of wavelet transform in the image which gives a
representation that is stable to local geometric transforma-
tion. It has been shown that the ScatNet features are good
for extracting texture patterns in images [15]. However, as
ScatNet produces high dimensional features, PCA based di-
mensionality reduction is performed by preserving 99% en-
ergy. Three different matching approaches are adopted: (i)
L2 distance based matching, (ii) Neural Network (NN), and
(iii) Random Decision Forest (RDF) [6].

3.2. Experimental Protocol

The aim of this first experiment is to determine whether
fingerphoto images can be spoofed across different spoofing
methods. The ScatNet based matching algorithm is trained
using the IIITD SmartPhone Fingerphoto Database [14].
The database has 128 classes and it is split into non-
overlapping 50% training and 50% testing sets. The train-
ing data consists of non-spoofed images in both gallery and
probe sets, since it is assumed that the matching algorithm

is trained using non-spoofed images only.

The training data is split into gallery and probe with (64
classes × 4 variations × 4 instances =) 1024 photos in each
subset. In the IIITD SmartPhone Fingerphoto Database,
each class has 8 instances with each of the 4 variations cor-
responding to indoor, outdoor and two background varia-
tions. 2 instances out of these 8 are selected to generate the
spoofed images. Each of the 2 instances is spoofed using 8
different mechanisms. The test gallery has 2 instances that
are not used for spoofing so total images are (64 classes ×
4 variations × 2 instances =) 512. The test probe set has
10 different subsets: (i) 8 subsets corresponding to the 8
spoofing mechanisms, each having 512 images, (ii) 2 in-
stances that are neither used in gallery nor used for probe
are used to create a probe subset of 512 images, and (iii)
2 instances that are used for creating spoofed images are
added as the last probe subset having 512 images. Thus, the
first eight subsets show accuracy on spoofing database and
the last two subsets match non-spoofed images to provide
a baseline accuracy. To avoid the training bias, three times



random cross validation is performed on the overall train-
test split and the average equal error rate (EER) along with
the standard deviation is calculated.

3.3. Establishing Fingerphoto Spoofing

To establish the effect of fingerprint spoofing, ScatNet
based fingerphoto matching algorithm is applied using the
experimental protocol described in the previous subsection.
A detailed study on the comparative analysis on using Scat-
Net based fingerphoto matching algorithm has been studied
by Sankaran et al. [14]. The results of different matching
algorithms on individual spoofed and non-spoofed subsets
are summarized in Table 3 and the ROC curves are shown
in Figure 4. As each of the test probe subset contains an
equal number of images per class and is compared against
the same test gallery, the results can be directly compared.
Further, comparing the performance of different probe sub-
sets across the same algorithm suggests about the effective-
ness of the display and capture mechanisms used to create
the spoofing database. Analyzing the results across multiple
surfaces yeids the following observations.

• With different kinds of spoofing attacks and non-
spoofed images, the equal error rate across all three
matching algorithms does not vary much. ScatNet +
RDF yields the best results for both spoofed and non-
spoofed images; the EERs are in the range of 0.48% to
2.53%. This indicates that the matching algorithm is
prone to spoofing.

• Both capture and display devices play an important
role in spoofing, changing either can significantly
change the matching performance. For instance, with
iPad as the display device, spoofed prints collected us-
ing Nokia device yield 2.53% EER whereas changing
the capturing unit to OPO reduces the error rate by
1.01%. However, it can be observed that irrespective
of the resolution of the camera used for capture, using
a laptop to display an image is probably the most ef-
fective method for spoofing the system. With laptops,
the accuracies are close to non-spoofed query images.

• On the contrary, using a retina display mechanism such
as iPad gives the worst matching performance indicat-
ing that it is not a good method to spoof a fingerphoto
based biometric system.

• Table 4 shows the results of the performance of dif-
ferent matching algorithms captured in terms of their
True accept rate at 1% FAR and 0.1% FAR. We see that
the photo attack with iPad-Nokia has the least TAR for
ScatNet+NN and ScatNet+RDF matching algorithms,
and it is in accordance with Table 3 which provides the
highest EER for iPad-Nokia.

4. How to Detect Spoofed Fingerphoto?
Now that it is experimentally established that it is possi-

ble to spoof a fingerphoto based system, in this section we
study different features that can be used to detect spoofed
images. A spoofing detection algorithm can be placed as a
preprocessing module in a fingerphoto matcher’s pipeline,
which will discard spoofed images and process only non-
spoofed original images.

4.1. Spoof Detection Algorithm

In this research, we evaluate a baseline spoof detection
algorithm to detect and distinguish between spoofed finger-
photo images and original fingerphoto images, so that the
recognition systems can address the challenges of spoofing.
From Figure 2, it can be observed that most of the spoofed
images exhibit Moire texture patterns [13] due to the prop-
erty of the display devices. Such a texture is generally not
observed if the capture mechanism directly captures the im-
age of the finger. Hence, spoof detection is formulated as
a binary classification problem using an SVM [7] to learn
these texture patterns from a spoofed image. The texture
patterns are extracted using LBP features [3, 8, 11]. To
study the behavior of high definition display devices such
as retina display, gradient based DSIFT [10] features and
LUCID descriptor [17] are also independently used to learn
an SVM. LUCID descriptors are recently found to provide
successful performance in the domain of mobile biometric
liveness detection [5]. Therefore, experiments with three
anti-spoofing approaches present the baseline results on the
proposed spoofed fingerphoto database.

4.2. Experimental Protocol

In this section, we experimentally evaluate the perfor-
mance of baseline spoof detection algorithm using the pro-
posed fingerphoto spoofed database. In the experiments, a
50% train-test data split is followed and a linear C-SVM
(using lib-SVM [7] with c = 1) is used for training. The
train data consists of (64 classes × 4 variations × ((2 × 8)
spoofed images + 6 original images that are not used for
spoofing)). There are in-total 5632 images used for training
with 4096 spoofed images and 1536 original images. The
test data consists of images from (64 classes ×4 variations
×((2×8) spoofed images + 8 original images including the
ones used for spoofing)). Thus, the test data has 6144 im-
ages with 4096 spoofed images and 2048 original images.

4.3. Spoofing Detection Performance

The results using both LBP, DSIFT, and LUCID descrip-
tors are presented in Table 5 and Table 6 and the ROC
curves are shown in Figure 5. While using the complete
test set, LBP + SVM gives the best spoofed fingerphoto de-
tection performance with 3.71% EER when the complete



True Accept Rate (%) @ FAR
Spoof
Attack Display Capture ScatNet + L2 ScatNet + NN ScatNet + RDF

0.1% 1% 0.1% 1% 0.1% 1%
Print

Attack
Color
Print

Nokia 53.46 ± 18.17 65.81 ± 13.83 97.03 ± 0.39 98.90 ± 0.58 91.65 ± 4.01 97.24 ± 2.10
OPO 56.62 ± 20.10 65.16 ± 18.08 94.18 ± 2.95 98.32 ± 0.77 79.37 ± 11.52 96.63 ± 1.87

Photo
Attack

iPad Nokia 56.61 ± 27.24 67.53 ± 19.83 69.79 ± 7.47 85.60 ± 0.94 71.84 ± 6.98 91.17 ± 5.55
OPO 50.55 ± 23.42 63.17 ± 12.63 78.68 ± 9.79 89.98 ± 5.83 93.87 ± 0.84 97.85 ± 1.06

Nexus Nokia 53.66 ± 21.62 70.92 ± 10.96 82.46 ± 1.05 91.87 ± 1.66 89.51 ± 2.42 96.37 ± 1.29
OPO 53.26 ± 21.13 65.19 ± 15.04 79.00 ± 3.19 92.26 ± 1.25 84.13 ± 13.93 97.69 ± 1.41

Laptop Nokia 52.17 ± 15.59 65.20 ± 12.95 91.75 ± 4.31 97.66 ± 0.04 92.29 ± 2.40 99.08 ± 0.16
OPO 53.62 ± 17.67 65.06 ± 11.68 93.64 ± 1.20 97.67 ± 0.58 96.72 ± 0.66 99.24 ± 0.15

Original images
not used for spoofing 53.45 ± 25.80 63.18 ± 20.61 70.19 ± 12.03 91.04 ± 1.51 96.61 ± 3.16 99.66 ± 0.22

Original images
used for spoofing 51.64 ± 26.51 60.31 ± 24.97 75.40 ± 5.69 89.56 ± 1.87 96.22 ± 1.90 99.56 ± 0.17

Table 4: Performance of different matching algorithms across the spoofed and non-spoofed subsets, captured in terms of
TAR @ 1%FAR and 0.1% FAR

(c) LUCID(a) LBP (b) DSIFT

Figure 5: ROC curves showing the performance of LBP, DSIFT and LUCID with SVM to distinguish between spoofed and
original images.

spoofed dataset is considered. Interestingly, it can be ob-
served in Table 3 that using Nexus as the display mechanism
yields very poor matching performance, while they provide
the best anti-spoofing performance in Table 6. In general,
those images that are not correctly matched with the match-
ing algorithm are easily distinguished as spoof images by
the SVM classifier, which is in accordance with the basic
understanding of the problem. While the equal error rate
is not very high, it is important that the spoofing detection
errors are low at lower values of false accept rate as well.
As shown in Table 6, existing descriptors commonly used
in spoofing literature yield very poor results for fingerphoto
detection. It is our assertion that this preliminary case study
along with the availability of the large database provided in
this research should encourage more researchers to work on
this important problem.

Equal Error Rate (%)
Display Capture LBP DSIFT LUCID

+ SVM + SVM + SVM

Print Nokia 6.05 9.17 26.95
OPO 4.85 5.85 22.46

iPad Nokia 3.12 1.90 23.91
OPO 5.27 4.12 18.75

Nexus Nokia 1.39 2.34 17.21
OPO 0.24 8.00 22.85

Laptop Nokia 4.48 3.29 25.17
OPO 2.31 5.22 18.75

Complete 3.71 5.37 22.22

Table 5: EER (%) for LBP, DSIFT, and LUCID with SVM
to distinguish between spoofed and original images.



True Accept Rate (%) @ 0.1% FAR
Display Capture LBP DSIFT LUCID

+ SVM + SVM + SVM

Print Nokia 30.08 16.60 0.98
OPO 44.34 19.33 4.88

iPad Nokia 49.22 71.48 0.00
OPO 58.01 40.82 0.20

Nexus Nokia 82.81 70.11 0.00
OPO 98.63 36.91 0.39

Laptop Nokia 50.98 62.89 0.20
OPO 81.05 33.00 1.37

Complete 61.89 43.89 1.07

Table 6: TAR@0.1% FAR for LBP, DSIFT, and LUCID
with SVM to distinguish between spoofed and original im-
ages.

5. Conclusion and Future Work

With increasing usage of smartphones in daily lives, fin-
gerphotos can be used as a viable approach for authentica-
tion; however, it is important to understand the implications
of spoofing attempts on fingerphoto recognition. This re-
search establishes the possibility of spoofing a smartphone
camera based fingerphoto based biometric system. To be
able to study and address different spoofing challenges, a
new database is created containing 8, 192 images with re-
spect to two different spoofing attacks: print and photo
attack, and eight different spoofing mechanisms including
iPad, mobile, laptop, and printouts. This database along
with the experimental protocol will be made publicly avail-
able to promote research in this important problem. Fur-
ther, we evaluated different features such as LBP, DSIFT,
and LUCID combined with a learning algorithm to classify
spoofed and original images. We observed that using LBP
features yields as low as 3.7% EER on the database. As a
future work, we plan to develop an improved anti-spoofing
matching algorithm for fingerphotos.
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