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Unraveling Representations for Face Recognition: from Handcrafted to

Deep Learning

by

Gaurav Goswami

Abstract

Automatic face recognition in unconstrained environments is a popular and challenging research
problem. With the improvements in recognition algorithms, focus has shifted from addressing
various covariates individually to performing face recognition in truly unconstrained scenarios.
Face databases such as the YouTube Faces and the Point-and-shoot-challenge capture a wide array
of challenges such as pose, expression, illumination, resolution, and occlusion simultaneously. In
general, every face recognition algorithm relies on some form of feature extraction mechanism to
succinctly represent the most important characteristics of face images so that machine learning
techniques can successfully distinguish face images of one individual apart from those of others.
This dissertation proposes novel feature extraction and fusion paradigms along with improvements
to existing methodologies in order to address the challenge of unconstrained face recognition. In
addition, it also presents a novel methodology to improve the robustness of such algorithms in a
generalizable manner.

We begin with addressing the challenge of utilizing face data captured from consumer level
RGB-D devices to improve face recognition performance without increasing the operational cost.
The images captured using such devices is of poor quality compared to specialized 3D sensors.
To solve this, we propose a novel feature descriptor based on the entropy of RGB-D faces along
with the saliency feature obtained from a 2D face. Geometric facial attributes are also extracted
from the depth image and face recognition is performed by fusing both the descriptor and attribute
match scores. While score level fusion does increase the robustness of the overall framework,
it cannot take into account and utilize the additional information present at the feature level. To
address this challenge, we need a better feature-level fusion algorithm that can combine multiple
features while preserving as much of this information before the score computation stage. To
accomplish this, we propose the Group Sparse Representation based Classifier (GSRC) which
removes the requirement for a separate feature-level fusion mechanism and integrates multiple
features seamlessly into classification. We also propose a kernelization based extension to the
GSRC that further improves its ability to separate classes that have high inter-class similarity.

We next address the problem of efficiently using large amount of video data to perform face
recognition. A single video contains hundreds of images, however, not all frames of a video contain
useful features for face recognition and some frames might even deteriorate performance. Keeping
this in mind, we propose a novel face verification algorithm which starts with selecting feature-
rich frames from a video sequence using discrete wavelet transform and entropy computation.
Frame selection is followed by learning a joint representation from the proposed deep learning
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architecture which is a combination of stacked denoising sparse autoencoder and deep Boltzmann
machine. A multilayer neural network is used as classifier to obtain the verification decision.

Currently, most of the highly accurate face recognition algorithms are based on deep learning
based feature extraction. These networks have been shown in literature to be vulnerable to en-
gineered adversarial attacks. We assess that non-learning based image-level distortions can also
adversely affect the performance of such algorithms. We capitalize on how some of these errors
propagate through the network to devise detection and mitigation methodologies that can help im-
prove the real-world robustness of deep network based face recognition. The proposed algorithm
does not require any re-training of the existing networks and is not specific to a particular type
of network. We also evaluate the generalizability and efficacy of the approach by testing it with
multiple networks and distortions. We observe favorable results that are consistently better than
existing methodologies in all the test cases.
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Chapter 1

Introduction

Face recognition is a task that humans perform every day swiftly, accurately, and repeatedly. How-

ever, when automated algorithms are used to perform the same task, it becomes a challenging

research problem which has received proportionate attention in the literature. Even after decades

of active research in this area, face recognition algorithms struggle to achieve the consistently

accurate performance of the human mind for familiar faces. Even though certain algorithms have

been demonstrated to be better than human face recognition in particular restricted scenarios [127],

there is no single algorithm that can provide robust and consistent recognition accuracy in all real

world situations.

Face is one of the most easily accessible biometric modality that does not require special acqui-

sition procedures and cooperation of the subject, which are reasons that make it useful for a wide

variety of applications ranging from automated photo tagging on social media platforms to critical

applications such as border control and surveillance forensics. Therefore, even though fingerprint

and iris technologies are more accurate and mature [106], they cannot completely replace the need

for face biometrics. However, human faces also demonstrate high inter-class and intra-class sim-

ilarities due to the same overall structure, look-alikes, pose, illumination, expression, occlusion,

and disguise. There are further cross-view challenges [150] for automated algorithms such as low

resolution [188] and cross spectral variations [58] that are required to be addressed. Figure 1-1

provides examples for each of these covariates or challenges of face recognition.

A typical face recognition algorithm involves multiple stages. First, an input image is processed

to detect and crop the face region. The detected region of interest is then aligned on the basis of
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(a) Pose (b) Occlusion

(c) Expression (d) Illumination

(e) Disguise (f) Resolution

(g) Age (h) Spectrum

Figure 1-1: Illustrating different covariates that deter the accuracy of face recognition algorithms.
Images are taken from the AR face database [141], the CMU Multi-PIE database [69], the SCFace
database [68], the Large Age Gap (LAG) database [18], and the KaspAROV database [30].

facial landmarks such as the eyes, nose, and mouth to adjust for scale, shift, and orientation and

then fed into a feature extractor [153]. A feature extractor converts the information contained in

the image to a numeric vector called as the feature vector which is a mathematically comparable

representation of the face. Ideally, representations extracted from faces of different individuals are

sufficiently distinguishable from representations extracted from different face images of the same
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individual. Depending on the algorithm there might be a single feature extractor or many of them

which can later be combined at a feature level by concatenation or other techniques. There are two

modes in which face recognition can be performed that determine the final stages of the recognition

pipeline. If the mode is one-to-one matching, also termed as face verification, then the features

extracted from one face image (probe) are matched directly with those extracted from another

(gallery). This matching might be performed using a previously learned classifier such as a Support

Vector Machine (SVM) [195] or a simple L-2 distance metric. The value of this comparison is used

to obtain the match score that can be further compared with a threshold to decide whether the two

faces belong to the same individual or not. If the mode is one-to-many matching, also termed

as face identification, then the features extracted from the input face (probe image) are compared

to gallery face images belonging to all the individuals enrolled in a database and individuals are

sorted according to the value of the comparison metric. The sorted list of individuals is called a

ranked list and the identity of the individual in the probe face image is predicted as the identity with

the highest match score. Both the modes have real world applications and it is a common practice

for algorithms to address verification directly and then perform identification in verification mode

by making multiple one-to-one comparisons to emulate the one-to-many matching.

The accuracy of face recognition relies heavily on the feature extraction process. As shown

in Figure 1-1, there are several factors that can alter the appearance of the same face significantly

in two different images and make feature extraction challenging. Over time, researchers have

proposed novel methodologies to impart resilience against particular covariates at a time. However,

such algorithms have had limited scalability and success in a truly unconstrained environment

where multiple covariates are present in a single image. Therefore, there has been a paradigm shift

in the way face recognition algorithms are evaluated wherein recent databases try to capture an

unconstrained environment by imposing less restrictions on the capture process. Images/videos

of subjects are captured while performing one or the other activity which ensures that multiple

variations are present simultaneously in almost every data point. To handle data variations from an

unconstrained capture process, there are two possible approaches: (1) at the input level; enhance

the input data itself in terms of the quantity, quality, and modality, and (2) at the algorithm level;

improve the feature extraction methodology. In this dissertation, we explore both directions while

keeping other important factors such as practical scalability and feasibility in consideration.
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Improving feature extraction by enhancing the input itself can be achieved by increasing the

dimensionality, combining different modalities, adding different views, and adding temporal in-

formation. Two-dimensional face images in the visible domain have been used as the input to

traditional face recognition algorithms. While this is a compact and convenient way to capture

face data, it is severely limited in the amount of information that it can contain. It has been de-

duced in the literature that capturing a 3D object (such as a face) in a two-dimensional format has

inherent problems. On the other hand, capturing a 3D image requires sensors that are still not

commonplace and fall in the category of specialized equipment which has an associated premium

in terms of setup and cost. In order to leverage the additional information provided by the depth

capture of a face while limiting the increase in cost to create practically feasible face recognition

methodologies, we explore the trade-off offered by consumer level RGB-D capture devices such

as Kinect. While such devices do not capture true 3D images, they provide a pseudo 3D represen-

tation at a low cost. These RGB-D face images present their own set of challenges: the depth maps

are of relatively low quality and the alignment with the color image is not perfect. Adding tem-

poral information and different views can also be accomplished by utilizing a face video instead

of still images. In a single video a face can be captured with many different pose, illumination,

and expression variations allowing for a more complete feature extraction since the algorithm gets

visibility on how the same face changes under the effect of these covariates. There are challenges

associated with using video data as well: processing requirements are high and not all the frames

contain useful information. Therefore, a mechanism to select only the most relevant subset of

frames is important to make the incorporation of video data more useful and feasible.

Improving feature extraction by improving the methodology can also manifest itself in various

ways: extracting different types of features, ensuring robustness of features to various covariates,

and fusing multiple features into an ensemble. While initial research in facial features relied on

handcrafted representations, deep learning based methodologies have become popular to learn the

best way to represent input data using data-driven training. While the obtained representations are

highly discriminative and offer large accuracy improvements, processing large amounts of train-

ing data into a very deep network is computationally intensive and increases the dependency on

data volume. It is also important to not just improve the performance of algorithms on selected

databases and controlled data but ensure that the improvements are sustained in a real setting for
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unseen data. A particular challenge in achieving this is the existence of adversarial input. The

generation of adversarial inputs has received special attention in the literature since it exposes the

singularities present in the existing methodologies for automatic face recognition. It is possible to

completely change the decisions made by an algorithm by introducing minor changes to the data

which may not be immediately visible to a human observer. Also, while some defense mechanisms

are proposed to handle such input, they are not highly generalizable and most of them require mod-

ifications to the network and/or the training process and re-training. An ideal defense mechanism

would not suffer from the same limitations.

Many face recognition algorithms involve information fusion at either the feature, score, or

decision level. This allows for various individual feature descriptors that are individually capable

of handling only a limited set of covariates to produce a more robust overall output. However,

a lot of the information contained in a feature is lost when the fusion takes place at the score or

decision level. Therefore, feature-level fusion is an important area of focus. Particularly when the

complimentary information is available. In this dissertation, we explore four research directions,

viz, (i) RGB-D face recognition with texture and attribute features, (ii) group sparse representation

based classifier for feature-level fusion, (iii) feature richness and joint deep representation based

framework for video face recognition, and (iv) defense against adversarial attacks, and attempt to

utilize their advantages while addressing the associated challenges. Figure 1-2 provides a broad

overview of this dissertation and summarizes its contributions.

1.1 Face Recognition: Progress from 2007 to 2018

Most of the research in face recognition literature has been focused on improving the alignment,

feature extraction, and matching aspects of the pipeline. In this section, we explore how the feature

extraction methodologies have evolved with time.
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Figure 1-2: Illustrating the scope of this dissertation. Using multiple modes of input such as
single face image, depth image in addition to face image, and face video, we solve the challenges
in extracting efficient features pertaining to the covariates of pose, illumination, expression, cross-
view, and occlusion. We also propose adversarial detection and mitigation techniques to ensure
the robustness of the representations in a real world scenario.
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Table 1.1: Progression of state-of-the-art in face recognition algorithms in the past 10 years.

Year Labeled Faces in the Wild YouTube Faces Database
2008 Ensemble of LBP, Gabor, TPLBP, and

FPLBP features [215]
2009 Information Theoretic Metric Learning +

LBP, SIFT, TPBLP, and FPLBP [199]
2010 Cosine Similarity Metric Learning + LBP,

Gabor, and intensity [152]
2011 Large scale feature-search with neuro-

morphic feature representations [33]
Matched Background Similarity + LBP,
CSLBP, and FPLBP [114]

2012 Distance Metric Learning with Eigen-
value Optimization + SIFT [231]

2013 SIFT + Fisher Vectors + Joint-Metric
Similarity Learning [187]

Sparse Coding + Whitened PCA + Pair-
wise constrained Multiple Metric [234]
Learning

2014 Deep Convolutional Neural Networks (DeepFace, DeepID) [192, 222]
2015 FaceNet: Deep Convolutional Neural Network [183]
2016 LBPNet: Local Binary Pattern Network

(LBP + CNN) [219]
Discriminative 3D Morphable Models
with a very Deep Convolutional Neural
Network [3]

2017-2018 Probabilistic Elastic Part Model + LBP
and SIFT [117]

Feature-richness based frame selection
with SDAE + DBM based joint feature
representation [67]

1.1.1 2007-2013: Fusion of Handcrafted Features and Distance Metric Learn-

ing

In the initial years, all of these efforts were based around proposing new hand-crafted features

and fusing them together to further increase the accuracy and robustness of face recognition ap-

proaches. In 2007, Zhang et al. [236] proposed the Histogram of Gabor Phase Pattern (HGPP)

descriptor that encodes quadrant-bit codes based on global and local Gabor transformations and

encodes Gabor phase information as opposed to magnitude. In the same year, Huang et al. [83] in-

troduced the first widely used challenging unconstrained benchmark database for face recognition

with a set protocol that researchers could use to report results and benchmark their algorithms. In

2008, Wolf et al. [215] obtained the best performance of 78.47% classification accuracy on the La-

beled Faces in the Wild (LFW) database using a combination of hand-crafted texture features such

as Local Binary Patterns (LBP), Gabor, Three-Patch LBP (TPLBP), and Four-Patch LBP (FPLBP)
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to obtain multiple match scores for each pair of images and using these scores as a feature vector

with a SVM classifier. In 2009, Taigman et al. [199] used a One-Shot Similarity measure that

utilized labeled data outside of the restricted protocol and combined it with information theoretic

metric learning to learn the similarity metric. They extracted Scale Invariant Feature Transform

(SIFT), LBP, TPLBP, and FPLBP features and used a similar approach to [215] to create feature

vectors for use with a SVM classifier to perform verification. Zhang et al. [235] proposed another

local texture descriptor termed as the Local Derivative Patterns (LDP) that encodes directional

pattern features based on local derivative variations. The nth-order LDP is proposed to encode the

(n-1)th-order local derivative direction variations as opposed to the first-order patterns encoded by

LBP. In the same year, Wright et al. [217] framed the problem of face recognition using sparse sig-

nal representation theory calling it the Sparse Representation-based Classifier (SRC). They showed

that by harnessing sparsity, the choice of features becomes less important than whether the features

are large enough and correct computation of the sparse representation. They demonstrate that us-

ing this formulation, unconventional features such as downsampled images and random projections

perform comparably to conventional features such as eigenfaces, as long as the dimension of the

feature space surpasses a certain threshold. This research sparked a long list of further research

inspired by introducing sparsity in features for face recognition.

In 2010, Nyugen et al. [152] improved the state-of-the-art for face verification using Gabor

and LBP textures and raw intensity values of the input images as features with Cosine Similarity

Metric Learning (CSML) obtaining a verification accuracy of 88.0%. Tan et al. [200] proposed

Local Ternary Patterns (LTP), a generalization of LBP that was more discriminant and less sen-

sitive to noise in uniform regions. They combined it with Kernel PCA feature extraction with

two additional feature sources: Gabor wavelets and LBP. Their approach obtained encouraging

results on various databases used for testing face recognition algorithm under varying illumination

conditions. Cao et al. [21] presented an approach named learning-based descriptor that encodes

the micro-structures of the face by a new learning-based encoding method. They utilized unsu-

pervised learning techniques to learn an encoder from the training examples followed by PCA

to get the face descriptor with reduced dimensionality. Their approach achieved comparable to

state-of-the-art performance on the LFW database. Qiao et al. [164] proposed an unsupervised di-

mensionality reduction algorithm called Sparsity Preserving Projections (SPP) that focused not on
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preserving local neighborhood information but the sparse reconstructive relationship of the data.

They achieved this using a L1 regularization-related optimization criterion to obtain a projection

that is invariant to rotation, scale, and translation, and contains discriminating information with

automatically chosen neighborhoods. Zhang et al. [240] proposed the Discriminative K-SVD (D-

KSVD) algorithm to extend the K-SVD algorithm by incorporating the classification error as part

of the optimization criterion, thus allowing the performance of a linear classifier and the repre-

sentational power of the dictionary being optimized at the same time. The D-KSVD algorithm

computes an overcomplete dictionary and solves for the classifier using a procedure derived from

the K-SVD algorithm. They have also shown that the learned dictionary and classifier are indeed

better for sparse-representation-based recognition.

In 2011, Wolf et al. [114] introduced another benchmark database called the YouTube Faces

Database (YTF) that presented an even more challenging video face recognition problem for com-

parative evaluation of unconstrained face recognition algorithms. When we consider the algo-

rithms that were state-of-the-art on these databases over the past decade, we can see how the best

performing algorithms have evolved. An overview of this progression is presented in Table 1.1.

In the same year, Zhang et al. [238] explored the use of Collaborative Representation (CR) in

the SRC algorithm and claimed that it is the CR and not the L1-norm sparsity that contributes

to its success in face recognition. Based on their observations, they also proposed an alternative

algorithm, namely CR based Classifier with Regularized Least Square (CRC-RLS). Cox et al. [33]

offered an alternative to the texture features that had been popular till then, proposing the first form

of learning features from data. They proposed a large-scale feature search approach that chose the

best candidates for the face verification task from a collection of randomly generated multilayer

neuromorphic representations. On the YTF, the very first algorithms described were still based on

texture features such as LBP, Center-Symmetric LBP (CSLBP), and FPLBP used in conjunction

with a matched background similarity measure to account for the set based nature of face video

matching [114]. In 2012, Deng et al. [38] proposed an extension of the SRC to the single gallery

face recognition problem that utilized samples from other classes to compute the sparse repre-

sentation for a probe image. Gui et al. [71] proposed a new sparse subspace learning algorithm

called Discriminant Sparse Neighborhood Preserving Embedding (DSNPE) combining discrimi-

nant information into Sparse Neighborhood Preserving Embedding (SNPE) that utilizes the global
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discriminant structures using a MMC added to the objective function. Ma et al. [134] proposed a

discriminative low-rank dictionary learning algorithm for sparse representation motivated by low-

rank matrix recovery using an objective function with sparse coefficients, class discrimination, and

rank minimization. Distance metric learning remained a key focus, with Ying et al. [231] pushing

the boundaries of state-of-the-art with a novel eigenvalue optimization framework based on the

Mahalanobis metric. Again, the features used in this research were hand-crafted texture features

namely SIFT, LBP, and TPLBP. In 2013, Liao et al. [121] presented an alignment-free partial face

recognition approach based on Multi-Keypoint Descriptors (MKD), where the descriptor size for

a given face image depends on the image content enabling any image to be sparsely represented

within a large dictionary of proposed Gabor Ternary Pattern (GTP) descriptors. Li et al. [115] pre-

sented the first algorithm that utilized a low resolution 3D sensor for improving face recognition

under challenging conditions using additional depth data. They exploited facial symmetry to fill

in holes in the obtained 3D point cloud and then sparse approximated the depth and texture face

data using separate dictionaries learned from training data and observed high recognition rates by

using the depth data. Simonyan et al. [187] demonstrated that Fisher vectors on densely sampled

SIFT features could achieve state-of-the-art face veriïňĄcation performance when combined with

a joint-metric similarity learning that encoded the difference between a low-rank inner product

and a low-rank Mahalanobis distance between the extracted features. The focus was again on

the metric learning aspect of the algorithm to improve the performance. In the same year, Cui

et al. [234] presented an approach to compute features for video matching using spatial blocks

comprised of frames and combined sparse codes obtained from members of each block by sum

pooling. They used a Whitened Principal Component Analysis (WPCA) for refining the feature

dimension and also proposed a distance metric learning method called Pairwise-constrained Multi-

ple Metric Learning (PMML) to effectively integrate the collection of descriptors. State-of-the-art

algorithms available by the end of 2013 were able to achieve up to 93% verification accuracy on

the LFW database.
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Figure 1-3: Illustrating how a deep network extracts facial features. Images (a) to (d) represent
the output of progressively deeper convolution layers from the VGG deep network. Images (e) to
(h) represent outputs from convolution layers of equivalently increasing depth from the LightCNN
network. As we can see, the first layer of output consists of basic patterns primarily simulating
simple edge detection that continue to evolve into more complex combinations of edges and texture
in the later layers of the network. The learned features are optimized to obtain the best recognition
performance and therefore capture information that focuses on preserving the differentiability of
different faces.
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1.1.2 2014-2018: A Focus on Deep Learning

In recent years, research in face recognition has shifted from hand-crafted features to automati-

cally learned representations using deep networks. An illustration of how such a representation

framework extracts features is presented in Figure 1-3. The year of 2014 marked a transition in

the face recognition literature from the prevailing trend of using metric learning with an ensem-

ble of hand-crafted texture descriptors to data-driven learned representations. The boundaries of

state-of-the-art were pushed by multiple contributions all based around deep convolutional neural

networks combined with the usage of large unrelated training databases in the unrestricted pro-

tocols for both the benchmark databases. Deep learning algorithms such as DeepFace [222] and

DeepID [192] achieved the best performance in 2014 reaching 97.4% verification performance on

the LFW database. In 2015, FaceNet [183] combined distance metric learning and representation

learning in one unified embedding learning framework that furthered the state-of-the-art to 99.6%

on the LFW database. Ding et al. [41] proposed a comprehensive deep learning framework to

jointly learn face representation using multimodal information. They utilized an array of specially

designed Convolutional Neural Network (CNN)s and a three-layer Stacked Auto-Encoder (SAE).

While the CNNs extract facial features from the multi-modal data, the SAE performs dimension

reduction on the concatenated high-dimensional feature vector. Ding et al. [45] also proposed a

novel face identification framework capable of addressing a multitude of pose variations by con-

verting the problem into a partial frontal face recognition problem. They then deploy a patch-based

face representation scheme with transformative dictionaries for improved recognition. Sun et al.

[193] presented a deep convolutional network termed DeepID2+ for face recognition using su-

pervised signals in early convolution layers to further the state-of-the-art on the LFW [83] and

YTF [114] benchmark databases. They identified sparsity, selectiveness, and robustness as the

key properties for the high performance of the network. Schroff et al. [183] proposed FaceNet,

that maps inputs from the face space to a Euclidean space where distances between points directly

relate to face similarity. Using these FaceNet features, they formulate face recognition problems

in terms of standard problems such as clustering and finding the nearest neighbors. They utilized

CNNs to optimize the extracted feature embedding and report results better than DeepID2+ on

the same benchmark databases. Sun et al. [191] then proposed two very deep neural network
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architectures named DeepID3. They based this off of the stacked convolution and inception layers

proposed in VGG net [160] and GoogLeNet [196] to adapt them for face recognition. They then

reinforce them with the supervised signals that distinguished DeepID2+. Lu et al. [129] presented

a new Joint Feature Learning (JFL) algorithm to learn features from raw pixels for face recog-

nition. They proposed an unsupervised feature learning method to compute hierarchical features

using different feature dictionaries to represent them on a facial region basis. Using spatial pooling

and stacking of these features, they further improved the recognition accuracies. Lu et al. [130]

also proposed CBFD based face representations by extracting Pixel Difference Vector (PDV)s in

localized facial patches in a neighborhood. They then learn a mapping from these PDVs into low-

dimensional binary vectors in an unsupervised manner while maximizing the variance of all binary

codes, minimizing the loss between the original real-value and learned binary codes, and ensuring

even distribution of binary codes at each learned bin. The final features are obtained by pooling

the codes into a histogram. Lu et al. [131] also proposed a new algorithm for image-set-based face

recognition that utilized statistics information to compute the features for each face set. They com-

bine it with a localized multikernel metric learning algorithm that enables learning feature-specific

distance metrics in the kernel spaces for each statistic. Liu et al. [122] illustrated a two-stage

approach that combined a multi-patch deep CNN and deep metric learning to extract compact fea-

tures for face recognition without sacrificing performance. Parkhi et al. [160] presented a deep

CNN using 16 convolution layers that is trained on an augmented database of 2.6 million face im-

ages pertaining to 2,625 individuals to improve the state-of-the-art in face recognition on multiple

benchmark databases showing another case of data-driven features providing high accuracy.

This trend of learning features for improved performance continued into 2016. Xi et al. [219]

presented an unsupervised deep learning based methodology combining the topology of convolu-

tional neural networks by replacing the learnable filters in the convolution layers with LBP and

PCA inspired filters to achieve competitive results with the state-of-the-art algorithms without

needing as much training data. In the same year, Tran et al. [201] regressed the shape and texture

parameters to create efficient 3D Morphable face Models (3DMM) using a convolutional neural

network to obtain results comparable to state-of-the-art deep learning algorithms while generating

interpretable representations in the form of 3D face shapes. Ding et al. [40] proposed a novel algo-

rithm to exploit the first derivative of Gaussian operator to handle illumination variations and then
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computed Dual-Cross Patterns (DCP) features at both the holistic and component levels. Through

experiments on multiple databases they conclude that their proposed feature descriptor termed

Multi-Directional Multi-Level DCP (MDML-DCP) outperforms other existing hand-crafted fea-

ture descriptors in both face identification and verification tasks. Masi et al. [143] explored if the

daunting task of collecting a lot of face images is absolutely essential for face recognition algo-

rithms. They proposed face specific data augmentation techniques to generate multiple training

samples from a single face sample in a training database. They reported that the performances

of their approach match that of algorithms trained on millions of faces. We report similar results

in Chapter 4 where we observe that the proposed approach is able to perform comparably to the

state-of-the-art methods even using limited training data and even without the need for data aug-

mentation along with an analysis of how the algorithm performs with increased data. Zhang et

al. [241] proposed an extension to CNNs which can compute the optimal structure of the net-

work, termed as Adaptive Convolutional Neural Network (ACNN). They initialized the network

by a one-branch structure and the average error and recognition rate of the training samples are

set to control the expansion of the structure of CNN. They first extend the network globally until

the average error criterion is met and then expanded locally to meet the recognition rate criterion.

Chen et al. [25] presented an algorithm for unconstrained face verification based on deep convo-

lutional features and evaluated it on the IARPA Janus Benchmark A (IJB-A) [101] and LFW [83]

databases. They used the CASIA-WebFace dataset [229] for training their CNN. AbdAlmageed et

al. [3] proposed a method for face recognition using multiple pose-aware deep learning models.

They processed a face image by multiple pose-specific deep CNN models to generate correspond-

ing pose-specific features. They then utilized 3D-rendering techniques to generate multiple poses

of the same face image. They introduced robustness to pose variations by using this ensemble of

features. Sun et al. [194] proposed an improvement to the high face recognition performance of

deep CNNs by introducing sparsity in neural connections. They learned these sparse ConvNets

in an iterative manner where sparsity is introduced in each layer iteratively and re-training of the

model is performed using the weights of the previous iterations as the starting points. They re-

ported that instantiating a sparse ConvNet by basing it off of a pre-trained dense model is critical

for extracting good features for face recognition. Wen et al. [214] proposed a new supervision

signal for training CNNs instead of the traditionally used softmax to improve the representative
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power of the learned features for face recognition, which they call center loss. The center loss

simultaneously learned a center for a particular class and penalized features for individual samples

that deviated too far from their class center. They also proved that the center loss function is eas-

ily optimized for CNN training and used it in conjunction with softmax loss to train CNNs with

inter-class separability and intra-class similarity as key objectives. They observed improvements

on benchmark databases when compared to state-of-the-art methods including other CNN based

approaches.

In 2017, Li et al., [117] proposed an approach that again utilizes LBP and SIFT to extract fea-

tures from densely sampled multi-scale image patches and encoded their location in combination

with the feature information itself. They capture the spatial-appearance distribution for all face

images using Gaussian Mixture Models (GMM), terming it the Probabilistic Elastic Part (PEP)

model. The PEP representation is built by concatenating the feature descriptors by each com-

ponent in the GMM. In chapter 4, we discuss a feature-richness based frame selection and joint

representation approach that achieves state-of-the-art results on the YTF with a deep architecture

that comprises of fewer parameters and can perform well without needing large amounts of train-

ing data. In summary, we have observed an evolution of the face recognition literature shifting

attention from ensembles of hand-crafted texture descriptors to distance metric learning and now

to data-driven learned features primarily using deep neural networks. Yang et al. [226] explored

the use of regression analysis for face recognition. They have focused on addressing the occlusion

and illumination covariates by utilizing low-rank structural information. They accomplish this

with a two-dimensional image-matrix-based error model, termed as the Nuclear-norm based Ma-

trix Regression (NMR). Their proposed approach computes the minimal nuclear norm of feature

error image as a metric and the Alternating Direction Method of Multipliers (ADMM) is deployed

to compute the regression coefficients. They observed better results compared to other regression

based approaches. Peng et al. [162] proposed a novel Graphical representation based Heteroge-

neous Face Recognition (G-HFR) method that is based on Markov networks which extract features

from heterogeneous image patches separately, and also encodes the spatial compatibility of neigh-

boring image patches. They also proposed a Coupled Representation Similarity Metric (CRSM)

to compare the graphical representations. Hayat et al. [75] discussed that a single representation

may not be sufficient for an image set and instead argue for retaining the images of a set in their
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original form and using their proposed extensions of popular simple binary classifiers for multi-

class image recognition for both objects and faces. They showed that their approach can perform

well even with training few binary classifiers on limited training data. He et al. [76] presented a

data driven Structured Ordinal Measure (SOM) based method that captures both ordinal filters and

structured ordinal features geared towards face recognition in videos. Unlike hand-crafted ordinal

measures, their proposed approach learns the filters and further enforces low-rankness and opti-

mality of the ordinal matrix for accurate classification. They also combine these features with deep

features that are jointly utilized for improved stability of the obtained feature encoding. Gao et al.

[55] focused on imparting robustness towards occlusion in face recognition. They have capitalized

on the low-rankness of the feature and the occlusion-induced error images to create the structure

information preserving Robust and Discriminative Low-Rank Representation (RDLRR). Huang et

al. [84] proposed a facial landmark-based multi-scale LBP feature descriptor that can address pose

and expression variations. They then fused LBP and Gabor features at kernel-level to encode both

facial texture and shape information while automatically learning the optimal values for the pa-

rameters involved using their proposed optimization algorithm. Pei et al. [161] presented a novel

face recognition algorithm termed Decision Pyramid Classifier (DPC) directed towards solving the

challenge of single sample per person, especially addressing pose and expression covariates and

occlusion to some extent. Their proposed DPC algorithm is nonparametric and extracts features

from a multitude of non-overlapping local facial regions from both training and test images and

constructs a decision pyramid to determine the identity of an unseen probe image. Yu et al. [232]

also proposed another solution for the single sample per person problem utilizing a Discriminative

Multi-scale Sparse Coding (DMSC) model for robustness towards occlusion in particular. They

compute an occlusion variation model using disjoint training data and create a dictionary and use

it to classify pixels as outliers and obtain a sparse and efficient feature encoding. Gao et al. [57]

presented yet another method for this problem using semi-supervised sparse representation-based

classification. They characterize the face recognition problem in terms of a gallery dictionary that

may contain one or more gallery faces and a variation dictionary that contains covariate informa-

tion, which they term as nuisances. The algorithm primarily consists of utilizing the variation

dictionary to encode the covariates with sparsity and estimating prototype face images using the

gallery dictionary and a Gaussian mixture model, with mixed labeled and unlabeled samples in a
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semi-supervised manner. In 2018, the research has continued primarily with deep learning based

approaches. Masi et al. [142] have proposed using an ensemble of pose specific CNNs trained to

tackle extreme pose variations to create a pose aware model for unconstrained face recognition.

Wen et al. [213] have proposed a unified framework to encapsulate both global and local features

by providing a splitting behavior for certain intermediate features which can be handled in different

branches. They do this within the same CNN instead of requiring multiple CNNs that individu-

ally learn to process different levels of features based on the type of facial patches that they are

trained on. Lu et al. [133] train three deep networks to address the problem of mismatching low

resolution in face recognition based on surveillance videos. They train one of these networks on

a mix of high and low resolution data and two resolution-specific networks that together extract

relevant discriminative features and perform better recognition in a resolution limited scenario.

Sparse representation based techniques are also being explored in the literature. Fan et al. [50]

have proposed a kernel sparse representation based approach wherein they utilize approximately

symmetrical face images to artificially increase training data and a coordinate descent approach

to solve the sparsity constrained optimization problem. Liu et al. [125] also propose a variant of

kernel sparse representation where they formulate the sparse optimization problem as a weighted

L1 minimization and utilize multi scale retinex to generate the similarity matrix while computing

the sparse representation of the test sample.

1.2 Research Contributions

As discussed in the previous section, there exists a substantial amount of literature and prior re-

search in the area of improving automated face recognition algorithms. However, face recognition

in the real world is still far from a solved problem since there exist many gaps in the capabilities

of the methodologies proposed in the existing literature as compared to the complexities of the

problem. Therefore, as part of this dissertation, we have attempted to fill some of these gaps and

progressively improve various aspects of representations for face recognition. There can be differ-

ent modalities in which a face image can be captured and expressed which influence the kind of

data available to any representation technique that operates with it. These are illustrated in Figure

1-4. We focus on the three types of representation modalities indicated in the figure as well as
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Figure 1-4: Features can be extracted from various modalities of face images. While a traditional
RGB (2D image) provides only color and texture information, it may be combined with depth
information to obtain a RGB-D based representation, or may be combined with a time dimension
(by capturing the same object across multiple frames separated by acquisition time) to obtain a
video based representation.

address the robustness of deep learning based approaches against adversarial attacks. The major

contributions of this dissertation are:

• RGB-D Face Recognition with Texture and Attribute Features: Although methodologies

using more than just 2D images for face recognition exist, they require high cost specialized

3D sensors. In order to make it more feasible to use depth-informed algorithms to improve

face recognition performance, we introduce a novel algorithm using RGB-D images. The

proposed algorithm computes a descriptor based on the entropy of RGB-D faces along with

the saliency feature obtained from a 2D face. Geometric facial attributes are also extracted

from the depth image and face recognition is performed by fusing both the descriptor and at-

tribute match scores. IIIT-D RGB-D face database of 106 individuals is prepared and shared

with the research community to promote further research in this area. A detailed experi-

mental protocol along with train-test splits are also shared to encourage other researchers to

report comparative results. This research is published in IEEE BTAS 2013 [61] and in the

IEEE Transactions on Information Forensics and Security 2017 [67].

• Group Sparse Representation based Classification: There are many existing feature ex-

traction techniques proposed in the literature with many representations capturing uncorre-

lated and complementary information about face images. In this case, significant perfor-

mance improvement can be expected if multiple features can be leveraged in unison to per-

form recognition. However, fusion techniques in the literature have primarily combined fea-
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tures at the score or decision level where much of the information contained in the complete

feature vectors is lost and merely considered at the aggregate level. Therefore, we propose

the Group Sparse Representation-based Classifier (GSRC) which removes the requirement

for a separate feature-level fusion mechanism and integrates multi-feature seamlessly into

classification. By considering each feature source without the use of concatenation or fea-

ture reduction, the classification algorithm can utilize different feature spaces to make an

optimal decision. The performance of the proposed GSRC classifier is evaluated with mul-

tiple feature sets and biometric modalities on two publicly available databases. We also

propose a kernel extension to the GSRC which enables multiple features to be processed in

a higher dimensional space where they are more separable, without substantially increasing

computational costs. The proposed Kernel Group Sparse Representation-based Classifier

(KGSRC) algorithm selects the ideal kernel to use along with its parameters automatically

as part of the training process. We evaluate the proposed algorithm on three challenging

biometric problems namely, RGB-D face recognition, cross distance face recognition, and

multimodal biometrics to showcase its efficacy. This research is published in Information

Fusion 2015 [63] and IJCNN 2017 [65].

• Feature-Richness and Joint Representation for Video Face Recognition: Videos have

been explored in the literature as a modality for face information as they are a means to

obtain temporal information and thereby improve the fidelity of the extracted features. Not

all the information contained in a video may be relevant for obtaining robust features and

therefore frame selection is an important aspect of video face recognition. While most of the

existing literature performs frame selection randomly, based on selected pose, or based on a

quality metric based threshold, we propose a novel face verification algorithm which starts

with selecting feature-rich frames from a video sequence using discrete wavelet transform

and entropy computation. Frame selection is followed by representation learning based fea-

ture extraction where three contributions are presented: (i) deep learning architecture which

is a combination of Stacked Denoising Auto-Encoder (SDAE) and Deep Boltzmann Machine

(DBM), (ii) formulation for joint representation in an autoencoder, and (iii) updating the loss

function of DBM by including sparse and low rank regularization. Finally, a multilayer neu-
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ral network is used as classifier to obtain the verification decision. The results are demon-

strated on two publicly available databases, YTF and Point and Shoot Challenge (PaSC)

database. Experimental analysis suggests that (i) the proposed feature-richness based frame

selection offers noticeable and consistent performance improvement compared to frontal

only frames, random frames, or frame selection using perceptual no-reference image quality

measures, and (ii) joint feature learning in SDAE and sparse and low rank regularization in

DBM helps in improving face verification performance. On the benchmark PaSC database,

the algorithm yields the verification accuracy of over 97% at 1% false accept rate whereas

on the YTF, over 95% verification accuracy is observed at equal error rate. This research is

published in the IEEE Transactions on Information Forensics and Security 2017 [67].

• Evaluating and Addressing the Robustness of Deep Representations for Face Recogni-

tion against Adversaries: Deep learning based methodologies have become increasingly

more popular with state-of-the-art results on challenging databases. However, there are

challenges in translating the performance achieved by such a network in the presence of

adversaries. In order to be able to confidently deploy a deep learning based solution to real

world problems, we attempt to unravel three aspects related to the robustness of Deep Neural

Network (DNN)s for face recognition: (i) assessing the impact of deep architectures for face

recognition in terms of vulnerabilities to attacks inspired by commonly observed distortions

in the real world; (ii) detecting the singularities by characterizing abnormal filter response

behavior in the hidden layers of deep networks; and (iii) making corrections to the processing

pipeline to alleviate the problem. Our experimental evaluation using two open-source DNN-

based face recognition networks, OpenFace and VGG, and two publicly available databases

(Multiple Encounter Dataset (MEDS) and PaSC) demonstrates that the performance of deep

learning based face recognition algorithms can suffer greatly in the presence of such dis-

tortions. The proposed SVM-based method is able to detect the attacks almost 100% of the

time by suitably designing a classifier using the response of the hidden layers in the network.

Finally, we present several effective countermeasures to mitigate the impact of adversarial

attacks and improve the overall robustness of DNN-based face recognition. This research is

published in AAAI 2018 [64].
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Chapter 2

RGB-D Face Recognition with Texture and

Attribute Features

2.1 Introduction

Face recognition with 2D images is a challenging problem especially in the presence of covariates

such as pose, illumination, and expression. These covariates introduce high degree of variation in

two 2D images of the same person thereby reducing the performance of recognition algorithms

[96]. Therefore, it is desirable to perform face recognition using a representation which is less sus-

ceptible to such distortions. While 2D images are not robust to these covariates, 3D images offer

a comparatively resilient representation of a face. 3D images can capture more information about

a face, thus enabling higher preservation of facial detail under varying conditions. 3D face recog-

nition has been explored in literature and several algorithms have been developed [20, 46, 180].

While it is advantageous to utilize 3D images for face recognition, the high cost of specialized 3D

sensors limits their usage in large scale applications.

With advancements in sensor technology, low cost sensors have been developed that provide

(pseudo) 3D information in the form of RGB-D images. As shown in Figure 2-1, an RGB-D

image consists of a 2D color image (RGB) along with a depth map (D). RGB image provides the

texture and appearance information whereas depth map provides the distance of each pixel from

the sensor. The depth map is a characterization of the geometry of the face with grayscale values

representing the distance of each point from the sensor. While a RGB-D image does not provide
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Figure 2-1: Different modes of capture: (a) RGB image, (b) depth map captured using Kinect, and
(c) Range image from 3D TEC dataset [206] obtained using a 3D scanner.
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Figure 2-2: Illustrating the steps involved in the proposed RGB-D face recognition algorithm.

highly accurate 3D information, it captures more information compared to a 2D image alone.

An RGB-D image captured using consumer devices such as Kinect is fundamentally differ-

ent from a 3D image captured using range sensors due to the manner in which they capture the

target. Kinect captures RGB-D image by utilizing an infrared laser projector combined with a

monochrome CMOS sensor. 3D sensors on the other hand utilize specialized high quality sensors

to obtain accurate range and texture image. 3D face recognition approaches utilize techniques

such as Principal Component Analysis (PCA) and Linear Discriminant Analysis (LDA) to char-

acterize a 3D face model. Some approaches also utilize facial landmarks identified in a 3D face

model to extract local features. However, 3D face recognition algorithms generally rely on accu-

rate 3D data. Since the depth map returned by RGB-D Kinect sensor is not as precise as a 3D

sensor and contains noise in the form of holes and spikes, existing 3D face recognition approaches

may not be directly applied to RGB-D images. While RGB-D images have been used for several

computer vision tasks such as object tracking, face detection, gender recognition, and robot vision

[49, 77, 78, 81, 89, 167], there exists relatively limited work in face recognition. Li et al. [115] pro-

posed a face recognition framework based on RGB-D images. The RGB-D face image obtained

from Kinect is cropped using the nose tip which is reliably detectable via the depth map. The

face is then transformed into a canonical frontal representation and pose correction is performed

using a reference face model. The missing data is filled by symmetric filling which utilizes the
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symmetry of human faces to approximate one side of the face with corresponding points from the

other side. Smooth resampling is then performed to account for holes and spikes. The image is

converted using Discriminant Color Space (DCS) transform [210, 225] and the three channels are

stacked into one augmented vector. This vector and the depth map are individually matched via

Sparse Representation-based Classifier (SRC) [217] and the scores are combined. Experimental

results indicate that using both depth and color information yields around 6% higher identification

accuracy compared to color image based algorithms. Segundo et al. [184] proposed a continuous

face authentication algorithm which utilizes Kinect as the RGB-D sensor. The detected face image

is aligned to an average face image using the Iterative Closest Point (ICP) algorithm [10] and a

Region of Interest (ROI) is extracted. The ROI is then characterized using Histogram of Oriented

Gradients (HOG) approach and utilized for matching with stored user template for authentica-

tion. Kinect also has its own algorithm for face recognition, the details of which are not publicly

available.

While there are few algorithms that utilize RGB-D images obtained from consumer devices

for face recognition, this research presents a different perspective. As mentioned previously, the

depth maps obtained using Kinect are noisy and of low resolution. Therefore, instead of using the

depth information to generate a 3D face model for recognition, we utilize noise tolerant features for

extracting discriminatory information. We propose a novel face recognition algorithm that operates

on a combination of entropy and saliency features extracted from the RGB image and depth entropy

features extracted from the depth map. The proposed algorithm also utilizes geometric attributes of

the human face to extract geometric features. These geometric features are utilized in conjunction

with the entropy and saliency features to perform RGB-D face recognition. The key contributions

of this research are:

• A novel algorithm is developed that uses both texture (oriented gradient descriptor based on

saliency and entropy features) and geometric attribute features for identifying RGB-D faces.

• IIIT-D RGB-D face database of 106 individuals is prepared and shared with the research

community to promote further research in this area. A detailed experimental protocol along

with train-test splits are also shared to encourage other researchers to report comparative

results.
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2.2 Proposed RGB-D Face Recognition Algorithm

The steps involved in the proposed algorithm are shown in Figure 2-2. The algorithm is comprised

of four major steps: (a) preprocessing, (b) computing textute descriptor from both color image and

depth map using entropy, saliency, and HOG [35], (c) extracting geometric facial features from

depth map, and (d) combining texture and geometric features for classification. These steps are

explained in the following subsections.

2.2.1 Preprocessing

First, an automatic face detector (Viola-Jones face detector) is applied on the RGB image to obtain

the face region. Any other face detection framework may also be applied [169]. The corresponding

region is also extracted from the depth map to crop the face region in depth space. While texture

feature descriptor does not require image size normalization, the images are resized to 100 × 100

to compute depth features. Depth map is then preprocessed to remove noise (holes and spikes).

Depth map of a face is divided into 25×25 blocks and each block is examined for existence of

holes and spikes. Depth values identified as the hole/spike are rectified using linear interpolation,

i.e. assigned the average value of their 3×3 neighborhood.

2.2.2 RISE: RGB-D Image descriptor based on Saliency and Entropy

The motivation of the proposed RGB-D Image descriptor based on Saliency and Entropy (RISE)

algorithm lies in the nature of the RGB-D images produced by Kinect. Specifically, as shown in

Figure 2-3, depth information obtained from Kinect has high inter-class similarity and may not be

directly useful for face recognition. It is our assertion that 3D reconstruction based approaches

may not be optimal in this scenario. However, due to low intra-class variability, depth data ob-

tained from Kinect can be utilized to increase robustness towards covariates such as expression

and pose after relevant processing/feature extraction. On the other hand, 2D color images can

provide inter-class differentiability which depth data lacks. Since the color images contain visible

texture properties of a face and the depth maps contain facial geometry, it is important to utilize

both RGB and depth data for feature extraction and classification. As shown in Figure 2-4, four

entropy maps corresponding to both RGB and depth information and a visual saliency map of the
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RGB image are computed. The HOG descriptor [35] is then used to extract features from these

five entropy/saliency maps. The concatenation of five HOG descriptors provides the texture feature

descriptor which is used as input to the trained Random Decision Forest (RDF) classifier to obtain

the match score.

Entropy and Saliency

Entropy is defined as the measure of uncertainty in a random variable [178]. Similarly, the entropy

of an image characterizes the variance in the grayscale levels in a local neighborhood. The entropy

H of an image neighborhood x is given by Equation 2.1,

H(x) = −
n∑
i=1

p(xi)logbp(xi) (2.1)

where p(xi) is the value of the probability mass function for xi. In the case of images, p(xi)

signifies the probability that grayscale xi appears in the neighborhood and n is the total number of

possible grayscale values, i.e., 255. If x is a MH ×NH neighborhood then

p(xi) =
nxi

MH ×NH

(2.2)

Here, nxi denotes the number of pixels in the neighborhood with value xi. MH × NH is the total

number of pixels in the neighborhood. By controlling the size of neighborhood, entropy computa-

tion can be performed at a fine or coarse level. In the current research, the neighborhood size for

entropy map computation is fixed at 5×5 and RGB input images are converted to grayscale. The

visual entropy map of an image is a characteristic of its texture and can be used to extract mean-

ingful information from an image. Examples of entropy and depth entropy maps are presented in

Figure 2-4. The absolute values of the depth entropy map do not vary abruptly in adjacent regions

except in special regions such as near the eye sockets, nose tip, mouth, and chin. The local en-

tropy of an image neighborhood measures the amount of randomness in texture (in local region).

Higher local entropy represents higher prominency in that region and therefore, it can be viewed as

a texture feature map that encodes the uniqueness of the face image locally and allows for a robust

feature extraction.

Apart from entropy, we also utilize visual saliency of the RGB image to compute useful facial
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(a) (b)

Figure 2-3: RGB-D images of two subjects illustrating the inter-class similarities of RGB images
and depth maps.

Figure 2-4: Illustrating the steps of the proposed RISE algorithm.
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information. It measures the attractiveness of local regions based on the viewer’s visual attention

[39]. The distribution of visual attention across the entire image is termed as visual saliency map

of the image. There are several approaches to compute the visual saliency map of an image.

This research utilizes the approach proposed by Itti et al. [90]. Let the image be represented as

an intensity function which maps a set of co-ordinates (x, y) to intensity values. The approach

preprocesses a color image to normalize the color channels and de-couple hue from intensity.

After normalization, center-surround differences are utilized to yield the feature maps [90]. 42

feature maps are extracted from the image in accordance with the visual cortex processing in

mammals. Six of these maps are computed for intensity, 12 for color, and 24 for orientation across

multiple scales. Intensity and orientation feature maps are denoted by I and O respectively. The

color feature maps are represented by RG and BY which are created to account for color double

opponency in the human primary visual cortex [48]. Based on these maps, the saliency map of

the image is computed by cumulating the individual feature maps obtained at different scales to

one common scale (= 4) of the saliency map. This is achieved after inhibiting the feature maps

which are globally homogeneous and promoting the maps which comprise of few unique activation

spots (global maxima) via a normalization function N(·). The feature maps for color, intensity and

orientation are combined in separate groups to create three feature maps Cfinal, Ifinal, and Ofinal

corresponding to color, intensity, and orientation respectively.

Cfinal =
4⊕
c=2

c+4⊕
s=c+3

[N(RG(c, s)) +N(BY (c, s))] (2.3)

Ifinal =
4⊕
c=2

c+4⊕
s=c+3

N(I(c, s)) (2.4)

Ofinal =
∑

θ∈{0◦,45◦,90◦,135◦}

N

(
4⊕
c=2

c+4⊕
s=c+3

N(O(c, s, θ))

)
(2.5)

Here, c and s denote the center and surround scales respectively and the
⊕

operator denotes

across-scale addition which is defined to consist of reduction of each map to the common scale

and point-wise addition [90]. These maps are then combined into the final visual saliency map S
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according to equation 2.6:

S =
1

3
[N(Cfinal) +N(Ifinal) +N(Ofinal)] (2.6)

Figure 2-4 presents an example of the visual saliency map, S, of an input face image. It models

the image regions with high feature activation in accordance with the visual processing that occurs

in the visual cortex of mammals. It is observed that gradient orientations of this saliency map

provide discriminative information which aids in improving the recognition performance, specif-

ically in reducing the intra-class discrepancies. Therefore, orientation histogram of the saliency

map of a color image (obtained using HOG approach) is utilized as an additional feature. It is to

be noted that saliency is computed only for RGB image and not depth map because the depth map

lacks salient information and therefore, the saliency of depth map does not provide discriminating

information.

Extracting Entropy Map and Visual Saliency Map

Let the input RGB-D image be denoted as [Irgb(x, y), Id(x, y)], where Irgb(x, y) is the RGB image

and Id(x, y) is the depth map, both of size M × N . Let both of these be defined over the same

set of (x, y) points such that x ∈ [1,M ] and y ∈ [1, N ]. Let H(Ij) denote the visual entropy map

of image Ij . Here, Ij can be the depth map or the RGB image or a small part of these images.

Two image patches are extracted for both Irgb and Id. Two patches, P1 of size M
2
× N

2
centered at

[M
2
, N

2
], and P2 of size 3M

4
× 3N

4
centered at [M

2
, N

2
] are extracted from Irgb. Similarly, two patches

P3 and P4 are extracted from Id. Four entropy maps E1 − E4 are computed for patches P1 − P4

using Equation 2.7:

Ei = H(Pi), where i ∈ [1, 4] (2.7)

E1,E2 represent the entropy of the color image (Irgb) andE3,E4 represent the depth entropy maps.

The proposed RISE algorithm also extracts visual saliency map S1 of the color image Irgb using

Equation 2.8.

S1(x, y) = S(Irgb(x, y)∀(x ∈ [1,M ], y ∈ [1, N ])) (2.8)
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Figure 2-5: Steps involved in the proposed ADM approach.

Extracting Features using HOG

HOG [35] descriptor produces the histogram of a given image in which pixels are binned ac-

cording to the magnitude and direction of their gradients. HOG has been successfully used as a

feature and texture descriptor in many applications related to object detection, recognition, and

other computer vision problems [32, 52, 209]. HOG of an entropy map or saliency map encodes

the gradient direction and magnitude of the image variances in a fixed length feature vector. The

information contained in the entropy/saliency map can therefore be represented compactly with

a HOG histogram. Further, histogram based feature encoding enables non-rigid matching of the

entropy/saliency characteristics which may not be possible otherwise.

In the proposed RISE algorithm, HOG is applied on the entropy and saliency maps. The

entropy maps are extracted from patches Pi which allows capturing multiple granularities of the

input image. Let D(·) denote the HOG histogram; the proposed algorithm computes HOG of

entropy maps using the following equation:

Fi = D(Ei), where i ∈ [1, 4] (2.9)

Here, F1 represents the HOG of entropy map E1 defined over patch P1 and F2 represents the HOG

of entropy map E2 defined over patch P2 of Irgb. Similarly, F3 and F4 represent the HOG of

entropy maps E3 and E4 defined over patches P3 and P4 of Id respectively. F1 and F2 capture

traditional texture information but instead of directly using visual information, entropy maps are

used to make the descriptor robust against intra-class variations. F3 and F4 capture the depth
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information embedded in the RGB-D image.

Next, HOG descriptor of visual saliency map, S1 is computed using Equation 2.10. The final

descriptor F is created using an ordered concatenation of the five HOG histograms as shown in

Equation 2.11.

F5 = D(S1(Irgb)) (2.10)

F = [F1, F2, F3, F4, F5] (2.11)

Concatenation is used to facilitate training by reducing five vectors to a single feature vector.

Since each HOG vector is small, the resulting concatenated vector has a small size which helps in

reducing the computational requirement. The feature vector F is provided as input to a multi-class

classifier.

Classification

To establish the identity of a given probe, a multi-class classifier such as Nearest Neighbor (NN),

Random Decision Forests (RDFs) [80], and Support Vector Machines (SVM) can be used. How-

ever, the classifier should be robust for large number of classes, computationally inexpensive dur-

ing probe identification, and accurate. Among several choices, RDFs being an ensemble of classi-

fiers, can produce non-linear decision boundaries and handle the multi-class classification. RDFs

are also robust towards outliers compared to the Nearest Neighbor algorithm, since every tree in

the forest is only trained with a small subset of data. Therefore, the probability of an entire collec-

tion of trees making an incorrect decision due to a few outlier data points is very low. Moreover, as

per the experimental results in the preliminary research, RDF is found to perform better than NN

[61]. Other classifiers such as SVM requires significant more training data per class. Therefore,

in this research, RDF is used for classification. In RDF training, the number of trees in the forest

and the fraction of training data used to train an individual tree control the generalizability of the

forest. These parameters are obtained using the training samples and a grid search. Here, each

feature descriptor is a data point and the subject identification number is the class label, therefore,

the number of classes is equal to the number of subjects. The trained RDF is then used for probe
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identification. A probe feature vector is input to the trained RDF which provides a probabilistic

match score for each class. This match score denotes the probability with which the feature vector

belongs to a particular class. To summarize, the RISE algorithm is presented in Algorithm 1.

Data: Preprocessed RGB-D image, Irgb, denotes the color image and Id denotes the depth
map

Result: The RISE descriptor for the given RGB-D image F
for i← 1 to 2 do

Ei = Entropy map of patch Pi of grayscale(Irgb);
end
for i← 3 to 4 do

Ei = Entropy map of patch Pi of Id;
end
S = Saliency map of Irgb;
E5 = Entropy map of S;
for i← 1 to 5 do

Fi = HOG of Ei;
F = Concatenation of Hi;

end
Algorithm 1: The RISE algorithm

2.2.3 ADM: Attributes based on Depth Map

Attributes based methodologies have been applied successfully in image retrieval [102, 112] and

face verification [111]. In RGB-D face recognition, it can be an additional useful feature. However,

instead of qualitative or descriptive attributes such as gender, age, and complexion, the proposed

Attributes based on Depth Map (ADM) algorithm extracts geometric attributes. Multiple geomet-

ric attributes can be utilized to describe a face such as the distances between various key facial

features such as eyes, nose, and chin. By exploiting the uniform nature of a human face, key

facial landmarks can be located and utilized to extract geometric attributes that can be used for

face recognition in conjunction with the entropy and saliency features. An overview of the ADM

approach is illustrated in Figure 2-5. The ADM approach consists of the following steps.

Keypoint Labeling

To extract geometric attributes, first a few facial key points are located with the help of depth map.

The points such as nose tip, eye sockets, and chin can be extracted by using a "rule template". In
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a detected face depth map, the nose tip is closest point from the sensor, the two eye sockets are

always located above the nose tip and at a higher distance than their local surrounding regions (due

to cheek bones and eyebrows being at a lesser distance), the chin can be detected as the closest

point to the sensor below the nose tip. Utilizing these key points, some other landmarks such as

the nose bridge and eyebrow coordinates can also be located. By using a standard set of landmarks

for all faces, a consistent way to compute geometric measurements of the face is possible.

Geometric Attribute Computation

To obtain the geometric attributes, various distances between these landmark points are computed:

inter-eye distance, eye to nose bridge distance, nose bridge to nose tip distance, nose tip to chin

distance, nose bridge to chin distance, chin to eye distance, eyebrow length, nose tip distance to

both ends of both eyebrows, and overall length of the face. Since the measured value of these

parameters may vary across pose and expression, multiple gallery images are utilized to extract the

facial features. Attributes are computed individually for each gallery image and the distances are

averaged. In this manner, a consistent set of attributes is computed for a subject. These contribute

towards the attribute feature vector for the RGB-D face image.

Attribute Match Score Computation

The attributes for a probe are computed similar to gallery images. Once the attributes are computed

for a probe, the match score Φ is computed for each subject in the gallery using Equation 2.12.

Φ =
N∑
i=1

wi × (Ai − ai)2 (2.12)

Here, Ai and ai are the ith attributes of the probe image and the gallery image respectively. wi is

the weight of the ith attribute and N is the total number of attributes. wi is used to assign different

weights to different attributes depending upon how reliably they can be computed. In this research,

wi is optimized using grid search for efficient identification performance on the training dataset.

After computation, the match scores from each subject can be utilized for identification. However,

in the proposed approach it is combined with the match score obtained by RISE algorithm for

taking the final decision.
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2.2.4 Combining RISE and ADM

The match scores obtained by RISE and ADM algorithms can be combined in various ways. In

this research, we explore two types of fusion:

Match Score Level Fusion

Many match score level fusion techniques have been proposed in the literature to utilize the differ-

ent characteristics of the match scores being combined for improving the performance [109, 110].

In this research, we choose to go with a simple weighted sum rule [175] so that we can evaluate

the baseline performance gains just by combining RISE and ADM. Choosing a specialized fusion

technique may further increase the performance depending on other factors. Let ΦRISE be the

match score obtained using the RISE approach and ΦADM be the match score obtained by the

ADM approach. The fused match score Φfused is computed as,

Φfinal = wRISE × ΦRISE + wADM × ΦADM (2.13)

wherewRISE andwADM are the weights assigned to the RISE and ADM match scores respectively.

Rank Level Fusion

Many rank level fusion algorithms have been proposed in the literature to utilize different charac-

teristics of the ranks being combined for improved performance [107]. In this research, we choose

to go with a simple weighted Borda count [175] so that we can evaluate the baseline performance

gains just by combining RISE and ADM at the rank level. Choosing a specialized fusion technique

may further increase the performance depending on other factors. Weighted Borda count allocates

a score to a subject depending on its rank in both the ranked lists and then creates a new ranked list

for identification based on these scores. The ranked list of subjects is created using both RISE and

ADM match scores individually. These ranked lists are then combined by computing a new match

score for each subject based on these ranked lists according to Equation 2.14.
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Rfsubj =

∑
i=RISE,ADM

Rmax∑
j=1

wi(Rmax − j) if Rij = rank(subj)

0 otherwise

(2.14)

Here, Rmax denotes the maximum (worst) possible rank value. wRISE and wADM denote the

weights for RISE and ADM respectively. Similarly, RRISE and RADM denote the ranked lists of

RISE and ADM respectively. The weights wRISE and wADM can be used to control the number

of points that the ranked lists of RISE and ADM can provide to the subject. Rij = rank(subj)

signifies the condition that the subject has rank j in the ith ranked list.

2.3 Experimental Results

The performance of the proposed approach is analyzed via two types of experiments. First, the ex-

periments are conducted on the IIIT-D RGB-D dataset to analyze the performance of the proposed

approach with various combinations of constituent components and their parameters. Thereafter,

the performance is compared with existing 2D and 3D approaches on an extended dataset.

2.3.1 Database and Experimental Protocol

There are a few existing RGB-D databases in literature. The EURECOM [89] database has 936

images pertaining to 52 subjects and the images are captured in two sessions with variations in

pose, illumination, view, and occlusion. The VAP RGB-D [78] face database contains 153 images

pertaining to 31 individuals. The dataset has 51 images for each individual with variations in

pose. However, both of these datasets contain images pertaining to a relatively small number

of individuals. To evaluate the performance of face recognition, a larger dataset is preferable.

Therefore, the IIIT-D RGB-D database1 is prepared for the experiments. This database contains

4605 RGB-D images pertaining to 106 individuals captured in two sessions using Kinect sensor

1The database and ground truth information is available via https://research.iiitd.edu.in/groups/iab/rgbd.html
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Session 1

Session 2

Figure 2-6: Sample images of a subject in two sessions from the IIIT-D RGB-D database.

Table 2.1: Experimental protocol for both initial and extended experiments.

Experiment Database No. of No. of Subjects
Images Training Testing

Experiment 1 IIIT-D RGB-D 4605 42 64
Experiment 2 IIIT-D RGB-D + VAP + EURECOM 5694 75 114

and OpenNI SDK. The resolution of both the color image and the depth map is 640×480. The

number of images per individual is variable with a minimum of 11 images and a maximum of 254

images. In this database, the images are captured in normal illumination with variations in pose and

expression (in some cases, there are variations due to eye-glasses as well). Some sample images

for a subject in the IIIT-D database are presented in Figure 2-6. Using these three datasets, two

types of experiments are performed. The initial experiments are performed on the IIIT-D RGB-D

dataset to analyze the component-wise performance of the proposed RISE approach as well as to

study the impact of weights and gallery size on the identification performance. Thereafter, the

IIIT-D RGB-D dataset is merged with the EURECOM [89] and VAP [78] datasets to create an

extended dataset of 189 individuals. The extended dataset is used to compare the performance of

the proposed algorithm with existing 2D and 3D approaches.
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The experimental protocol for each experiment is detailed below:

• Experiment 1: 40% of the IIIT-D Kinect RGB-D database is used for training and valida-

tion. The training dataset is utilized to compute the weights involved in ADM approach,

RDF classifier parameters, and weights for fusion. Note that RDF classifier is separately

trained for the initial and extended experiments by utilizing the respective training datasets.

After training and parameter optimization, the remaining 60% dataset (unseen subjects) is

used for testing. The results are computed with five times random subsampling. In each

iteration of the subsampling, the subjects chosen for training/testing as well as the gallery

images selected for each subject are randomly selected. Gallery size is fixed at four images

per subject.

• Experiment 2: The extended database of 189 subjects is used for this experiment. Images

pertaining to 40% individuals from the extended database are used for training and the re-

maining 60% unseen subjects are used for testing. To create the complete subject list for the

extended dataset, the subjects are randomly subsampled within the three datasets according

to 40/60 partitioning and then merged together to form one extended training/testing parti-

tion. Therefore, the extended training dataset has proportionate (40%) representation from

each of the three datasets. The number of images available per individual varies across the

three datasets and therefore the gallery size for the extended dataset experiment is fixed at

two gallery images per individual. The remaining images of the subject are used as probe.

Cumulative Match Characteristics (CMC) curves are computed for each experiment and the

average accuracy values are presented along with standard deviations across random subsamples.

The experimental protocol for all the experiments are summarized in Table 2.1. The performance

of the proposed algorithm is compared with several existing algorithms namely: FPLBP [215],

Pyramid Histogram of Oriented Gradients (PHOG) [8], SIFT [126], [237], and Sparse represen-

tation [217]. Besides these methods which utilize only 2D information, a comparison is also

performed with 3D-PCA based algorithm [20] which computes a subspace based on depth and

grayscale information.
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2.3.2 Results and Analysis: Experiment 1

Component-wise analysis: As discussed in Section II, the proposed RISE algorithm has various

components: entropy, saliency, and depth information. The experiments are performed to ana-

lyze the effect and relevance of each component. The performance of the proposed algorithm is

computed in the following six cases:

• Case (a) RGB-D and saliency without entropy: RGB image and depth map are used directly

instead of entropy maps, i.e., F = [F1, F2, F3, F4, F5], where Fi = D(Pi) instead of Fi =

D(H(Pi)), ∀i ∈ [1, 4].

• Case (b) RGB only: Only the RGB image is used to extract entropy and saliency features,

i.e., F = [F1, F2, F5]

• Case (c) RGB-D only: Only the entropy maps are used, saliency is not used, i.e., F =

[F1, F2, F3, F4]

• Case (d) RGB and saliency without entropy: RGB information is used directly instead of

entropy maps, i.e., F = [F1, F2, F5], where Fi = D(Pi) instead of Fi = D(H(Pi)), ∀i ∈

[1, 2].

• Case (e) RGB-D only without entropy: RGB-D information is used directly instead of en-

tropy maps, i.e., F = [F1, F2, F3, F4], where Fi = D(Pi) instead of Fi = D(H(Pi)),

∀i ∈ [1, 4].

• Case (f) RGB only without saliency: F = [F1, F2]

These cases analyze the effect of different components of the proposed algorithm on the overall

performance. For example, if the descriptor performs poorly in case (a), it suggests that not using

entropy maps for feature extraction is detrimental to the descriptor. Similar inferences can poten-

tially be drawn from the results of other five cases. Comparing the performance of the proposed

descriptor with entropy, saliency and depth information can also determine whether the proposed

combination of components improves the face recognition performance with respect to the indi-

vidual components.
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The results of individual experiments are shown in Figure 2-7. It is observed that removing any

of the components significantly reduces the performance of the proposed algorithm. For example,

the CMC curve corresponding to case (c) shows that the contribution of including visual saliency

map as an added feature is important. It is observed that saliency is relevant towards stabilizing

the feature descriptor and preserving intra-class similarities. Further, in cases (d) and (e), it is

observed that including depth without computing entropy performs worse than not including depth

information but using entropy maps to characterize the RGB image. Intuitively, this indicates that

directly using depth map results in more performance loss than not using depth at all. This is

probably due to the fact that depth data from Kinect is noisy and increases intra-class variability in

raw form. Overall, the proposed algorithm yields 95% rank 5 accuracy on IIIT-D database. Further,

Table 2.2 shows the comparison of the proposed algorithm with existing algorithms. The results

indicate that, on the IIIT-D database, the proposed algorithm is about 8% better than the second

best algorithm (in this case, Sparse representation [217]). Compared with 3D-PCA algorithm, the

proposed algorithm is able to yield about 12% improvement.

Fusion of algorithms: Experiments are performed with various combinations of the proposed

RISE and ADM approaches as well as 3D-PCA [20]. In order to fuse 3D-PCA with RISE and

ADM, both weighted sum rule and weighted Borda count can be utilized. The results of this

experiment are presented in Figure 2-8. W.B.C. refers to rank level fusion using Weighted Borda

Count and W.S. refers to match score level fusion using Weighted Sum rule. The key analysis are

explained below:

• The proposed RISE + ADM with weighted sum rule yields the best rank 5 identification

accuracy of 95.3%. RISE+ADM approach using weighted borda count also performs well

providing an accuracy of 79.7% which is better than the remaining combinations at rank 1.

• Even though RISE+ADM+3D-PCA performs second best with rank 5 identification accu-

racy of 93.7%, the difference in performance at rank 1 is 10.9% lower than RISE+ADM

(W.S.) and the use of 3D-PCA also adds to the computational complexity.

• The weighted sum variants of the combinations perform consistently better than their weighted

borda count variants. This indicates that match score level fusion performs better than rank
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Figure 2-7: Analyzing the proposed RISE algorithm and its individual components on the IIIT-D
RGB-D face database.

level fusion. However, it is also notable that the difference in performance for all approaches

reduces at rank 5 compared to rank 1. This implies that any advantage gained by utilizing one

approach over the other diminishes at higher ranks as the criteria for successful identification

is relaxed.

Since weights are involved in both weighted borda count and weighted sum approaches, it is

interesting to observe how the performance of the proposed algorithm varies with the variation in

weights. The results of this experiment are presented in Figs. 2-9 and 2-10 for weighted sum rule

and weighted borda count respectively. The number in parenthesis after the algorithm indicates

their weight in the approach. For example, RISE (0.5) + ADM (0.5) implies that both RISE and

ADM are allocated equal weights. Based on these results, the following analysis can be performed:

• The best performance is achieved with RISE (0.7) + ADM (0.3) for both the fusion al-

gorithms. This indicates that texture features extracted by RISE are more informative for

identification and therefore must be assigned higher weight. However, the geometric fea-

tures from ADM also contribute towards the identification performance after fusion, thereby

increasing the rank 5 accuracy from 92.2% (RISE only) to 95.3% (RISE + ADM) when

weighted sum rule is utilized.

• The performance of weighted borda count is lower than weighted sum possibly because of

the loss of information that occurs in using the ranked list for fusion instead of the match

scores.

39



1 2 3 4 5
70

75

80

85

90

95

100

Rank

Id
e

n
ti

fi
c

a
ti

o
n

A
c

c
u

ra
c

y
 (

%
)

RISE+3D−PCA (W.B.C.)

RISE+ADM+3D−PCA (W.B.C.)

RISE+3D−PCA (W.S.)

RISE+ADM (W.B.C.)

RISE+ADM+3D−PCA (W.S.)

RISE+ADM (W.S.)

Figure 2-8: Analyzing the performance of different combinations of the proposed algorithm with
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Figure 2-9: Analyzing the effect of weights in match score level fusion using weighted sum rule
on the IIIT-D RGB-D face database.
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Figure 2-11: Analyzing the effect of gallery size on the identification performance on the IIIT-D
RGB-D face database.
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Figure 2-12: Comparing the performance of the proposed approach with existing 2D and 3D ap-
proaches on the extended database.
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• Experiments have been conducted to assess the performance with all other combinations of

weights as well, but none of these combinations perform better than RISE (0.7) + ADM

(0.3).

Analysis with gallery size: All the experiments described above on the IIIT-D RGB-D database

are performed with a gallery size of four. To analyze the effect of gallery size on the identification

performance, additional experiments are performed by varying the number of images in the gallery.

The results of this experiment are presented in Figure 2-11 and the analysis is presented below.

• The curve indicates that the performance of RISE, ADM and the proposed RISE+ADM ap-

proach increases with increase in gallery size. However, the maximum increment is observed

from gallery size 1 to gallery size 2 in the ADM approach. This major performance incre-

ment of 22.6% can be credited to the possibility that using only single gallery image yields

approximate geometric attributes. As soon as more than one sample becomes available, the

averaging process increases the reliability of the geometric attributes and hence there is a

significant increase in performance.

• With the above discussed exception, the performance of each approach increases consistently

but in small amounts with increase in gallery size. Therefore, after a certain point, increasing

gallery size does not provide high returns in terms of the performance. It is notable that even

with single gallery image, the proposed algorithm yields the rank 5 identification accuracy

of 89%.

Assessing the accuracy of ADM keypoint labeling: The performance of ADM approach is de-

pendent on the keypoint labeling phase. In order to determine the accuracy of this phase, man-

ual keypoint labels are collected via crowd-sourcing. Human volunteers are requested to label

the keypoints (nose, left eye, right eye and chin) on 10 images of every subject. The average

of human-annotated keypoint co-ordinates is computed and compared with the automatically ob-

tained keypoints. An automatic keypoint is considered to be correct if it lies within a small local

neighborhood of the average human-annotated keypoint. It is observed that the overall accuracy

of automated keypoint labeling, using manual annotations as ground truth, on the IIIT-D Kinect
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Table 2.2: Identification accuracies (%) on the IIIT-D RGB-D face database and EURECOM
database individually. The mean accuracy values are reported along with standard deviation.

Modality Descriptor Rank 5 Identification Accuracy (%)
IIIT-D RGB-D EURECOM

2D

SIFT 50.1±1.4 83.8±2.1
HOG 75.1±0.7 89.5±0.8

PHOG 81.6±1.4 90.5±1.0
FPLBP 85.0±0.7 94.3±1.4
Sparse 87.2±1.9 84.8±1.7

3D
3D-PCA 83.4±2.1 94.1±2.7

RISE + ADM 95.3±1.7 98.5±1.6

RGB-D database is 90.1% with a 5 × 5 neighborhood and 93.6% with a neighborhood size of 7

× 7. Based on the performance of ADM on individual frames, it can be noted that it performs the

best on near frontal frames and semi-frontal frames.

Performance on EURECOM: Performance of the proposed algorithm is also compared with

existing algorithms on the EURECOM dataset. In order to perform this recognition experiment,

the gallery sizes for the EURECOM dataset is fixed at 2 images per subject. The results of this

experiment are presented in Table 2.2. The analysis is similar to the IIIT-D database and the

proposed algorithm yields an accuracy of 98.5% rank-5 identification accuracy which is around

4% better than existing algorithms. Note that the EURECOM database is relatively smaller than

IIIT-D database and therefore, near perfect rank 5 accuracy is achieved.

2.3.3 Results and Analysis: Experiment 2

The proposed RISE + ADM approach is compared with some existing 2D and 3D approaches

on the extended dataset (Experiment 2). The identification performance of these approaches is

presented in Figure 2-12 and summarized in Table 2.3. The results indicate that the proposed

RISE+ADM algorithm (both weighted sum and weighted borda count versions) outperforms the

existing approaches by a difference of around 8% in terms of the rank 5 identification performance.

The proposed algorithm yields the best results at rank 1 with an accuracy of 78.9% which is at least

11.4% better than second best algorithm, 3D-PCA.

Detailed comparison with other algorithms: In order to compare the performance of the pro-
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Table 2.3: Identification accuracy (%) for the extended gallery experiments. The mean accuracy
values are reported along with standard deviation.

Modality Descriptor Rank 1 Rank 5

2D

SIFT 55.3 ± 1.7 72.8 ± 2.1
HOG 58.8 ± 1.4 76.3 ± 1.8

PHOG 60.5 ± 1.6 78.1 ± 1.1
FPLBP 64.0 ± 1.1 80.7 ± 2.0
Sparse 65.8 ± 0.6 84.2 ± 0.8

3D

3D-PCA 67.5 ± 1.2 82.5 ± 1.9
RISE+ADM (W.B.C.) 76.3 ± 1.0 90.3 ± 1.1

RISE+ADM (W.S.) 78.9 ± 1.7 92.9 ± 1.3

Table 2.4: A detailed comparative analysis of the proposed algorithm with 3D-PCA, FPLBP, and
Sparse approaches. T and F represent True and False respectively. True ground truth refers to
genuine cases and false ground truth refers to the impostor cases.

Algorithm Results Ground Truth
True False

3D-PCA=T, Proposed=T 61.9% 5.3%
3D-PCA=F, Proposed=T 21.3% 5.4%
3D-PCA=T, Proposed=F 10.0% 24.3%
3D-PCA=F, Proposed=F 6.8% 65.0%
FPLBP=T, Proposed=T 61.8% 6.8%
FPLBP=F, Proposed=T 27.6% 3.4%
FPLBP=T, Proposed=F 6.3% 25.3%
FPLBP=F, Proposed=F 4.3% 64.5%
Sparse=T, Proposed=T 68.6% 3.2%
Sparse=F, Proposed=T 18.7% 11.4%
Sparse=T, Proposed=F 8.0% 26.0%
Sparse=F, Proposed=F 4.7% 59.4%

44



posed algorithm with other top performing algorithms, a comparative study is performed. The

details of this study are presented in Table 2.4. As is evident from the results presented, the pro-

posed algorithm is able to correctly determine ground truth in the case of a wrong decision by

another algorithm more often than the reverse case, i.e., when another algorithm is correct and the

proposed algorithm is incorrect. For example, the percentage of impostor cases when 3D-PCA

is incorrect and the proposed algorithm is correct is 24.30% whereas the percentage of impostor

cases where the proposed algorithm is incorrect and 3D-PCA is correct is only 5.38%.

In order to further analyze the performance, we examine two types of results. Figure 2-13

contains two samples of gallery and probe images. Case 1 is when all the algorithms could match

the probe to the gallery image and successfully identify the subject. Case 2 is when only the

proposed algorithm is able to identify the subject and other algorithms provide incorrect results.

As it can be seen from the example images of Case 1, when there are minor variations in expression

and pose, all the algorithms are able to correctly identify. However, as shown in case 2, the

proposed algorithm is able to recognize even when there are high pose and expression variations.

Thus, it can be concluded that the proposed descriptor outperforms these existing 2D and 3D

approaches. In summary, this difference in performance can be attributed to the following reasons:

• The RISE descriptor uses depth information in addition to traditional color information

which allows it to utilize additional sources for feature extraction. After characterization

by local entropy, the depth map is able to mitigate the effect of illumination and expression.

The geometrical attributes obtained from the ADM approach further contribute towards re-

silient identification.

• The proposed descriptor utilizes saliency map for feature extraction to model visual atten-

tion. The saliency distribution of a face is not significantly affected by pose variations and

therefore it provides tolerance to minor pose variations.

• Compared to existing approaches, entropy and saliency maps of RGB-D images are not

highly affected by noise such as holes in depth map and low resolution, and therefore, yield

higher performance. The additional geometric attributes are another source of noise tolerant

features as they are averaged across multiple gallery images.
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Figure 2-13: Analyzing the performance of the proposed algorithm. The first row (Case 1) presents
sample gallery and probe images when all the algorithms are able to recognize. The second row
(Case 2) presents example gallery and probe images when only the proposed algorithm is able to
correctly identify the subject at rank-1.

Table 2.5: Rank-1 identification accuracies on the 3D TEC [206] dataset. The results of other
algorithms are presented as reported in [206].

Algorithm Rank 1 Identification Accuracy
I II III IV

Alg. 1 (Epkn) 93.5% 93.0% 72.0% 72.4%
Alg. 1 (Eminmax) 94.4% 93.5% 72.4% 72.9%
Alg. 2 (SI) 92.1% 93.0% 83.2% 83.2%
Alg. 2 (eLBP) 91.1% 93.5% 77.1% 78.5%
Alg. 2 (Range PFI) 91.6% 93.9% 68.7% 71.0%
Alg. 2 (Text, PFI) 95.8% 96.3% 91.6% 92.1%
Alg. 3 62.6% 63.6% 54.2% 59.4%
Alg. 4 98.1% 98.1% 91.6% 93.5%
Proposed 95.8% 94.3% 90.1% 92.4%

2.3.4 Experiments on 3D TEC dataset

In order to evaluate the performance of the proposed RGB-D recognition algorithm on other 3D

databases, identification results are also presented on the 3D-Twins Expression Challenge (3D-

TEC) dataset [206]. The database contains images pertaining to 107 pairs of twins acquired using

a Minolta VIVID 910 3D scanner in controlled illumination and background. The range and texture

images are of 480 × 640 resolution. The dataset provides four sets for performing identification

experiments between two twins, A and B. Each set defines the gallery and probe images for each

twin according to the expression variations (smile or neutral). Further details of these sets are

provided in [206].
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Figure 2-14: Comparing the identification performance of the proposed algorithm with COTS on
all three databases.

Along with the proposed algorithm, we also compare the results with four existing algorithms

that participated in the Twin Expression Challenge, 2012. The existing algorithms, Alg. 1 to Alg.

4 (named as such in the original paper), are designed to utilize rich 3D maps and/or texture infor-

mation captured using telephoto lens equipped Minolta scanner. The details of these algorithms

can also be found in [206]. Table 2.5 presents the results of the proposed and four existing algo-

rithms on the 3D-TEC dataset. It is to be noted that the results of existing algorithms are taken

from [206] directly. As shown in Table 2.5, even though the proposed algorithm does not fully

utilize rich depth maps, it achieves the second best performance on two of the four sets and is able

to yield close to state-of-the-art performance with more than 90% rank 1 accuracy on all four sets.

2.4 Summary

Existing face recognition algorithms generally utilize 2D or 3D information for recognition. How-

ever, the performance and applicability of existing face recognition algorithms is bound by the

information content or cost implications. This research proposes a novel RISE algorithm that

utilizes the depth information along with RGB images obtained from Kinect to improve the recog-
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nition performance. The proposed algorithm uses a combination of entropy, visual saliency, and

depth information with HOG for feature extraction and random decision forest for classification.

Further, the ADM algorithm is proposed to extract and match geometric attributes. ADM is then

combined with the RISE algorithm for identification. The experiments performed on the RGB-D

databases demonstrate the effectiveness of the proposed algorithm and show that it performs better

than some existing 2D and 3D approaches of face recognition.

Appendix

The performance of the proposed algorithm is also compared with a commercial system (3D-

Commerical Off-The-Shelf (COTS))2. COTS employs a 3D model reconstruction for each subject

using the gallery RGB images. RGB probe image is also converted to 3D model for matching.

The details of reconstruction algorithm are not available. Figure 2-14 presents a comparison of

identification performance between COTS and the proposed algorithm. It is evident that the pro-

posed algorithm is able to consistently achieve better performance. The failure of COTS can be

attributed to the 3D reconstruction method which possibly suffers from low spatial resolution of

RGB images.

2Name of the commercial system is suppressed due to the constraints in the license agreement.
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Chapter 3

Group Sparse Representation Based

Classification for Multi-feature Multimodal

Biometrics

Biometrics research can be broadly classified into two categories: unimodal and multimodal. Mul-

timodal biometrics is combining information from multiple unimodal biometric sources [94]. Re-

searchers have shown that combining information can be beneficial when the quality or information

content of one of the information sources is not sufficient for recognition. Multiple biometric in-

formation sources can be combined at different levels; namely, (a) sensor-level, (b) feature-level,

(c) score-level, (d) rank-level, and (e) decision-level [94]. Fusion at each level has its advantages

and limitations. For example, fusion at the sensor-level can preserve most of the information from

each of the modalities however, sensor-level information may not be very discriminatory in nature

[189]. While feature-level fusion does not suffer from noise to the same degree as in the case

of sensor-level and also preserves much more information as compared to score-level, there exist

various challenges in utilizing it. First, the relationships between different features are not always

known. Second, some features are variable-length whereas others are fixed-length and therefore

concatenation, which is a popular method of feature fusion [94], is not applicable in a large num-

ber of cases. Third, if these features do not reside in a commensurate space it is difficult for a

classifier to determine reliable decision boundaries. Therefore, relatively less research has focused

on feature-level fusion.
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A review of existing biometric feature fusion algorithms in biometrics literature is presented

in Table 3.1. It can be observed that feature fusion has been utilized extensively in combining

features from complementary biometric modalities. Concatenation followed by feature selection

or reduction is a popular approach along with distance metric learning based and discriminant

analysis based algorithms.

Table 3.1: A literature review of feature-level fusion in biometrics.

Authors Algorithm Modalities Features
Kumar et
al. [108]

Feature concatenation Palmprint
and hand-
geometry

Standard deviations of com-
bined directional maps of
palmprints and measurements
of hand lengths and widths
[108]

Chang et al.
[24]

Combining face and ear im-
age

Face and
ear

PCA [203]

Ross and
Govin-
darajan
[176]

Feature normalization, con-
catenation, and performance-
oriented feature selection

Face and
hand

PCA [203] and LDA (face)
and 9-byte features [174]
(hand)

Yao et al.
[228]

Distance-based separability
weighting strategy

Face and
palmprint

Gabor PCA

Rattani et
al. [172]

Adding key-point descriptor
to minutiae features, concate-
nating, and dimensionality re-
duction

Face and
fingerprint

SIFT (face) [19] and minutia
features [95] (fingerprint)

Singh et al.
[189]

Adaptive SVM based fused
feature selection

Face Amplitude and phase features
using 2D log polar Gabor
wavelet

Zhou et al.
[243]

Concatenation followed by
multiple discriminant analy-
sis

Side face
and gait

PCA

Carvalho
and Rosa
[37]

Fisher’s criterion based fea-
ture selection

Footstep
sounds

Gait frequency, spectral en-
velope, cepstral and mel-
cepstral analysis and loudness

Matovski et
al. [144]

Concatenation followed by
feature reduction

Gait (multi-
ple views)

Gait energy image and gait
entropy image

Krishneswari
and Aru-
mugam
[103]

Fusion of the low-level fea-
tures (approximation images)
of both modalities prior to
high-level feature extraction

Palm-
print and
fingerprint

Discrete Cosine Transform
[6]

Rathore et
al. [171]

Feature template fusion using
set union approach

Profile face
and ear

SURF [9]

50



Lu et al.
[132]

Multiview neighborhood re-
pulsed metric learning

Face LBP [198], Linear Embed-
ding [177], and SIFT [19]

Chai et al.
[23]

Feature concatenation and
linear discriminant analysis

Face Gabor ordinal measures [23]

Yan et al.
[224]

Discriminative multi-metric
learning

Face LBP [198], Spatial pyramid
learning [244], and SIFT [19]

Chin et al.
[31]

Feature concatenation Fingerprint
and palm-
print

Bank of 2D Gabor filters

Goswami et
al. [66]

Feature concatenation Face
(RGB-D)

HOG [35] of depth/visual en-
tropy and visual saliency

Odinaka et
al. [154]

Concatenation before and af-
ter feature selection

Cardio vas-
cular

Electrocardiogram [155] and
laser Doppler vibrometry [27]

Huang et
al. [87]

Biometric quality based
piece-wise weighted concate-
nation

Face and
ear

PCA

Huang et
al. [85]

Feature concatenation Face PCA and LDA applied on
top-level’s wavelet sub-bands

Kumar et
al. [242]

Feature binarization and
masking

Iris Deeply learned spatially cor-
responding features

Kumar et
al. [104]

Multi-channel QSOC feature
template

Iris Quaternian Sparse Orienta-
tion Code

Multimodal biometrics can also be beneficial when the data is captured in an unconstrained en-

vironment and there are instances of missing information. While researchers have proposed several

feature fusion algorithms, not all the algorithms can efficiently combine features in the presence

of missing information. The performance of popularly used feature fusion algorithms such as con-

catenation and PCA is significantly affected due to missing information. It is our assertion that a

well designed feature-level fusion algorithm which addresses the above mentioned challenges, can

aid in enhancing the state-of-the-art in biometric recognition. Since the selection of the classifier

for matching is also critical towards performance and there is a high chance of discrepancy in case

different feature-fusion and classification methodologies are applied, it is optimal if the classifier

can handle multiple features for every data point inherently. In such a manner, the requirement to

have a compatible feature-level fusion and classification technique is removed and this process is

integrated in the classification stage itself.

In this research, we propose a multimodal multi-feature classifier termed as the GSRC, an ex-

tension of the existing SRC [217], which handles a multimodal multiple feature representation for
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Figure 3-1: A concept diagram of the proposed algorithm.

every data point and determines the class of test data by solving a group sparsity criterion. Figure

3-1 presents the outline of the proposed algorithm for a multimodal biometric recognition scenario.

Face, iris, and fingerprint modalities of a person are encoded with multiple feature representations

and matched using the the proposed algorithm. By considering each feature source without the use

of concatenation or feature reduction, the classification algorithm can utilize the different feature

spaces to make an optimal decision. While a few extensions to the traditional SRC have been

proposed in literature [86, 104, 105, 186], the proposed algorithm presents an alternate perspective

towards group sparsity. The performance of the proposed GSRC classifier is evaluated with mul-

tiple feature sets and biometric modalities on two databases: publicly available WVU multimodal

biometric dataset [34] and a real world database obtained from a Law Enforcement Agency [15].

The performance is also compared with existing state-of-the-art algorithms.

The group sparse classifier represents each test sample as a combination of its representations

in individual feature spaces and classifies based on the residual error for each class. The quality of

classification depends on the intra-class stability and inter-class differentiability of these individual

representations. Projection into a higher dimensional space using an appropriate kernel function is

a popular technique to achieve better separability of data. If each feature space is projected using

a suitable kernel, the quality of the combined representation should improve. It is our assertion
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that the accuracy of the group sparse classifier can be further improved using kernelization without

decreasing computational efficiency. Even though Gao et al. [56] have discussed kernelization

in a sparse representation based approach with good results, they have not considered a multi-

feature or multi-modal scenario in which case the algorithm would have to rely on score level or

decision level fusion rules unlike the proposed algorithm. In this research, we also explore the

applicability of kernelization to the group sparse representation based classifier. We evaluate the

proposed algorithm on a variety of biometrics problems such as recognition in surveillance images

in a cross-distance matching scenario, face recognition for RGB-D images obtained using Kinect

sensor (as shown in Figure 1), and multi-modal biometrics using face, iris, and fingerprint.

3.1 Preliminaries

In this subsection, we briefly discuss the basic concepts of sparse representation and some recent

extension of sparse representation for joint representation and non-linear representation.

3.1.1 Sparse Representation based Classification

Sparse representation based classification [217] assumes that the training samples of a particular

class approximately form a linear basis for a new test sample belonging to the same class. Let vtest

be the test sample belonging to the kth class, it can be represented as,

vtest = αk,1vk,1 + αk,2vk,2 + · · ·+ αk,nvk,n + ε (3.1)

where, vk,i denotes the ith training sample and ε is the approximation error.

In a classification problem, the training samples and their class labels are provided. The task

is to assign the given test sample with the correct class label. This requires finding the coefficients

αk,i in Equation 3.1. Since the correct class is not known, SRC represents the test sample as a

linear combination of all training samples from all classes,

vtest = V α + ε (3.2)

53



where, V =

[
v1,1| . . . |v1,n︸ ︷︷ ︸

v1

| v2,1| . . . |v2,n︸ ︷︷ ︸
v2

| . . . vc,1| . . . |vc,n︸ ︷︷ ︸
vc

]
and

α =

[
α1,1, . . . , α1,n︸ ︷︷ ︸

α1

, α2,1, . . . , α2,n︸ ︷︷ ︸
α2

, . . . αc,1, . . . |αc,n︸ ︷︷ ︸
αc

]
According to SRC, only the training samples from the correct class should form the basis for

representing the test sample and the samples from other classes should not contribute. Based on this

assumption, it is likely that vector α is sparse, i.e., it should have non-zero values corresponding

to the correct class and zero values for other classes. Thus Equation 3.2 is a linear inverse problem

with a sparse solution. In [217], the coefficient α is solved by employing a sparsity promoting

l1-norm minimization.

min
α
||vtest − V α||22 + λ||α||1 (3.3)

||α||1 denotes the l1 norm of α which is
∑N

i |αi|, where | · | denotes the absolute value function

and N represents the length of vector α. With the sparse solution of Equation 3.3, Wright et al.

[217] proposed the following algorithm to determine the class of the test sample.

1. Solve the optimization problem in Equation 3.3.

2. For each class k repeat the following two steps:

• Reconstruct a sample for each class by a linear combination of training samples be-

longing to that class by the equation vrecon(k) = Vkαk.

• Find the error between the reconstructed sample and the given test sample by error(vtest, k) =

||vtest − vrecon(k)||2.

3. Once the error for every class is obtained, assign the test sample to the class having the

minimum error.

The assumption here is that the representative sample for the correct class will be similar to

the test sample. However, there can be several other ways to assign the class. Li and Lu showed

that considering the magnitude of the coefficient α can yield better results [119]. Assuming that

the SRC assumption holds true, values in α corresponding to the correct class should only be true,
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⍺

Figure 3-2: Illustrating the Sparse Inverse Problem

and the values for other classes should be zero or close to zero. In [119], ||αk||1 for each class was

computed and the test sample was assigned to the class which had the highest value.

The diagrammatic representation of the inverse problem with a sparse solution is shown in

Figure 3-2. The forward problem (assumption) is such that the vector vtest is formed by a linear

combination of a few columns (training samples of correct class) of V . In the inverse problem,

given the test sample vtest, few columns of V that are used to represent the test sample are selected

and the corresponding sparse coefficient α is found.

In Figure 3-2, the colored blocks in V represent a subspace. Therefore, vtest can be modeled as

a union of subspaces. Analyzing l1-minimization as finding the union of subspaces is a powerful

tool for studying the success of SRC. The SRC has been successfully applied for face recognition

[217]. In a simplistic view, one can assume that for each personÃć a face can be represented

roughly by three subspacesÃć frontal, left profile and right profile. A test (face) sample falls

in either one of these subspaces. The l1-norm minimization basically selects the corresponding

subspace and the corresponding coefficients. For the correct subspace, the residual error (ε) is

small. Therefore, assigning the test sample based on a small residual error is a sound criterion.

3.1.2 Block/Joint Sparse Classification

The SRC employs an l1-minimization for solving the inverse problem. This is an unsupervised

approach and it does not utilize information about the class labels. In [47, 137, 233], it is argued

that α is supposed to be non-zero for all training samples corresponding to the correct class. The

SRC assumes that the training samples for the correct class will be automatically selected by

imposing the sparsity inducing l1-norm; it does not explicitly impose the constraint that if one
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class is selected, all the training samples corresponding to that class should have corresponding

non-zero values in α. [47, 137, 233] claim that it can be better recovered if the selection of all the

training samples within the class is enforced. This is achieved by employing a supervised l2,1-norm

instead of the l1-norm.

min
α
||vtest − V α||+ λ||α||2,1 (3.4)

Here, the mixed norm is defined as:

||α||2,1 =
n∑
k=1

||αk||2 (3.5)

The inner l2-norm enforces the selection of all the training samples within the class, but the

sum of l2-norm over the classes acts as l1-norm over the selection of classes and selects very few

classes. The block sparsity promoting l2,1-norm ensures that if a class is selected, all the training

samples within the class are used to represent the test sample.

The Block Sparse representation-based Classification (BSC) approach is effective for general

purpose classification problems and is shown to perform well for simple classification problems

[47, 137, 233]. However, it yields very low accuracies compared to SRC for face recognition.

To analyze this phenomenon we refer to Figure 3-2, in BSC all the training samples from the

same class have the same class label. Therefore, the l2,1-minimization attempts to select all the

training samples to represent the test sample. It considers all the colored blocks in Figure 3-2

as a single subspace instead of a union of subspaces; which may not be correct approach in all

the situations. Enforcing block sparsity is a good idea when the classification problem is simple

and all the samples truly belong to a single subspace, e.g. in fingerprint recognition or character

recognition. It prevents selection of samples from arbitrary classes. However, face recognition

does not satisfy this simplistic assumption. As mentioned before, the face images can belong to

three subspaces. The BSC tries to combine all the subspaces into a single one, for instance, if the

test sample is a left profile, it will try to fit the left and right profiles as well as the frontal view to

the test sample. This is clearly an error prone technique and it has been observed that BSC fails

for face recognition related problems, especially in challenging situations with a large variability

in the training and test samples.
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3.1.3 Non-Linear Extensions

In [136, 139], non-linear extensions to the SRC [139] and BSC [136] are proposed. The linearity

assumption is generalized to include non-linear (polynomial) combinations. The generalization of

Equation 3.2 leads to:

vtest = f(V α) + ε (3.6)

Here, f denotes a non-linear function and ε denotes the approximation error. The assumption is that

the test sample can be represented as a non-linear combination of the training samples. Notice that

this is different from the kernel-based techniques. In these studies, the recovery of the coefficient

vector requires solving a non-linear inverse problem with sparsity constraints,

min
α
||vtest − f(V α)||22 + λ||α||1 (3.7)

There are no off-the-shelf solutions to solve Equation 3.7. In [136, 139], FOCally Underdeter-

mined System Solver (FOCUSS) and Orthogonal Matching Pursuit (OMP) based solvers are mod-

ified to accommodate the non-linearity. The non-linear extension shows good results on generic

classification problems. Several researchers proposed the Kernel Sparse Representation based

Classification (KSRC) approach [28, 230, 239]. KSRC is a simple extension of the SRC using

the Kernel trick. The assumption here is that the non-linear function of the test-sample can be

represented as a linear combination of the non-linear functions of the training samples, i.e.

φ(vtest) = φ(V )α + ε (3.8)

Here, φ(·) represents a non-linear function. The simplest way to apply the kernel trick is to pre-

multiply by φ(V )ᵀ.

φ(V )ᵀφ(vtest) = φ(V )ᵀφ(V )α + ε (3.9)

The expression in Equation 3.8 consists of inner products between the training samples and the

test sample on the left hand side and inner products between the training samples on the right hand

side. Once we have the representation in terms of inner products, the kernel-trick can be applied
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as follows,

k(xi, xj) =

〈
φ(xi), φ(xj)

〉
(3.10)

Here, 〈....〉 represents the inner product. Applying the kernel trick allows representing Equation

3.9 in the following form,

vktest = (V )kα + ε (3.11)

Here, the superscript k represents the kernelized version of the test sample and training data. Equa-

tion 3.11 can be solved using any standard l1-solver. The elegant formulation of the kernel trick

we have discussed here was proposed in [230]. In other studies, the sparsity promoting solver

(l1-minimization or OMP) was modified to accommodate the kernel trick.

3.1.4 Extension to Multiple Measurement Vectors

So far we have discussed scenarios where the objective is to classify a single instance of the test

sample. This is known as the Single Measurement Vector (SMV) problem. In many scenarios the

test sample naturally consists of multiple samples, e.g. videos or multi-spectral imaging. These

are referred to as the Multiple Measurement Vector (MMV) problem.

Consider the problem of video based face recognition [138]. Here, the training data V consists

of video frames for a person. There are multiple training samples in each class; the structure

of V is therefore the same as in SMV problems. However, the test sample consists of a video

sequence containing multiple frames (T frames), Vtest = [v1
test|v2

test| . . . |vntest]. Assuming that the

SRC assumption holds for each frame, i.e.

vitest = (V )α(i) + ε ∀i ∈ {1 . . . T} (3.12)

It can be combined for all the frames in the following manner,

Vtest = V Z + ε (3.13)

where, Z = [α1| . . . |αT ]
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According to the SRC assumption each of the α(i)’s should be sparse. The non-zero values

correspond to the training samples of the correct class. Every α(i) is supposed to be represented

by training samples of the correct class. Therefore, the sparsity signature (positions of non-zero

values) is expected to remain the same in every α(i). If this assumption holds true, then Z is

supposed to be row-sparse and only those rows that correspond to the correct class will have non-

zero values. The row-sparsity assumption leads to solving the inverse problem in Equation 3.13

via:

min
Z
||Vtest − V Z||2F + λ||Z||2,1 (3.14)

where, ||Z||2,1 =
∑
j

||Zj→||22 and Zj→ represents the jth row of Z.

The argument for using the mixed l2,1-norm is the same as before. The l2-norms over the rows

promote a dense (non-zero) solution within the selected row but the outer l1-norm enforces sparsity

on the selection of rows. It should be noted that the l2,1-norm in the current case is defined on a

matrix and it should not be confused with the BSC assumption of block sparsity where it was

defined on a vector. The final classification decision is similar to the SRC approach. Once Z is

recovered, the class representation can be obtained by partitioning Z according to the classes. The

MMV test sample Vtest can be assigned to the class having the minimum residual error.

3.2 Proposed Group Sparse Representation Based Classifica-

tion

The proposed GSRC algorithm is a generic classification algorithm that can handle multiple fea-

tures and data sources for each data point. In this research, we propose the formulation and discuss

its application for the problem of multimodal biometrics.

LetN be the number of biometric modalities; for each modality, we assume that the sparse rep-

resentation classification model holds true, i.e., the test sample from that modality can be expressed

as a linear combination of the training samples of the correct class from the same modality.

vitest = V iαi + ε ∀i ∈ {1 . . . N} (3.15)
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Figure 3-3: Illustrating the proposed GSRC algorithm.

It is possible to solve each of modalities using the SRC algorithm and combine them at a later

stage using a score level fusion rule. However, such an approach does not exploit the intrinsic

structure of the problem. A better approach is to combine all the modalities into a single frame-

work. As shown in Figure 3-3, this can be succinctly represented as:


v1
test

...

...

vNtest

 =


V 1 ... 0

... ... ...

... ... ...

0 ... V N




α1

...

...

αN

+ ε (3.16)

Since each of the α(i)’s are sparse, the simplest way to solve Equation 3.16 is to impose a sparsity

penalty and solve it via l1-minimization. However, such a naive approach is sub-optimal and does

not exploit the underlying structure of the problem either.

The coefficient vector (represented as a row vector for simplicity) for each modality can be

expanded as: αi =
[
αi1, . . . , α

i
k, . . . , α

i
c

]
where, αik denotes the coefficients corresponding to the

kth class for the ith modality. If a test sample belongs to the kth class, the corresponding coefficients

are non-zero.

α =

[
α1

1, . . . , α
1
k, . . . , α

1
c︸ ︷︷ ︸

α1

, . . . , . . . , αN1 , . . . , α
N
k , . . . , α

N
c︸ ︷︷ ︸

αN

]

Since the SRC assumptions holds true for individual modalities, the αik’s for each ith (modality)

have non-zero values. Therefore, α has a group sparse structure where the non-zero elements occur

corresponding to the indices of the kth class. This leads to a group sparse representation where

the grouping is simply based on the indices. Equation 3.16 can be solved using the group sparsity
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promoting l2,1-norm:

min
Z
||vtest − V α||22 + λ||α||2,1 (3.17)

where,

vtest =


v1
test

...

...

vNtest

 , V =


V 1 ... 0

... ... ...

... ... ...

0 ... V N

 and α =


α1

...

...

αN

 (3.18)

The proposed GSRC formulation does not suffer from these limitations that fraught block

sparse classification [137, 233]. Here, we are not trying to fit one vector (test sample) to all the

subspaces simultaneously (as is done by BSC); but we are fitting test samples from each modality

into the subspaces spanned by the training samples of the same modality. In simpler words, the

main difference between our proposition and previous studies is that we define the group based on

indices from different modalities whereas previous studies define the group based on class labels.

The l2,1-norm has also been utilized in the sparse representation literature in different ways where

its equivalence to hypercomplex sparse coding is leveraged to extract multi-channel quaternionic

sparse representations of iris orientation features [104]. The group sparsity constraint is applied

while optimizing the dictionary coefficient vector for the individual channel encoding. In contrast,

in the proposed algorithm, we apply the group sparsity constraint on the multi-modal multi-feature

representation matrix and enforce group sparsity at the index level itself. Our formulation keeps

the flexibility of the SRC approach and improves upon it by exploiting the multimodal biometrics

problem structure. The representative sample for each class for all the modalities is computed as:

vrep(k) =


V i
kα

i
k

...

...

V N
k α

N
k

 (3.19)

The classification is based on the same principle as SRC. The test sample is assigned to the

class having the minimum residual error between the test vector and the class representative. One
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can also use the sum of l1-norm of the αik’s for each class and assign the test sample to the class

having the maximum value that is in agreement with the proposal in [119]. Regardless of the

criterion (minimum residual or maximum coefficient), GSRC utilizes an elegant decision rule that

does not require score level fusion strategies.

3.2.1 Multi-feature Classification

The above discussion pertaining to multimodal biometrics also pertains to multi-feature classifi-

cation problems in biometrics as well as other research areas. For instance, consider the problem

of object recognition. Shape descriptors such as HOG and LBP provide complementary feature

information regarding the images. In a recent paper [157], it was shown that these features can be

used by independent sparse representation classifiers whose outputs can be used by heuristic de-

cision rules to come up with the final decision (class label corresponding to the test sample). The

proposed GSRC algorithm is an elegant and robust solution to multi-feature classification problem

that incorporates all the available information (multiple feature sets) into the classification prob-

lem and yields a class label for the test data. Next, we describe the formulation of GRCS for

multi-feature classification.

Let T denote the number of features; for each feature, the SRC assumption holds, i.e.

vjtest = V jαj + ε ∀j ∈ {1 . . . T} (3.20)

In Ouyang et al. [157], SRC is applied to the individual features and the predicted class is

based on fusing the outputs from multiple sparse classifiers. Here, we follow the same approach as

in the multimodal biometrics formulation. The combined multi-feature problem can be expressed

as follows:

v = V α + ε (3.21)

where,
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vtest =


v1
test

...

...

vTtest

 , V =


V 1 ... 0

... ... ...

... ... ...

0 ... V T

 and α =


α1

...

...

αT


Similar to the previous discussion, the coefficient vector α is group sparse. Assuming that k is

the correct class, the test sample from each feature set is represented by the training samples from

the kth class of the same feature set. Therefore the kth class is active (non zero) for all the feature

sets. Hence, when grouped according to the indices, the coefficient vector α is group sparse. Thus,

Equation 3.21 can be solved using the l2,1-norm minimization. The subsequent decision (class

prediction) follows in exactly the same manner as for multimodal biometrics.

3.2.2 Combined Multimodal and Multi-feature Classification

In the most general formulation, the multimodal and multi-feature classification problems can be

combined within the GSRC framework. We assume that there are N modalities; the index for

the modalities being i. For each modality, we assume that there are Ti feature sets. The SRC

assumption holds for each feature set in every modality, i.e.,

vi,jtest = V i,jαi,j + ε ∀j ∈ {1 . . . Ti} and ∀i ∈ {1 . . . N} (3.22)

As before, each feature set can be individually solved using the SRC. However, this approach

does not account for the structure of the problem. Therefore, it is best to combine all the informa-

tion into a single problem as follows:


v1
test

...

...

vNtest

 =


V 1 ... 0

... ... ...

... ... ...

0 ... V N




α1

...

...

αN

+ ε (3.23)
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where, vitest =


vi,1test

...

...

vi,Titest

 , V =


V i,1 ... 0

... ... ...

... ... ...

0 ... V i,Ti

 and α =


αi,1

...

...

αi,Ti



The argument presented in the previous subsections also holds here. For each feature in every

modality, only a few coefficients (corresponding to the kth class) are expected to be non-zero.

Therefore, in every combination of modality and feature set, only the coefficients corresponding to

the kth class (assuming it is the correct class) are active. The full coefficient vector is group sparse

when grouped by indices that are non-zero only for indices corresponding to the kth class. This

would allow solving Equation 3.23 by l2,1-minimization.

Using the proposed algorithm, the process for class prediction is the same as before. The

coefficient corresponding to every class is extracted to form the representative sample. The residual

error between the class representative and the test vector is computed and the test vector is assigned

to the class having the lowest residual.

We should reiterate that GSRC does not try to represent the test sample by all the subspaces

from all modality feature set combinations, it only fits the few subspaces (corresponding to the

correct class) to its corresponding feature set for a given modality. Thus, it does not violate or

constrain the SRC assumption. GSRC is an elegant extension of the SRC technique that can handle

multiple modalities and multiple feature sets in a single framework. Rather the SRC is a special

case of the GSRC when there is only one modality and one feature set. As discussed previously,

the formulation of the proposed algorithm allows us to handle missing features, which may not be

the case with previous approaches such as [36] where a joint sparse MMV recovery approach is

utilized.
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3.3 Proposed KGSRC Algorithm

In the formulation of the GSRC algorithm, the representative sample for each subject for all the

sources is computed as:

Irep(k) =


Gs1
k α

s1
k

Gs2
k α

s2
k

 (3.24)

The test sample is assigned to the subject having the minimum residual error between the test

vector and the subject representative. Multimodal biometrics features might not be linearly separa-

ble in the feature space itself. This would lead to decreased performance due to the unavailability

of an ideal decision boundary to separate samples belonging to the individual subjects. However,

by utilizing kernelization, these features are projected to a higher dimensional space where they

may be linearly separable, thereby resulting in better decision boundaries and better performance.

For each source, we can have the equivalent non-linear representation:

φ(Isprobe) = φ(Gs)αs + ε, ∀s ∈ {s1, s2} (3.25)

Equation 3.25 can be kernelized by pre-multiplication of φ(Isprobe)

φ(Gs)Tφ(Isprobe) = φ(Gs)Tφ(Gs)αs + ε, ∀s ∈ {s1, s2} (3.26)

The kernel κ is defined as:

κ(xi, xj) =

〈
φ(xi), φ(xj)

〉
(3.27)

where

〈
....

〉
represents the inner product. In subsequent equations, we use the notation κ(x) to

denote κ(Gs, x). Using Equation 3.27, Equation 3.26 can be written as:

κ(Isprobe) = κ(Gs)αs + ε (3.28)
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As in GSRC, Equation 3.28 can be compactly represented as,

κ(Iprobe) = κ(G)α + ε (3.29)

where, κ(Iprobe) =


κ
(
Is1probe

)
κ
(
Is2probe

)
 and κ(G) =


κ(Gs1) 0

0 κ(Gs2)


Similar to the GSRC approach, Equation 3.29 can be solved using L2,1 minimization which pro-

motes group sparsity:

min
α
||κ(Iprobe)− κ(G)α||22 + λ||α||2,1 (3.30)

Once α is obtained, the representative for each subject is computed using Equation 3.24 and the

probe image is assigned to the subject/class with the minimum residual. An important problem in

a kernel based approach is the selection of the kernel function and its parameters since these selec-

tions can greatly influence the final performance of the algorithm. Usually, in the case of existing

machine learning approaches such as SVMs that utilize kernels, the kernel and its parameters are

chosen empirically. There are certain techniques such as grid search, where a subset of possible

parameter values for each kernel choice can be used for training and then optimized on the basis of

maximum performance on a separate validation set. However, this requires enough training data

for both the training and validation sets. The validation set is kept separate from the training set

since optimizing training performance alone can lead to overfitting and reduction in performance

on the test set.

We propose a method to select the kernel and its parameters using just one training set that is

also able to preserve robustness and avoid overfitting, thereby avoiding the requirement for a large

amount of data to create a separate validation set. Using the proposed kernel/parameter selection,

the KGSRC algorithm is able to remove the need for a user to fine-tune the kernel selection. The

user’s primary concern is then to just select the appropriate feature sources and training data,

which become the parameters of the algorithm while a large set of possible kernels and associated

parameters can be set as the search space for the kernel selection algorithm. To preserve robustness

while performing parameter selection using the training set, we propose a metric to quantize the
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goodness of separation created by the transformation enacted by a kernel function. Given a list of

kernel functions, K and a set of associated parameters θK , we compute the following metric for

each possible combination for the training data:

ΨK,θKi
=

ΣC
a=1ΣC

b=1χ
2 (µKi(a), µKi(b))

ΣC
z=1Σnz

x=0Σnz
y=0χ

2(Kθi(γzx), Kθi(γzy))
(3.31)

Here, θKi denotes the ith parameter setting for the kernel K, Kθi(·) is the kernel function when us-

ing θKi as the parameter setting, χ2(x, y) denotes the χ2 distance between x and y, C is the number

of classes, nz is the number of training samples that belong to a particular class z, γzx denotes the

xth training sample belonging to the zth class, and µKi(a) denotes the mean transformed vectors

of class a after kernelization using the kernel K with parameter setting θKi. The class mean for a

class c is computed as follows:

µKi(c) =
Σx=nc
x=0 Kθi(γcx)

nc
(3.32)

Essentially, Equation 3.31 computes the joint kernel-parameter combination score Ψ which is a

measure of how well a particular kernel-parameter function can optimize the trade-off between

inter-class distance (numerator in Equation 3.31) and intra-class distance (denominator in Equation

3.31). By using the aggregated statistic for intra-class distance across all data points in the training

data and using only the means to compute the inter-class distance, we help make the selection

robust towards overfitting to the training data. Our assertion is that a kernel-parameter combination

with a high Ψ score is one that is able to maximize this metric consistently over the entirety of the

training data and should also perform well on the test data. The underlying assumption is that the

test data is not drastically different from the training data which is required inherently for good

performance of a sparse representation based approach even without the involvement of kernel

selection. In all the discussed results, we evaluate the performance of the proposed algorithm with

the proposed kernel selection approach being used to determine both the kernel and its parameters.
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3.4 Experimental Results and Analysis

This section details the databases and experimental protocol, followed by experimental results and

analysis. The proposed Group Sparse Representation Classifier or GSRC algorithm is evaluated

on two publicly available multimodal biometric databases:

• WVU multimodal database: The WVU multimodal database [34] consists of data pertain-

ing to iris, fingerprint, palmprint, hand geometry, face video and voice, and face modalities

for 270 individuals. The database also includes soft biometric information such as height,

weight, ethnicity, and gender. In this research, we focus on three biometric modalities: iris,

face, and fingerprint. For some individuals, not all biometric samples are available, these

are treated as cases of missing data and information about the concerned (missing) modality

is not utilized for recognizing these probe images. Images pertaining to 108 subjects (40%)

are utilized for training and data for the remaining 162 subjects (60%) is utilized for testing.

Three images are used as gallery and the remaining images are used as probes. The number

of images available per modality varies and therefore the number of probe images varies in

the range of 680 to 6300.

• LEA multimodal database: The LEA database [15] contains unconstrained multimodal

biometric data pertaining to 18,000 individuals. The database comprises of the face, finger-

print, and iris modalities. Similar to the WVU database, data for all three modalities is not

available for each individual and hence the database encompasses all biometric covariates as

well as the missing data problem. Data pertaining to 50% of the individuals, i.e., 9000, is

utilized for training and the remaining 9000 individuals are utilized for testing. Two images

from each individual are used as gallery and the remaining images (1-3 images per person)

are used as probes.

3.4.1 Algorithms used for Performance Evaluation

In order to evaluate the performance in a multi-feature multimodality setting, two features are

considered for each modality. Uniform Circular LBP (UCLBP) [156] and Speeded Up Robust

Features (SURF) [9] are considered for face, Video-based Automatic System for Iris Recognition
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Table 3.2: Rank-1 identification accuracy (%) with individual features and their combination (SRC
and GSRC) on the WVU and LEA databases.

Modality Features WVU LEA

Face
Individual

UCLBP 75.4 24.2
SURF 79.1 28.4

Fusion
SRC 82.3 39.7
GSRC 83.7 40.9

Iris
Individual

Vasir 85.0 31.0
LPG 90.5 36.4

Fusion
SRC 92.9 41.2
GSRC 93.5 43.5

Finger
Individual

NBIS 85.9 40.1
VeriFinger 90.7 45.7

Fusion
SRC 92.6 51.8
GSRC 93.1 53.5

(VASIR) [221] and Log Polar Gabor (LPG) [205] are considered for iris, and NIST Biometric

Image Software (NBIS) 1 and VeriFinger (VF)2 are used for the fingerprint modality. We use the

two-stage iris segmentation algorithm proposed in [205], in which first the inner and outer bound-

aries of the iris are estimated using an elliptical model. Then, the modified MumfordâĂŞShah

functional [202] is applied in a narrow band over the boundaries estimated in stage one to perform

exact segmentation of the iris. The performance of the proposed GSRC algorithm is compared with

the SRC algorithm [217] and the state-of-the-art multimodal algorithm which is based on Context

Switching [15]. Further, we utilize sum rule match score fusion [94] for performance comparison.

3.4.2 Results and Analysis

Identification experiments are performed on both the WVU and LEA databases and the perfor-

mance of the proposed GSRC algorithm is evaluated in four scenarios and major observations are

noted below. All the experimental results are presented in the form of CMC curves in Figures 3-4,

3-5, 3-6, and 3-7 and also summarized in Tables 3.2 and 3.3.

• Single-feature single-modality: These experiments are performed to assess the baseline

performance of the individual features. As mentioned before, two features are considered

1http://www.nist.gov/itl/iad/ig/nbis.cfm
2http://www.neurotechnology.com/verifinger.html
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Figure 3-4: CMC curves on the WVU multimodal database: individual features, SRC and GSRC
on (a) face, (b) fingerprint and (c) iris.
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Figure 3-5: CMC curves on the LEA multimodal database: individual features, SRC and GSRC
on (a) face, (b) fingerprint,and (c) iris.
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Table 3.3: Rank-1 identification accuracy (%) with fusion of multiple modalities and multiple
features (SRC and GSRC) on the WVU and LEA databases.

Modality Fusion Algorithm WVU LEA

Face and Iris
SRC 93.9 45.3
GSRC 94.6 47.4

Face and Finger
SRC 94.4 52.1
GSRC 95.3 55.8

Iris and Finger
SRC 95.6 52.5
GSRC 95.9 55.1
Sum Rule (score level) 95.0 52.6

Face, Finger Context Switching [15] 95.8 55.8
and Iris SRC 95.1 54.6

GSRC 99.1 62.3

for each modality. UCLBP [198] and SURF [9] features are considered for face, VASIR

and LPG are considered for iris, and NBIS and VF are used for fingerprint. It is observed

that the fingerprint and iris modalities perform better than face on both databases; however,

fingerprint features outperform the iris modality on the LEA database, possibly denoting the

higher reliability of fingerprint modality when data is captured in unconstrained, real-world

conditions. It is also observed that no single modality or feature offers the best performance,

particularly on the LEA database, clearly motivating the requirement for a multimodal multi-

feature recognition algorithm.

• Single-modality multi-feature: These experiments are performed to evaluate the difference

in performance of the traditional SRC algorithm with the proposed GSRC algorithm when

multiple features are considered for each modality. In accordance with existing literature,

decisions from SRC classifiers operating on individual features from the same modality are

combined using sum rule fusion at the match score level [94]. From Figures 3-4 and 3-5, it

is evident that the GSRC algorithm performs better than the SRC based algorithm on both

the databases. However, both of them improve the performance considerably compared to a

single feature. Further, we perform McNemar test and at 95% confidence, using the rank-1

results on LEA database (in Table 2), it is observed that SRC and GSRC are statistically

different.
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• Two-modality multi-feature: These experiments are performed to evaluate the performance

of the traditional SRC algorithm and the proposed GSRC algorithm when both features for

two modalities are combined at a time. Similar to the above, sum rule fusion is performed

at match score level to obtain SRC decisions. As shown in Table 3 and Figures 3-6(a)

and 3-7(a), the proposed GSRC algorithm outperforms SRC on both the databases. The

difference in performance of SRC and GSRC is higher, especially at lower ranks. We have

also observed that if the data is of higher quality then GSRC can offer better performance

improvement.

• Multimodality multi-feature: These experiments are performed to evaluate the perfor-

mance of the proposed GSRC when all the modalities and features are utilized, i.e, three

modalities and two features each. The results are presented in Figure 3-6(b) and Figure

3-7(b). On the WVU database, traditional SRC achieves 95.1% rank-1 accuracy whereas

the GSRC algorithm achieves 99.1% rank-1 performance. On the LEA database, traditional

SRC achieves 54.6% rank-1 accuracy whereas the GSRC algorithm achieves 62.3% perfor-

mance. This demonstrates that the GSRC algorithm is more robust since the LEA database

consists of images with lower quality and unconstrained pose, illumination, and expression.

• Comparison with existing algorithms: For the WVU database, at rank 1, the proposed al-

gorithm achieves an identification accuracy of 99.1%, whereas the second best performance

of 95.8% is obtained using the context switching algorithm [15]. GSRC also achieves 100%

accuracy at rank 2 for the WVU database, whereas the existing state-of-the-art achieves it at

rank 4. On the LEA database, the context switching algorithm outperforms both sum rule

fusion and traditional SRC with an identification performance of 55.8% whereas the GSRC

algorithm performs 6.5% better and achieves 62.3% rank-1 accuracy. It is to be noted that an

important characteristic of the context switching algorithm is that it is able to handle missing

data. In case of the LEA database, there are over 75% cases which have at least one miss-

ing modality. In our experiments, we observe that the GSRC algorithm can also handle the

missing data cases and perform better recognition.

• Performance with missing data: To further accentuate the effect of partial data (missing
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Figure 3-6: CMC curves for identification on the WVU multimodal database. Comparing the
performance of (a) traditional SRC with the proposed GSRC when two modalities are considered
at a time and (b) GSRC, SRC, sum rule, and context switching algorithms when all three modalities
are considered at a time.
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Table 3.4: The impact of feature characteristics on the performance of GSRC. 1 = original, 2 =
normalized.

Classifier LEA WVU
UCLBP + SURF 1 UCLBP + SURF 2 UCLBP + SURF 1 UCLBP + SURF 2

SRC 29.3 39.7 80.1 82.3
GSRC 30.2 40.9 80.8 83.7

Table 3.5: The impact of gallery size on the performance of GSRC.

Classifier WVU LEA
Gallery = 2 Gallery = 3 Gallery = 2 Gallery = 3

SRC 45.2 54.6 88.4 95.1
GSRC 53.9 62.3 94.7 99.1

modality scenario), an experiment on LEA database is conducted in which for each multi-

modal probe, sample from one modality is either randomly removed or not available in the

database (75% of the cases), i.e. this experiment mimics the scenario when all probe samples

have at least one modality missing. We have observed that in such scenario, GSRC yields an

accuracy of 61.8% whereas the next best performance of 55.4% is achieved with the existing

context switching algorithm and SRC and Sum Rule yield an accuracy of 52.9% and 50.2%.

This showcases that the proposed GSRC algorithm is able to handle missing features better

compared to other algorithms.

• Impact of feature characteristics: We observe that when a weak feature of higher feature

length is combined with a strong feature of significantly lower feature length, the perfor-

mance of GSRC suffers. Revelant results are included in Table 3.4. Therefore, it is impor-

tant to exercise caution with utilizing features with variable lengths without normalization.

However, when feature lengths are normalized and two weak features are combined, GSRC

performs much better compared to the SRC algorithm and boosts the combined performance

by a large margin, e.g., in the case of the face modality. It is also observed that when the fea-

tures are similar in nature (Gabor features in case of iris modality, minutiae features in case

of fingerprint modality), GSRC improves classification performance by a relatively smaller

margin.

• Dependency on gallery/training data: Any sparse representation based scheme requires la-
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beled samples in order to compute efficient sparse representations and retain discriminative

capabilities. However, we observe that when the data points available per class is reduced,

the performance of the SRC algorithm suffers much more than the GSRC algorithm. Reve-

lant results are included in Table 3.5.We also observe that if the feature length is increased,

GSRC can readily utilize the additional information to improve performance higher than the

SRC algorithm.

• Computational time: The computational complexity of the proposed algorithm is primarily

dependent on the the l2,1-minimization and has the overall time complexity ofO (NTlog(NT )).

The running time of both traditional SRC and the proposed GSRC algorithm is compared

on an Intel machine with Core i7 3.40 GHz quad core processor, 16 GB of RAM, and MAT-

LAB programming environment. SRC requires 0.11 seconds to process one probe image

and the GSRC algorithm requires 0.51 seconds to process one multi-modal probe with all

three modalities present. Sum rule fusion at the score level requires 0.01 second and context

switching algorithm requires 0.27 seconds. Note that this time does not include time spent in

acquisition, preprocessing or feature extraction which are common to both approaches and

contribute equally to the computational time of both classifiers.

3.5 KGSRC: Case Studies

In this research, we apply the proposed KGSRC algorithm to three challenging biometrics prob-

lems, (1) cross-distance face recognition, (2) RGB-D face recognition, and (3) multi-modal bio-

metric recognition, to assess its performance. The flow diagrams for each of these problems is

presented in Figure 3-8. For a given probe sample, individual representations are extracted using

different feature extractors, modalities, or spectrums as applicable. A sparse representation for the

probe image is computed over the features extracted from the gallery images using the proposed

KGSRC algorithm. The residual error for each subject is compared and the probe is assigned to

the subject/class with the minimum residual error. In each case, face detection is performed using

the Viola Jones detector [207] before processing an image during either training or testing and only

the cropped face image is used. To populate our kernel list we have used the linear, spline, wave,

sigmoid, radial basis function, polynomial, multiquadratic, rational quadratic, and laplacian ker-
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(a)

(b)

(c)

Figure 3-8: Flow diagrams for each of the three biometric problems that we use to evaluate the
proposed KGSRC algorithm. (a) Cross-distance face recognition (b) RGB-D face recognition (c)
Multi-modal biometric recognition
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nel classes along with correspondingly appropriate parameter ranges. For the purpose of feature

extraction, we explore three existing feature descriptors: TPLBP [215], FPLBP [215], and HOG

[35]. These descriptors are selected since LBP and HOG based descriptors have been successfully

applied for RGB-D face recognition in existing literature and have been demonstrated to achieve

high performance.

3.5.1 Cross-distance Face Recognition

Cross-distance face recognition is a challenging problem which occurs frequently when surveil-

lance footage needs to be used for face recognition. In such a case, the face image is captured at a

high distance from a fixed camera position that inherently imparts the problems of pose and illumi-

nation variation along with low-resolution. These images are then usually matched with mugshot

images which are of high quality. To use the KGSRC algorithm in this scenario, we first perform

face detection and crop the face image only from the background. We then utilize three different

feature extractors and perform feature level fusion using the KGSRC algorithm. The training data

is used as gallery for each subject, to learn the ideal kernel parameters, and to learn the sparse rep-

resentation coefficients. The same process of extracting multiple features is employed for a given

probe image at runtime and the KGSRC algorithm computes a ranked list of subjects ordered by

increasing residual error.

3.5.2 RGB-D Face Recognition

RGB-D face recognition focuses on recognizing faces when they are captured in the form of a

color image (RGB) along with a corresponding depth map (D). The color image and depth map

pair is called as one RGB-D image. The methods of acquisition of the depth map varies from

device to device but the Microsoft Kinect device uses an infrared laser projector combined with

a monochrome CMOS sensor. Two public databases [66, 166] containing RGB-D face images

captured using the Kinect sesnor are used in this research. Given a RGB-D face image, registration

of the faces is performed to increase the correspondence between the pixels of the depth map

and the color image. Then, face detection is performed using the color face image and the same

bounding box is used for the depth map as well. The color face image and the depth map act as
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independent feature sources and features can be extracted from both. Each subject’s gallery images

are used to train the proposed KGSRC algorithm and learn the corresponding sparse representation.

Given a probe image, features are extracted from both the color image and the depth map separately

and matched with the gallery using the KGSRC algorithm and a ranked list of subjects is obtained

by sorting them by ascending order of the residual error.

3.5.3 Multi-modal Biometric Recognition

In multi-modal biometric recognition, multiple biometric modalities are used to determine the

identity of a given individual. The most popular biometric modalities are face, fingerprint, and iris.

In this scenario, each modality acts as an independent feature source. Appropriate pre-processing

is applied to the image from each modality and then as shown in Figure 3-8c features are extracted

using a feature extractor relevant to the modality. Then, the corresponding features are used for

training the KGSRC algorithm. A given probe image may be identified on the basis of any com-

bination of modalities (e.g. only face, only iris, or face and iris or all the modalities) since the

algorithm can inherently handle the missing data problem. The residual error is computed for each

subject and a ranked list of candidate matches is produced based on assigning the highest rank to

the subject with the least residual error.

3.6 KGSRC: Experimental Results and Analysis

The following subsections present experimental results pertaining to each of the case studies in-

cluding database and protocol details for each of the problems pertaining to each of the problems:

3.6.1 Cross-distance Face Recognition in Surveillance

The performance of the proposed algorithm is evaluated on the publicly available SCFace database

[68]. It contains 4,160 human face images for 130 subjects in both visible and near-infrared spec-

trums. The images are captured in uncontrolled indoor environments using five video surveillance

cameras of varying quality and at variable distances. The database also provides five good quality

close-distance face images per subject for the purpose of enrollment/gallery data. These mugshots
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Figure 3-9: Identification results on the SCFace database at three different distances of the probe
image: (a) Distance 1 = 4.2 metres, (b) Distance 2 = 2.6 metres, and (c) Distance 3 = 1.0 metres.
The matching is performed between a high distance probe and a low distance (high resolution)
gallery. For both the KGSRC and GSRC algorithms, the best feature combination is showcased in
the CMC curve. 81
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Figure 3-10: Identification results on the two RGB-D databases when compared to GSRC. For
both the KGSRC and GSRC algorithms, the best feature combination is showcased in the CMC.
We see that kernelization using the proposed algorithm improves the performance.
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Table 3.6: Identification results at rank 5 on the SCFace database. Distance 1 is the furthest and
distance 3 is the closest from the camera.

Algorithm Features
Rank 5 Identification Accuracy (%)

Distance 1 Distance 2 Distance 3

GSRC

HOG + FPLBP 16.8 17.4 12.5
HOG + TPLBP 15.7 19.7 20.9
TPLBP + FPLBP 13.7 13.8 15.1
HOG + FPLBP + TPLBP 16.7 20.3 17.2

COTS 2.5 9.5 17.7

Proposed KGSRC

HOG + FPLBP 18.3 26.2 27.5
HOG + TPLBP 12.9 23.8 28.3
TPLBP + FPLBP 11.1 10.0 15.1
HOG + FPLBP + TPLBP 18.5 25.2 27.5

are captured using a high-quality photo camera. In order to conduct our experiments, we utilize the

most frontal three good quality faces per subject as gallery. Then, we perform three experiments

for each of the three different distances in the database: distance 1 is furthest from the sensor,

whereas distance 3 is the closest to the sensor. All the images available for a subject for each

distance are used as probe. Therefore, there are a total of 390 gallery and 650 probe images per

distance. Distances 1, 2, and 3, denote distances of 4.20, 2.60, and 1.00 metres from the camera,

respectively. Other capture conditions in the database are also reflective of the real-world scenario,

i.e., the camera is placed slightly above the subject’s head. The database encompasses a highly

challenging recognition scenario. We compare the performance of the proposed algorithm to a

state-of-the-art COTS face recognition system, as well as with traditional GSRC approach. The

results, in the form of rank 5 identification accuracy and CMC curves, are presented in Table 3.6

and Figure 3-9, respectively.

We observe that the proposed KGSRC algorithm offers substantial improvements over the

COTS algorithm, achieving a best case performance of 18.5%, 26.2%, and 28.3% rank 5 identifi-

cation accuracy at distances 1, 2, and 3, respectively. In comparison, the COTS approach is only

able to achieve 1.5%, 9.5%, and 17.7% accuracy at distances 1, 2, and 3 respectively using the

same protocol. As opposed to the non-kernelized version (GSRC), the proposed KGSRC algo-

rithm offers an improvement of 1.7%, 5.9%, and 7.38% at distances 1, 2, and 3, respectively. This

implies that a total of 11, 38, and 48 probe images that are misclassified by the GSRC are identified

correctly by the proposed algorithm at distances 1, 2, and 3, respectively.
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Table 3.7: Identification results at rank 5 on both Eurecom and IIIT-D RGB-D databases. We use
the existing protocol and partitions [66] to enable direct comparison. ∗ Results have been taken
from [66].

Algorithm
Rank-5 Accuracy (%)
Eurecom IIIT-D

Existing

Goswami et al. ∗[66] 98.5 ± 1.6 95.3 ± 1.7
3D-PCA ∗ 94.1 ± 2.7 83.4 ± 2.1
FPLBP ∗ 94.3 ± 1.4 85.0 ± 0.7
HOG ∗ 89.5 ± 0.8 75.l ± 0.7
SIFT ∗ 83.8 ± 2.1 50.1 ± 1.4
Sparse ∗ 84.8 ± 1.7 87.2 ± 1.9
HOG + GSRC 95.4 ± 1.7 89.9 ± 2.8
TPLBP + GSRC 97.2 ± 1.2 94.4 ± 1.5

Proposed HOG + KGSRC 96.7 ± 1.5 91.8 ± 2.8
TPLBP + KGSRC 98.8 ± 1.2 95.9 ± 1.6

3.6.2 RGB-D Face Recognition

The performance of the proposed algorithm is evaluated on two publicly available RGB-D databases:

the EURECOM database [166] and the IIIT-D RGB-D database [66]. First, we present a brief

overview of each of these databases and explain the experimental protocol. Next, we present iden-

tification results on these databases using the proposed algorithm and also present a comparison

with existing state-of-the-art algorithms on these databases.

The EURECOM database [166] consists of RGB-D images of 52 individuals captured in two

different sessions. The database consists of variations in illumination and expression, and consists

of a total of 936 images. In order to compare results with the state-of-the-art algorithms, we follow

the existing protocol [66]. The entirety of the data is partitioned such that data for 31 subjects

is in the testing partition and the remaining 21 subjects are part of the training partition. This

partitioning is performed five times for cross validation. We report the mean accuracies at each

rank in the form of a CMC curve in Figure 3-10a. Mean accuracy and standard deviation at rank 5

are presented in Table 3.7.

The IIIT-D Kinect RGB-D face database [66] consists of RGB-D images of 106 individuals

(4605 images), captured in two different sessions. Similar to the case of the EURECOM database,

existing protocol [66] is used to facilitate comparative results. Each partition contains training

data pertaining to 42 subjects and testing data pertaining to 64 subjects. We report the mean
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accuracies at each rank in the form of a CMC curve in Figure 3-10b. Mean accuracy and standard

deviation at rank 5 are presented in Table 3.7. Along with demonstrating the performance of the

proposed algorithm with different feature extractors on the two databases, we have compared the

performance with existing state-of-the-art algorithms on the two databases. These algorithms are

Goswami et al. [66], 3D-PCA, FPLBP, HOG, SIFT, and sparse classification.

On both the databases, the proposed KGSRC algorithm performs the best, achieving 98.8% and

95.9% rank 5 identification accuracies on the Eurecom and IIIT-D RGB-D databases, respectively.

It outperforms its non-kernel counterpart by 1.6% on the IIIT-D database and 1.5% on the EURE-

COM database. It is also able to outperform the previous best performing algorithm by 0.3% and

0.6%, achieving results that are comparable to the state-of-the-art on the two databases. We also

observe that the KGSRC algorithm performs consistently better with TPLBP than with HOG. In

the current implementation, HOG is a local feature descriptor of a smaller size (256) whereas the

TPLBP descriptor provides a larger feature representation of size 3,072. This can be attributed to

the nature of sparse classification algorithms that perform better if over-complete representations

are provided as input.

3.6.3 Multi-modal Biometric Recognition

The WVU multi-modal database [34] consists of data pertaining to multiple biometric modalities

for 270 individuals. In this research, we focus on three popular biometric modalities among these:

iris, face, and fingerprint. Since not every modality is available for all individuals, the database

incorporates the missing data problem. 231, 270, and 316 subjects have data available for the iris,

fingerprint, and face modalities, respectively. Data pertaining to 108 subjects (40%) is utilized for

training and data for the remaining 162 subjects (60%) is utilized for testing. Three images are

used as gallery and training and the remaining images are probes.

The results of the evaluation are presented in Table 3.8. We observe that the proposed KGSRC

algorithm achieves the best performance among all the evaluated algorithms. We notice an im-

provement of 0.6% on the final fusion of all three modalities and is able to further improve upon

the already near perfect accuracy achieved by the group sparse classifier. Among two modality

fusion experiments, we see consistent improvement of about 2-3% when the group sparse clas-
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Table 3.8: Rank-1 identification accuracy (%) with fusion of multiple modalities and multiple
features (SRC, GSRC, and KGSRC) on the WVU database.

Modality Features WVU

Face

Individual
UCLBP 75.4
SURF 79.1

Fusion
SRC 82.3
GSRC 83.7
KGSRC 85.2

Iris

Individual
Vasir 85.0
LPG 90.5

Fusion
SRC 92.9
GSRC 93.5
KGSRC 96.1

Finger

Individual
NBIS 85.9
VeriFinger 90.7

Fusion
SRC 92.6
GSRC 93.1
KGSRC 95.8

Face and Iris
SRC 93.9

Fusion GSRC 94.6
KGSRC 97.4

Face and Finger
SRC 94.4

Fusion GSRC 95.3
KGSRC 97.1

Iris and Finger
SRC 95.6

Fusion GSRC 95.9
KGSRC 98.2
Sum Rule (score level) 95.0

Face, Finger Context Switching [15] 95.8
and Iris Fusion SRC 95.1

GSRC 99.1
KGSRC 99.7
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sifier already achieves over 95% accuracy on the database, leaving little room for improvement.

Therefore, we can assess that the kernelization of the features before matching helps in improving

the discriminative capability of the classifier and results in a more robust feature fusion methodol-

ogy. The algorithm is able to successfully classify samples that are not separable in the relatively

lower dimensional space of the non-kernel group sparse classifier by projecting them to a higher

dimensional space using the automatically determined kernel function. We also see experimental

support for the efficacy of the proposed automatic kernel and parameter selection metric since the

choice of kernel and parameter can greatly influence the success of any kernel based approach.

3.7 Summary

Biometrics is a challenging problem due to various covariates such as pose, illumination, and

expression, which can adversely influence recognition performance. However, utilizing multiple

features to represent each sample can provide robustness and enhance the accuracy of recogni-

tion algorithms. In this research, we present the group sparse representation based classifier for

multimodal multi-feature biometric recognition. The proposed algorithm operates on the feature

vectors obtained from different modalities/descriptors and perform recognition via feature level

fusion and classification. Results on two multimodal databases showcase the efficiency of the pro-

posed algorithm in comparison to existing state-of-the-art algorithms. The GSRC algorithm is able

to encode the complementary information obtained using different modalities and features to per-

form accurate identification in unconstrained scenarios. We also present the KGSRC which is an

extension of the GSRC framework with kernelization. Using the training data, we not only learn

the coefficients for sparse coding to generate the most discriminative representation of data, but

also learn the appropriate kernel function and associated parameter values automatically. Using

these case studies on cross-distance face recognition, RGB-D face recognition, and multimodal

biometric fusion, we observe that the KGSRC algorithm with the kernel selection methodology,

obtains comparable results to the existing state-of-the-art.
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Chapter 4

Face Verification via Learned

Representation on Feature-Rich Video

Frames

Video face recognition has become highly significant in surveillance scenarios. For example, more

than 80,000 people were identified and verified during the 2008 Beijing Olympics with the help

of face recognition in videos [1]. With advancements in technology, video capturing devices are

accessible to a large number of people in the form of portable electronic devices such as phones

and tablets. In unconstrained scenarios, videos captured by such devices may also be used by

law enforcement agencies. Therefore, there is a high motivation to utilize video data to perform

accurate face recognition. Figure 4-1 shows frames from four video clips in which the face regions

have been detected and cropped. While a single frame from a video can only capture limited

information, multiple frames capture a lot of information about the face pertaining to its appearance

under the effect of common covariates such as pose, illumination, and expression. By utilizing the

large variety of information present in a video, a robust and comprehensive representation of a face

can be extracted and accuracy can be improved.

Video face recognition has been extensively studied and several algorithms have been pro-

posed. Table 4.1 provides a review of some of the algorithms along with the summary of re-

sults reported on popular video face recognition databases. Video face recognition algorithms can

broadly be classified into two types: (a) set-based and (b) sequence-based [92]. The set-based
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Figure 4-1: A subset of frames illustrating the amount of information present in a video. A single
video can capture a subject’s face under different pose, expression, and illumination variations.
While some frames can be highly useful for face recognition, others can be detrimental to perfor-
mance. Images are frames from the PaSC database [12].

approaches consider a video as a set of images (frames) which are then modeled and matched

using a variety of methodologies. These approaches may not utilize the temporal information con-

tained in the video, i.e. the order of frames in the original video may not matter. On the other

hand, sequence-based approaches are specifically designed to utilize temporal information of the

video. These approaches model the video as a sequence of images and apply sequence classifica-

tion techniques for recognition. Some of the recent techniques utilize large image dictionaries to

characterize videos [29, 74], while some others have focused on metric learning based approaches

[91] or deep learning based approaches [26, 222]. For comparison, the results are generally re-

ported on benchmark databases such as the Honda UCSD database [98], YTF [114], and recently

developed PaSC database [12].

Authors Algorithm Database Verification
Accuracy

Wolf et al., 2011
[114]1

Matched background similarity L2
mean with LBP

YTF [114]

76.4%

Wolf and Levy,
2013 [216]1

SVM-Minus similarity score with
background similarity

78.9%

Li et al., 2013
[72]1

Probabilistic elastic matching 79.1%
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Cui et al., 2013
[234]2

Spatial-temporal face region de-
scriptor + Pairwise-constrained
multiple metric learning

79.5%

Mendez-Vazquez
et al., 2013 [73]2

Volume structured ordinal features 79.7%

Bhatt et al., 2014
[74]1

Clustering based re-ranking and fu-
sion

80.7%

Hu et al., 2014
[82]1

Large margin multi-metric learning
for face and kinship verification in
the wild

81.3%

Hu et al., 2014
[91]1

Discriminative deep metric learning 82.3%

Taigman et al.,
2014 [222]1

Nine-layer deep network 91.4 % (unre-
stricted)

Wang et al., 2015
[211]1

Discriminant Analysis on Rieman-
nian manifold of Gaussian distribu-
tions

73.01 AUC

Khan et al., 2015
[99]1

Adaptive Sparse Dictionary 82.9%

Li et al., 2015
[118]1

Eigen-PEP for video face recogni-
tion

84.8%

Li et al., 2015
[116]1

Hierarchical-PEP for video face
recognition

87.0%

Sun et al., 2015
[193]1

Semi-supervised convolutional
neural network

93.2% (unre-
stricted)

Schroff et al.,
2015 [183]1

Unified embedding learned using
deep CNN

95.1% (unre-
stricted)

Parkhi et al.,
2015 [160]1

Eleven-layer deep convolutional
neural network with triplet loss
based face embedding

97.3% (unre-
stricted)

Ding and Tao,
2016 [42]1

Ensemble of Deep Convolutional
Neural Networks

94.96% (unre-
stricted)

Yang et al., 2016
[227]1

GoogLeNet [196] features with ag-
gregation

95.5% (unre-
stricted)

Tran et al., 2016
[201]1

3D Morphable Face Models re-
gressed using a CNN

88.8% (unre-
stricted)

Ranjan et al.,
2018 [168]

Crystal loss and quality pooling 96.08% (unre-
stricted)

Beveridge et al.,
2013 [12]1

Local region principal component
analysis

PaSC [12]

8% (handheld)
10% (control)

Wang et al., 2015
[211]1

Discriminant Analysis on Rieman-
nian manifold

18.3% (handheld)
18.7% (control)

Li et al., 2015
[116]1

Hierarchical-PEP for video face
recognition

30.7%
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Huang et al.,
2015 [88]1

Projection Metric Learning on
Grassmann Manifold

43.9% (handheld)
43.6% (control)

Huang et al.,
2015 [11]1

Hybrid Euclidean-and-Riemannian
Metric Learning

59% (handheld)
58% (control)

Ding and Tao,
2016 [42]1

Ensemble of Deep Convolutional
Neural Networks

95.9% (handheld-
unrestricted)
96.2% (control-
unrestricted)

Ding and Tao et
al., 2017 [43]1

Pose-invariance with homography-
based normalization

60.4% (handheld)
69.1% (control)

Rao et al., 2017
[170]1

Attention-aware Deep Reinforce-
ment Learning

93.8% (handheld)
95.7% (control)

Wang et al., 2017
[212]1

Discriminative Covariance Ori-
ented Representation Learning

55.7% (handheld)
56.4% (control)

Ding and Tao,
2018 [44]1

Trunk-branch ensemble convolu-
tional neural networks + batch nor-
malization

96.1% (handheld-
unrestricted)
97.8% (control-
unrestricted)

Goswami et al.
[62]1

Memorability based frame selec-
tion and deep learning

PaSC 89% (handheld),
94% (controlled)

YTF 88.6% (unre-
stricted)

YTF [114] 93.4%, 95.4%
(unrestricted)

Proposed1 Feature-richness based frame selec-
tion and deep learning (joint learn-
ing in autoencoder with sparse and
low rank DBM)

PaSC [12]
93.1% (hand-
held), 97.2%
(handheld-
unrestricted),
95.9% (control),
98.1% (control-
unrestricted)

Table 4.1: Review of selected papers on video face recognition that have shown results on the YTF
and PaSC benchmark face video databases. Results marked unrestricted denote algorithms that
have used external training data during training. The algorithms follow the standard experimental
protocol during testing for both databases to facilitate comparison. 1denotes set based algorithms,
2denotes sequence based algorithms.

As shown in Table 4.1, existing algorithms have attained high performance on YTF [114].

However, the protocol of this databases generally require reporting the results at EER [175]. From

implementation perspective, the algorithms are required to minimize False Accept Rate (FAR)

or False Reject Rate (FRR). However, lower EER does not necessarily mean low FAR or FRR.

Figure 4-2 illustrates the performance of some of the existing algorithms on the YTF [114]. It
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Figure 4-2: Summarizing the performance of some of the best performing face verification algo-
rithms on the YTF [114]. It is evident that there is a huge gap in the performance at low false accept
rates as compared to performance at EER. We showcase that the proposed algorithm performs well
even at a low false accept rate.

is observed that these algorithms attain very high accuracies at equal error rate, however, their

performance at lower false accept rates is significantly lower. For example, DeepFace [222] yields

over 91% verification accuracy at EER but only 54.1% at 1% FAR. For many security related

applications, such as video surveillance, it is desirable to achieve high verification performance

while minimizing the false accept rates. Therefore, it is our assertion that there is a significant

scope of improvement in the performance of video face recognition and additional research is

required, especially focusing at lower false accept rates.

In general, video face verification involves matching using all the frames present in two videos.

However, not all frames are equally informative and some frames might suffer from low image

quality or extreme variations due to pose, expression, and illumination. Due to the presence of

these covariates of face recognition, some frames may affect the inter-class and intra-class varia-

tions. In other words, it is highly probable that features extracted from such a frame might lead

to incorrect results. Therefore, it is important to select and utilize the high information content in

a video carefully and efficiently which makes video data more challenging as well as rewarding
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Figure 4-3: Illustrating the steps involved in the proposed face recognition algorithm.

for face recognition. To address some of these limitations and to improve overall performance, we

propose a novel video face recognition algorithm, that utilizes frame selection process, followed

by a deep learning architecture for feature extraction and matching as illustrated in Figure 4-31.

The first contribution of this research is a novel algorithm for no-reference feature-richness

based frame selection that quantifies feature-richness based on entropy [178] in the wavelet domain

and enables better selection of frames for recognition as compared to traditional no-reference bio-

metric quality measures [123, 146, 147]. The second contribution is designing a novel joint feature

learning framework which can be utilized to combine intermediate features computed in a deep net-

work. Deep learning architectures generally compute a series of intermediate features from input

data and utilize the final layer of feature only for representation and classification. In the proposed

deep architecture, we combine the intermediate representations computed by an autoencoder using

a joint representation layer. This joint representation is utilized to retain the informative features of

different granularities and is used as input to a DBM which interprets and enhances this combined

information to create a feature vector for each input face. The proposed framework models the

learned features as sparse and low-rank at the same time using `1-norm and trace-norm regulariza-

tions to improve the performance of the overall deep architecture. The learnt joint representation

is input to a neural network for classification. The effectiveness of the proposed algorithm is eval-

uated on two large publicly available benchmark databases: the YTF video [114] and PaSC video

[12].

1A preliminary version of the proposed algorithm was published in IEEE IJCB, 2014 [62].
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Figure 4-4: Feature-richness distributions for two different videos. Some of the most feature-rich
(values close to 1) and least feature-rich frames (values close to 0) are presented for illustration.
We can see that the high fidelity frames are assigned a higher feature richness score and the poor
frames which showcase artifacts such as occlusion and blur are assigned a low feature-richness
score. Note that the total number of frames in the two videos is different.

4.1 Proposed Face Recognition Algorithm

The proposed algorithm is divided into three steps: (i) frame selection, (ii) deep learning based fea-

ture extraction, and (iii) face verification using learnt representations. An overview of the proposed

algorithm is presented in Figure 4-3.

4.1.1 Entropy based Frame Selection

Depending on the frame rate and duration, a video clip of 4 − 6 seconds may contain 100-200

frames. Existing literature for video face recognition has either used all the frames, or processed

some (randomly) selected frames, or have proposed algorithms for frame selection. Processing all

the frames can result in inclusion of bad and redundant information. Liu et al. [124] proposed to

partition the video into frame clusters and select the most representative frames from each cluster

using PCA. Park et al. [204] proposed to select frames by estimating pose and motion blur informa-

tion for each frame using Active Appearance Models (AAM) and selecting frames with controlled

pose and minimal blur. Jillela et al. [97] utilized optical flow to create super-resolved frames by

using short five frame sub-sequences while avoiding the sub-sequences which demonstrate high

inter-frame motion.

The proposed algorithm presents a novel perspective towards frame selection by utilizing fea-
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ture richness as the criteria. It is our assertion that quantifying the feature richness of an image

helps in extracting the frames that have higher possibility of containing discriminatory features.

In order to compute feature-richness, first the input (detected face) image I is preprocessed to a

standard size and converted to grayscale. By performing face detection first and considering only

the facial region, we ensure that other non-face content of the frame does not interfere with the

proposed algorithm. The image is normalized using its mean and standard deviation. Thereafter,

the Discrete Wavelet Transform (DWT) of the preprocessed image I is computed as follows:

[IAp, IHo, IV r, IDg] = DWT (I) (4.1)

Here, IAp captures the approximation coefficients of the image, whereas [IHo, IV r, IDg] contain the

detail coefficients in horizontal, vertical, and diagonal sub-bands respectively. The high and low

pass filters used for decomposition depend on the type of mother wavelet used. In this research,

we have utilized a bi-orthogonal mother wavelet which is symmetric and efficiently encodes edge

features. The detail and approximation coefficients obtained using Eq. 4.1 represent the first level

DWT coefficients. Another level of DWT is applied on the approximation band, IAp, as follows:

[I ′Ap, I
′
Ho, I

′
V r, I

′
Dg] = DWT (IAp); (4.2)

Here, I ′Ap and [I ′Ho, I
′
V r, I

′
Dg] represent the second level DWT approximation and detail coefficients

of input image I respectively. DWT is useful to enable multi-resolution analysis of the given image.

While the first level DWT presents the coefficients for the finer details of the image, the second

level DWT encodes the global features while focusing less on fine details. We have observed that

with images of size 80× 100 and below, the third level DWT is unable to preserve sufficient edge

information and is not useful for frame selection. Therefore, in this research, we consider only two

levels of DWT.

For an image region, entropy signifies the variation in pixel intensity values. To quantify the

feature-richness of an image, entropy [178] is computed by using both levels of DWT coefficients.

The local entropy of each DWT band is computed by dividing each band into 3× 3 windows. On

applying the algorithm to a DWT band instead of the image, the entropy value captures the local

variations in high frequency and approximation subbands contained in the image. The entropy,
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H(κ), of an image window κ is computed.

H(κ) = −
n∑
i=1

p(κi)log2p(κi) (4.3)

where, n is the total number of pixel values, and p(κi) is the value of the probability mass function

for κi which represents the probability of pixel value κi appearing in the neighborhood. If the size

of the window κ isMκ ×Nκ then

p(κi) =
nκi

Mκ ×Nκ
(4.4)

Here, nκi denotes the number of pixels in the window with value κi. The entropy value of each

window is combined to compute the feature-richness value of a band.

HF =
ω∑
i=1

(|Hi|) (4.5)

Here, HF denotes the feature-richness score of a DWT band, ω is the number of windows in the

band andHi denotes the entropy of the ith window. The final score of image I , HF (I), is obtained

by aggregating the feature-richness values of individual bands.

HF (I) = HF (I ′Ap) +HF (I ′Ho) +HF (I ′V r) +HF (I ′Dg)

+HF (IHo) +HF (IV r) +HF (IDg) (4.6)

Given a video V , the feature-richness score of a frame fi is represented as HF (fi). Since the

score of each frame depends on the distribution of intensity values in a frame, it is important to

normalize the scores across the frames in one video. Let mi represent the feature-richness value

corresponding to the ith frame fi, it is obtained using min-max normalization.

mi =
HF (fi)−min(HF)

max(HF)−min(HF)
(4.7)

where, HF denotes all the feature-richness scores for the video V and min(HF) and max(HF)

denote the minimum and maximum values in HF, respectively. Higher values of m signify a more
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feature-rich frame. Figure 4-4 shows the feature-richness distribution for two videos of different

individuals from the YouTube Faces database [114] along with sample frames of high, average, and

low feature-richness values. Once the score of each frame is computed, adaptive frame selection

is performed to determine the optimum set of frames to represent a video.

Let σm denote the standard deviation and µm denote the mean pertaining to the set of feature-

richness values of the video V . In order to decide which frames are selected for verification, ϕi is

computed corresponding to each frame fi.

ϕi =

 1, if mi ≥ µm + σm
2

0, otherwise

 (4.8)

To perform adaptive frame selection, each frame with ϕ = 1 is selected from a given video.

These frames are utilized for feature extraction using the deep learning architecture described in

the next section.

4.1.2 Deep Learning Framework for Feature Extraction

Once the feature-rich frames are obtained, the next step involved feature extraction and matching.

Several state-of-the-art algorithms in recent literature use convolutional neural network. In this

research, we propose a SDAE and DBM based algorithm that can yield good results with limited

training data while simultaneously being able to utilize more training data to further improve per-

formance. First, we briefly present an overview of SDAE and DBM followed by the proposed

architecture.

Stacked Denoising Autoencoder and Deep Boltzmann Machines

An autoencoder [220], [158] maps the data x ∈ Rα into feature (latent representation) f using a

deterministic (encoder) function gΘ such that,

f = gΘ(x) = s(w · x + ∆) (4.9)

where, Θ = {w,∆} is the parameter set, s represents the sigmoid, w is the α′ × α weight matrix,

and ∆ is the offset vector of size α′. Feature f can be mapped to feature vector x̂ of dimensionality
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α using a decoder function g′Θ′ such that,

x̂ = g′Θ′(f) = s(w′ · f + ∆′) (4.10)

Here, Θ′ = {w′,∆′} is the decoder parameter set such that arg min
w,w′

||x − x̂||22. The parameters

are optimized by utilizing the unsupervised training data. Denoising autoencoder [158], a variant

of autoencoder, operates on the noisy input data xn and attempts to reconstruct x̂ such that f =

gΘ(x̂n) = s(w · xn + ∆). It is observed that this variant is robust to noisy data and has good

generalizability. Further, adding sparsity constraint helps in learning useful features and the cost

function is updated as,

||x− x̂||22 + β
∑
j

KL(ρ ‖ ρ̂j) (4.11)

where, ρ is the sparsity parameter, ρ̂j is the average activation of the jth hidden unit,KL(ρ ‖ ρ̂j) =

ρ log ρ
ρ̂j

+(1−ρ) log 1−ρ
1−ρ̂j is theKL-divergence, and β is the sparsity penalty term. KL divergence

measures the difference between a true probability distribution and its approximation. By setting

the value of ρ to a small value (such as 0.05), the number of data points for which the jth unit is

activated can be forced to be low, which introduces sparsity of features. Smaller values of ρ and

larger values of β promote more sparse features. However, a higher value of β conversely reduces

the importance of accurate reconstruction. The values of ρ and β are learnt during the training

and validation stages to achieve a trade-off between reconstruction performance and learning more

generalizable features. If the autoencoders are stacked in a layered manner, they are called as

stacked autoencoders and form a deep learning architecture to discover "patterns" in the input

data.

Deep Boltzmann Machine (DBM) is an undirected graphical model, a deep network architecture,

with symmetrically coupled binary units [179]. It is designed by layer-wise training of RBM

and stacking them together in an undirected manner. A RBM has stochastic visible and hidden

variables which are connected and the energy function is defined as:

E(v, h; θ) = −
D∑
i=1

F∑
j=1

Wijvihj −
D∑
i=1

bivi −
F∑
j=1

ajhj (4.12)
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Here, v ∈ {0, 1}D denotes the visible variables and h ∈ {0, 1}F denotes the hidden variables,

respectively. The model parameters are denoted by θ = {a,b,W}. Wij denotes the weight of the

connection between the ith visible unit and jth hidden unit and bi and aj denote the bias terms of

the model. For real valued visible variables such as image pixel intensities, generally, Gaussian-

Bernoulli RBMs are utilized and the energy is defined as:

E(v, h; θ) = −
D∑
i=1

vi
σi

F∑
j=1

Wijhj −
D∑
i=1

(vi − bi)2

2σ2
−

F∑
j=1

ajhj (4.13)

Here, v ∈ RD denotes the real-valued visible vector and θ = {a,b,W, σ} are the model param-

eters. A single Gaussian-Bernoulli RBM can learn a representation of the input data. However,

multiple such RBMs can be stacked in a layer-wise manner to learn increasingly complex repre-

sentations of data in the form of a DBM. In this research, a three layer DBM is utilized with a

greedy learning approach [54]. A three layer DBM comprised of Gaussian-Bernoulli RBMs can

learn complex representations of a real-valued input vector v ∈ RD using a sequence of layers of

hidden units h(1), h(2), and h(3). The first layer connects the visible units to the first layer of hidden

units. Thereafter, subsequent layers connect the hidden units of one layer to the hidden units of

the other, causing the hidden units of a layer to act as the visible units for the next layer and so on.

The energy of this DBM can be defined as:

E(v,h; θ) = −
D∑
i=1

F1∑
j=1

W
(1)
ij

vi
σi
h

(1)
j −

F1∑
j=1

F2∑
l=1

W
(2)
jl h

(1)
j h

(2)
l

−
F2∑
l=1

F3∑
m=1

W
(3)
lm h

(2)
l h(3)

m −
D∑
i=1

(vi − bi)2

2σ2

−
F1∑
j=1

a
(1)
j h

(1)
j −

F2∑
l=1

a
(2)
l h

(2)
l −

F3∑
m=1

a(3)
m h(3)

m (4.14)

Here, D,F1, F2, F3 are the number of units and visible and hidden layers, and θ = {W(1),

W(2),W(3),b, a(1), a(2), a(3), σ} is the set of model parameters representing visible-to-hidden and

hidden-to-hidden symmetric connection weights, bias terms, and the Gaussian distribution stan-

dard deviation, respectively. The probability assigned by this model to a visible vector v is given
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Figure 4-5: Proposed deep learning architecture for facial representation: from input layer (image),
two hidden layer representation are computed using SDAE encoding function. A joint represen-
tation is then obtained which combines the information from two SDAE encoding layers. Using
joint representation as input, a DBM is used for computing a final feature vector.

by the Boltzmann distribution:

P (v; θ) =
1

Z(θ)

∑
h

exp
(
−E

(
v,h(1),h(2),h(3); θ

))
. (4.15)

Here, Z(θ) is the normalizing constant. If only W(1) is considered, the derivative of the log-

likelihood with respect to the model parameters is:

δlogP (v; θ)

δW(1)
= EPdata

[vh(1)T ]− EPmodel
[vh(1)T ] (4.16)

Here, EPdata
[·] denotes the expectation with respect to the data distribution and EPmodel

[·] is the

expectation with respect to the distribution defined by the DBM as in Eq. (4.15). Similar deriva-

tives are obtained for W(1) and W(2), with the product vh(1) replaced by h(1)h(2) and h(2)h(3)

respectively.

101



Figure 4-6: Joint learning framework: features learned from the first and second levels of autoen-
coder, i.e., f1 and f2 are given as input to DBM to learn the joint representation J.

Unsupervised Joint Feature Learning

SDAE and DBM both individually learn the useful (intermediate) representation of input data.

While the SDAE learns two layers of image-level features that can be best utilized to reconstruct

the original input, in this research, we propose a joint representation layer that learns the important

features from each constituent layer. This joint layer representation combines two different levels

of granularities in features to obtain a better representation. Further, this joint feature is used

as input to a DBM to obtain the final representation. While SDAE and joint representation are

robust to noise in the input data, DBM learns the internal complex representations probabilistically.

Therefore, it is our assertion that the proposed architecture should be able to produce a robust

representation compared to using SDAE or DBM in isolation. Further, DBM is able to interpret

the features learned by the joint representation and combine each of its components as required to

obtain an enhanced higher level discriminative representation, especially after fine-tuning.

Let the size of the input data be M × N ; in the proposed architecture, each layer of SDAE is

one-fourth the size of its previous layer. Layer-by-layer greedy approach [53] with stochastic gra-

dient descent is utilized to train the SDAE followed by fine-tuning with back-propagation method.

Intermediate representations obtained using the 2-hidden layer SDAE are further combined to ob-

tain a joint representation as illustrated in Figure 4-5. The two layers of size M
2
× N

2
and M

4
× N

4
are

utilized as input and one joint layer of size 2 ×
(
M
4
× N

4

)
is learned. Let f1 be the representation
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learned by the first layer of SDAE and f2 be the feature learned by the second layer of SDAE, the

joint representation J can be learned using Eq. (4.17).

J = G(f1, f2) (4.17)

Here, G is the joint learning function to obtain J. In this research, using encoder-decoder approach,

we defined the cost function associated with Eq. (4.16) as:

argmin
Φ

(‖ f1 − f ′1 ‖2
2 + ‖ f2 − f ′2 ‖2

2 +R) (4.18)

where, Φ represents the set of all the variables to be learnt and R is a regularizer. For ease of

explanation, we first present the formulation with linear activation. Eq. (4.17) can be written as,

J =W1f1 +W2f2 (4.19)

Using Eq. (4.18), the associated cost can be written as,

argmin
Φ

(‖ f1 −W ′1W1f1 −W ′1W2f2 ‖2
2 +

‖ f2 −W ′2W2f2 −W ′2W1f1 ‖2
2 +R) (4.20)

As shown in Figure 4-6, this approach learns the weights Φ = {W1,W2,W ′1,W ′2} to obtain

the joint representation J. In a similar fashion, non-linear cost function can be written as (for

simplicity, bias terms are omitted),

argmin
Φ

(‖ f1 − s(W ′1[s(W1f1)])− s(W ′1[s(W2f2)]) ‖2
2 +

‖ f2 − s(W ′2[s(W2f2)])− s(W ′2[s(W1f1)]) ‖2
2 +R) (4.21)

Adding `2-norm regularization term on W1,W2 and dropout [190] on the joint representation

network, Eq. (4.21) can be written as,
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argmin
Φ

(
‖ f1 − s(W ′1[s(W1f1)])− s(W ′1[s(W2f2)]) ‖2

2 +

‖ f2 − s(W ′2[s(W2f2)])− s(W ′2[s(W1f1)]) ‖2
2 +

(λ1 ‖ W1 ‖2
2 +λ2 ‖ W2 ‖2

2)
)
dropout

(4.22)

The joint representation combines abstract and low-level features obtained from SDAE encod-

ing layers and is used as input to a three hidden layer DBM, i.e. J acts as the visible vector. Similar

to Eq. (4.14), the energy of this DBM is represented as:

E(J,h; θ) = −
D∑
i=1

F1∑
j=1

W
(1)
ij

Ji
σi
h

(1)
j −

F1∑
j=1

F2∑
l=1

W
(2)
jl h

(1)
j h

(2)
l

−
F2∑
l=1

F3∑
m=1

W
(3)
lm h

(2)
l h(3)
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Inspired from [163, 181], we believe that the learned weight matrix can be modeled as sparse

and low rank [223] at the same time and therefore, a regularization approach incorporating both

of these can improve feature learning. Hence, we extend the loss function of DBM (RBM) by

introducing trace-norm regularization technique.

Let L be the loss function of RBM (DBM) with the energy function defined in Eq. (4.23).

Along with `1-norm, trace-norm is added to the loss function as follows:

Lnew = L+A ‖ W ‖1 +B ‖ W ‖τ (4.24)

where ‖ · ‖1 is the `1-norm, and ‖ · ‖τ is the trace-norm, andA, B are the regularization parameters

which control sparsity and low-rankness. In general, elastic net regularization (‖ · ‖1 + ‖ · ‖2)

[245] may be used; however in this formulation, we propose to utilize trace-norm in conjunction

with `1-norm for learning representation in RBM (DBM). While `1-norm induces sparsity in the
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weight matrix, trace-norm induces features to have low-rankness. The weight matrix learned by

the updated loss function has the benefits of both the regularizations and as shown in experimental

results, improves the overall verification performance.

The size of the first two layers of the DBM is set to 2 ×
(
M
4
× N

4

)
and the final layer is set

to MN
4

. A pre-training approach [54] combined with generative fine-tuning [79] is followed to

train the DBM. The final hidden layer provides a complex representation of the input which can

be utilized for classification.

4.1.3 Face Verification using Feature Richness and Deep Learning based

Representation

As shown in Figure 4-3, the proposed framework utilizes the frame selection, feature extraction,

and classification architecture for video based face recognition. During training, the stack of SDAE

joint representation and DBM is utilized for facial representation. Let Igallery and Iprobe be the two

detected, preprocessed and geometrically normalized face images to be matched. These images

are resized to M × N (in our experiments, it is 80 × 100) and converted into vector form. The

trained architecture is used to extract the features from Igallery and Iprobe, respectively. According

to the previous discussion, the input to the feature extraction module is the MN size image vector

and the output is a vector of length
(
MN

4

)
. Features are extracted for each selected frame in a video

and given as input to a five layer neural network (one input layer - 3 hidden layers - one output

layer) for classification (verification). The neural network classifier is trained to verify a pair of

input images (frames) input as a concatenated feature vector of size MN
2

, using all the frames in

the training videos. The output of the network is a scalar match score.

During testing, the most feature-rich frames are selected from each of the gallery and probe

videos, and matched using the proposed feature extraction and matching algorithm. The output

of neural network (classifier) is undecimated and match scores are computed. The videos to be

matched may have significant variations in quality and feature-richness. It has been shown in

literature that if the images are of very different quality, then the matching performance may de-

teriorate [17]. Therefore, we perform a post-processing step to select frame-pairs with similar

feature-richness and discard the remaining pairs. Let V1 and V2 be the two videos to be matched,
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Table 4.2: Details of the YTF and PaSC databases.

Database
No. of Avg. no. of

Subjects Videos Videos per subject Frames per video
YouTube Faces 1595 3425 2.15 181.3
PaSC (Handheld) 265 1401 4 to 7 234.8
PaSC (Control) 265 1401 4 to 7 239.0

a pair-wise feature-richness value is computed for each possible frame-pair using the algorithm

explained in Section 4.1.1.

[
m1,1m1,2;m2,1m2,2; ...,mi,1mj,2; ...,mN1,1mN2,2

]
(4.25)

mi,1mj,2 denotes the product of feature-richness value associated with the pair formed by the ith

frame from V1 and the jth frame from V2. N1 and N2 denote the total number of selected frames

from V1 and V2 respectively. Let σ′m be the standard deviation and µ′m be the mean pertaining to

the set of the pair-wise feature-richness values for all pairs possible between V1 and V2. To finally

select the pairs for decision making, following equation is utilized:

Υi,j =

 1, if mi,1mj,2 ≥ µ
′
m + σ

′
m

2

0, otherwise

 (4.26)

If the combined score of a pair fi,1fj,2 is more than the threshold, i.e., if Υi,j = 1, then this

pair is considered for computing the match score. While pairs with Υi,j < 1 are not considered for

verification, other selected frame-pairs are weighted according to the joint feature-richness value.

For frame-pair fi,1fj,2, this weight is computed as Υi,jmi,1mj,2. A pair where both participating

frames are highly feature-rich is assigned a higher weight compared to other combinations. Here,

facial coordinates obtained during face detection are used to ensure that frontal-only and semi-

profile images are not matched with profile faces (i.e, when pose variations are very large). The

final match score is computed in the form of a weighted sum of scores obtained from each partic-

ipating frame-pair. The undecimated/unthresholded network (classifier) output of these pairs are

combined using weighted sum rule [175] and a verification threshold is applied to provide the final

decision of accept or reject (same or not same) at a fixed false accept rate.
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4.2 Results and Analysis

In order to evaluate the efficacy of the proposed algorithm, face verification2 experiments are per-

formed on two popular video benchmark databases: YouTube Faces [114] and the Point and Shoot

Challenge [12]. Three different experiments are performed to demonstrate the efficacy of the pro-

posed algorithm.

• compare the performance of state-of-the-art results reported on these databases with the

proposed algorithm,

• evaluate the effectiveness of individual components of the proposed algorithm, and

• evaluate the generalization capability by evaluating the performance with cross database

training and testing sets.

4.2.1 Database and Experimental Protocol

The YouTube Faces database contains 3,425 videos downloaded from YouTube belonging to 1,595

individuals. The PaSC database contains 1,401 handheld and 1,401 control (high resolution) videos

pertaining to 265 individuals. Videos in the PaSC database capture individuals in various indoor

and outdoor locations while performing a predefined activity. The details of both the databases are

summarized in Table 4.2. Both YouTube Faces database [114] and PaSC database [12] have pre-

defined experimental protocols. For the YouTube faces database, we have followed the restricted

protocol which consists of 10 splits, each containing 250 genuine and 250 impostor pairs. No in-

formation outside of these splits is used during any stage of the evaluation. The results are reported

with 10 fold cross validation, 9 splits are used for training and one split for testing.

The PaSC database contains videos from a handheld camera of low resolution and a control

camera of high resolution. The handheld-to-handheld experiment evaluates the accuracy of an

algorithm when matching videos of low resolution, whereas the control-to-control evaluates the

accuracy for high resolution videos. The experiments are performed for both handheld-to-handheld

and control-to-control protocols of video face recognition. Training is performed on a separate set

2In biometrics, recognition has two components: verification (1:1 matching) and identification (1:N) matching. In
this research, we have interchangeably used verification and recognition to report 1:1 matching performance.
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of training videos provided with the database and the signature sets already provided with the PaSC

database are used to select the pairs for testing.

For both databases, the training data is divided into two parts: first part is utilized as unla-

beled data for training the proposed joint representation model and second part is used for super-

vised training. Data augmentation with different image processing operations such as mirror/flip,

color/grayscale, and jittering, are also applied to increase the training database size. After training,

the proposed algorithm is evaluated on the testing data. The metadata and annotations provided

with each database are used to perform face detection and pose detection (to determine pose) as

applicable. Receiver Operating Characteristic (ROC) curves are computed for each experiment

and the verification accuracies are reported at multiple false accept rates.

4.2.2 Experimental Results

Results on YouTube Faces Database

ROC curves of existing algorithms and the proposed face recognition algorithm on the YouTube

faces database are shown in Figure 4-7. It is evident that the proposed algorithm not only achieves

high accuracy at low FARs, but also achieves state-of-the-art performance of 0.93 Genuine Accept

Rate (GAR) at equal error rate, without outside training data. We next analyzed selected top-

performing algorithms to understand their performance at 0.01 FAR which is more pragmatic with

respect to real world scenarios. Since the absolute performance of algorithms has improved overall,

it is easier to compare their performance at 0.01 FAR as opposed to EER to determine which

algorithm has better performance. This can be seen in Figure 4-2 as well where the difference

between the top two algorithms at EER is just 2% and they seem to be similarly accurate but the

delta increases to 25% when performance at 0.01 FAR is considered and it is easier to compare

them. As shown in Figure 4-8, the proposed algorithm substantially outperforms these algorithms

at lower FARs. At 0.01 FAR, the proposed algorithm achieves GAR of 0.79 whereas, the next best

GAR is 0.54 by DeepFace3. It is our assertion that selection of feature-rich frames and the proposed

joint representation architecture helps to yield state-of-the-art face verification performance.

3Since the ROC curve of FaceNet is not available, the results of FaceNet at different FARs could not be reported.
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Results on PaSC Database

As explained in Section 3.1, Point and Shoot Challenge database has two protocols: handheld and

control. Table 4.3 summarizes the results of the proposed algorithm along with existing results re-

ported on both the protocols. Beveridge et al. [12] reported the performance of PittPatt and Local

Region Principal Component Analysis (LRPCA) on both handheld and control subsets. The results

show that at 0.01 FAR, the GAR of the proposed algorithm is more than twice of PittPatt. At 0.01

FAR, the proposed algorithm yields 0.93 and 0.96 GAR on the handheld and control subsets, re-

spectively. Beveridge et al. [11], [13] have reported the results of the PaSC Video Face and Person

Recognition Competitions. Table 4.3 shows the genuine accept rates of the algorithms reported

in the competitions along with the results of the proposed algorithm. These results show that the
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Figure 4-7: ROC curves comparing the verification performance of the proposed algorithm with
existing results reported on the YTF database webpage.
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Figure 4-8: Summarizing the verification performance of the proposed algorithm and state-of-the-
art algorithms on the YouTube Faces database.

proposed algorithm yields at least 34% higher verification accuracy than existing algorithms that

have not utilized external data for training.

Impact of Frame Selection

Frame selection is an integral component of the proposed algorithm. The algorithm selects feature-

rich frames from the given video and utilizes them for video to video matching. To evaluate

the effectiveness of the proposed frame selection algorithm, multiple experiments are performed,

including comparison with standard image quality measures.

Ideally, if the frames are selected optimally, then they should yield the best verification perfor-

mance. To evaluate this, we have compared the verification performance of the proposed feature-

rich frames with only frontal frames and when frames are selected randomly. Figure 4-9 shows

sample frames from the PaSC database. It illustrates randomly selected frames, frontal frames,

most feature-rich frames and the least feature-rich frames as well. It can be observed that the most

feature-rich frames are distinct in nature and of good quality whereas, the least feature-rich frames
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Table 4.3: Verification rates on the PaSC database. Results of existing algorithms are reported
from respective references.

Algorithm
GAR at 0.01 FAR

Handheld Control
ISV-GMM [13] 0.05 -
LBP-SIFT-WPCA-SILD [13] 0.09 -
PLDA-WPCA-LLR [13] 0.19 -
Eigen-PEP [13] 0.26 -
LRPCA Baseline [12] 0.08 0.10
PittPatt Baseline [12] 0.38 0.49
Surrey [11] 0.13 0.20
SIT [11] 0.31 0.35
Uni-Lj [11] 0.33 0.39
UTS [11] 0.38 0.48
CAS [11] 0.59 0.58
MDLFace [62] 0.89 0.94
Proposed 0.93 0.96

computed using the proposed frame selection algorithm do not contain very distinguishing infor-

mation and are of poor quality. It is also interesting to note that the most feature-rich frames are

not necessarily the frontal frames. The experiments are performed with both YouTube and PaSC

databases and the results are presented in Figure 4-10. It is evident that selecting the most feature-

rich frames provides the best performance across all three protocols. Correlating these images with

the accuracies re-emphasizes our hypothesis that frontal frames are not always optimal and hence

do not necessarily provide the best verification results.

We also compare the performance of the proposed frame selection approach with frame se-

lection based on no-reference image quality metrics namely BRISQUE [146], NIQE [147], and

Spatial-Spectral Entropy-based Quality (SSEQ) [123]. The source codes provided by the respec-

tive authors have been utilized for each of these approaches. Similar to the proposed approach,

frames are selected based on the quality measure and used in the proposed framework. We have

also evaluated the performance of our preliminary frame selection approach [62] and the verifica-

tion results obtained with each of the frame selection algorithms and the proposed face recognition

algorithm are presented in Table 4.4. We observe that using any of the existing quality assessment

algorithms results in a noticeable decline in the verification performance. On the YouTube faces
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Figure 4-9: Sample frames from the PaSC database: (a) random frames, (b) frontal frames, (c)
most feature-rich frames, and (d) least feature-rich frames.

database, the performance varies from 0.62 to 0.79 GAR, whereas on the handheld subset of the

PaSC database the performance varies from 0.82 to 0.93 GAR by only changing the frame selection

approach. The proposed feature-richness based frame selection approach consistently outperforms

the quality based measures on all the protocols of both the databases. This experiment suggests that

high image quality may not represent high feature richness and can affect the overall verification

performance. This is consistent with existing observations in biometrics quality literature [17]. We

further analyze the performance of the proposed algorithm with fixed number of frames i.e., with-

out adaptive approach, as well as without using any frame selection. As shown in Table 4.4, with

all frames, top-25 and top-50 feature-rich frames, the verification accuracies are relatively lower.

This shows the usefulness of the “adaptive" nature of the proposed algorithm. These experiments

also validate our hypothesis that not all frames are useful for video face recognition.

Analysis of Deep Learning Architecture

Individual components of the proposed deep learning framework are experimentally evaluated to

determine the efficacy of the algorithms. In this experiment, only one component is changed and
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Figure 4-10: ROC curves comparing the verification performance of the proposed algorithm with
frame selection approaches on the two databases.
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Table 4.4: Comparing the results of the proposed frame selection algorithm with existing image
quality assessment algorithms and random frame selection.

Algorithm
GAR at 0.01 FAR

Frame Selection
YTF

PaSC PaSC
Handheld Control

All 0.74 0.89 0.92
BRISQUE [146] 0.62 0.82 0.84

Image Quality NIQE [147] 0.62 0.83 0.82
SSEQ [123] 0.62 0.82 0.82

Memorability MDLFace [62] 0.69 0.89 0.94
Proposed 25 0.75 0.91 0.94
Feature 50 0.77 0.91 0.93
Richness Adaptive 0.79 0.93 0.96

the remaining components of the proposed framework are left unchanged and only the feature

extractor module is varied across different experiments. These components include: (a) single

layer denoising autoencoder, (b) two layer SDAE, (c) DBM, and (d) SDAE+DBM without the

proposed joint representation layer.

Table 4.5 summarizes the GAR at 0.01 FAR for each of these components on both YouTube

and PaSC databases (using feature-rich frames). From the results, it is evident that both SDAE and

DBM are required in the proposed architecture to extract meaningful representation for face recog-

nition. Using only DBM provides better performance than only using a 2-layer SDAE. However,

neither DBM nor SDAE is able to achieve even 50% verification accuracies individually. A signifi-

cant improvement is observed when SDAE and DBM are stacked sequentially. The proposed joint

representation further improves the performance of the architecture, resulting in an improvement

of up to 0.18 in GAR for the YouTube faces database. As mentioned previously, the joint repre-

sentation combines different layers of feature granularity and from the results, it is evident that

it is able to further improve upon the features learned by the deep architecture. This observation

strengthens the requirement for the additional layer of learning after SDAE before the features are

utilized by DBM.

An additional experiment is performed to evaluate the efficacy of the addition of trace-norm

regularization. For this experiment, `2-norm, `1-norm, elastic net (`1 + `2 norm), trace-norm (`τ )
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Table 4.5: Analyzing the performance of individual components of the proposed algorithm for face
recognition.

Modified Architecture
GAR at 0.01 FAR

YouTube
PaSC

Handheld Control
1 Layer DAE only 0.21 0.09 0.12
2 Layer SDAE only 0.39 0.28 0.39
DBM only 0.41 0.48 0.49
SDAE+DBM 0.61 0.87 0.93
Proposed: SDAE+DBM 0.79 0.93 0.96
with joint representation

Table 4.6: GAR for cross database experiments at 0.01 FAR.

Training Set
Testing Set

YTF PaSC-Handheld PaSC-Control
YTF 0.79 0.72 0.78
PaSC 0.43 0.93 0.96
PaSC + YTF 0.83 0.96 0.97

only, and (`1 + `τ ) are evaluated in the proposed framework (as shown in Eq. 4.24). For these

regularizers, we observe that (`1 + `τ ) yields the best results followed by elastic net. Incorporating

single norms i.e., `1-norm and `2-norm only, yield almost similar performance and are 1-2% (at

1% FAR) less than (`1 + `τ ) regularization.

The number of parameters in a deep neural network is determined by the weights and bias

of each layer. The proposed algorithm involves a total of 22.5 million parameters whereas, other

deep architectures such as Deepface [222] contain many more parameters (e.g. 120 million for

Deepface). We observe that even with a relatively small number of parameters, the proposed

algorithm achieves higher performance than Deepface. While architectures proposed in [160] and

[183] perform better on the YouTube database than the proposed algorithm, both involve a much

higher number of parameters and have utilized large amounts (2.6 million and 200 million images

respectively) of training data (the results are reported on the unrestricted setting of YouTube). It is

to be noted that for these experiments, the proposed algorithm is not trained with external training

data.
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Table 4.7: Comparing the verification accuracy of recent CNN based methods with the proposed
algorithm.

Algorithm External
Data

Layers YTF (at
EER)

PaSC (at 1% FAR)
Control Handheld

Trunk-Branch Ensemble
CNNs with Batch Normal-
ization [42]#

2.68
Million$

18 + 11 +
11∗

94.9 98.0 97.0

VGG Face [160]+ 2.62
Million

21 97.4 91.3 87.0

GoogLeNet [196] features
with aggregation [227]

3 Mil-
lion

22 95.5 - -

CNN-3DMM Estimation
[201]

0.49
Million

101 88.8 - -

Proposed SDAE-DBM Joint
Representation

No 9 93.4 95.9 93.1
YTF +
PaSC

9 95.0 96.6 96.1

2.48
Million

9 95.4 98.1 97.2

#Results on YTF are obtained from [42], results on PaSC are obtained from [182]. $2.68 million
images obtained by augmenting 0.49M original images from the CASIA-WebFace database [229]

using horizontal flipping and image jittering as explained in [42]. ∗The method uses a primary
network with 18 layers and two secondary networks with 11 layers each. +PaSC results are

obtained from [42].

Cross Database Experiments

The generalizability of an algorithm can be evaluated in situations where the training and testing

data belong to different databases, i.e, cross-database experiments. To evaluate the effectiveness of

the proposed algorithm in cross database scenarios, we have performed three different experiments:

• Training and testing databases belong to the same database. For instance, training with

YouTube faces train set and testing with YouTube faces test set.

• Training and testing databases belong to different database. For instance, training with

YouTube faces train set and testing with PaSC test set.

• Training database is from multiple databases whereas, the testing is performed with a single

database. For instance, training with both YouTube faces and PaSC train sets and testing on

YouTube faces test set.
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The results of all three experiments are presented in Table 4.6. On training with the YouTube

Faces database and testing with the PaSC database, the proposed algorithm yields 0.72 GAR at

0.01 FAR which is considerably better than the results of many existing algorithms. On the other

hand, the performance on the Youtube faces database suffers heavily when training data is taken

only from the PaSC database. This may be due to the fact that the overall quality of faces in the

Youtube video faces database is lower than the training set of the PaSC challenge database. Since

the representation module has not seen low quality frames and noisy faces during training, it is

unable to perform well on the YouTube database. On combining the training set from both the

databases, i.e. PaSC + YTF training, the accuracies of both testing cases are improved. This is a

well understood phenomena in deep learning - more training data is useful in improved represen-

tation and thereby achieving higher accuracies.

4.2.3 Comparison with Recent CNN based Algorithms

We next compare the performance of the proposed algorithm with some recently proposed CNN

based algorithms on the benchmark protocols of the YTF and PaSC face databases. As shown in

Table 4.1, convolutional neural networks have demonstrated state-of-the-art results in deep learn-

ing based video face recognition; however, they generally use external data for training. Therefore,

we have reported the results of the proposed algorithm in three settings: (i) without any external

training data, (ii) using YTF and PaSC for training (as discussed in Section III-B), and (iii) using

external training data of 2.48 million (with augmentation).

Table 4.7 summarizes the results of the proposed and existing algorithms. Results of existing

algorithms are reported directly from the associated publications, and the results for [160] are

taken from [42]. Since we have not manually pruned the PaSC database for falsely detected faces,

we report the corresponding performance values for [42]. We observe that even without utilizing

any external data, the proposed algorithm is able to achieve comparable accuracies. Using large

training data, the accuracy improves and with 2.48 million training data, the verification rate is

higher compared to existing algorithms. In terms of computational requirements, on a 32 core

server with Tesla K80 Graphics Processing Unit (GPU) with 512 GB RAM, the proposed algorithm

requires approximately 29 hours to train with external data. Once the model is trained, it requires
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about 2 seconds to match two videos.

On analyzing the architectures, we observed that in order to optimize the network for a given

problem, a deep CNN architecture requires a large number of layers, which results in a large

number of parameters to optimize. This requires large number of training data so that all the

parameters of the network can be estimated without overfitting. The proposed algorithm achieves

comparable performance with a network of lesser depth (9 layers as compared to 22 layers in [227])

with relatively less training data. We also assert that the proposed architecture can be applied to

solve other challenging problems where relatively less labeled data is available such as newborn

face recognition [16].

4.3 Summary

Verifying identities in videos has several applications in social media, surveillance, and law en-

forcement. Existing approaches have achieved high verification accuracies at equal error rate;

however, achieving high performance at low false accept rate is still an arduous research chal-

lenge. In this research, a novel video face verification algorithm is proposed which utilizes frame

selection and deep learning based feature representation. The proposed algorithm starts with adap-

tively selecting feature-rich frames from input videos using wavelet decomposition and entropy.

The proposed deep learning architecture which combines SDAE joint representation with DBM is

used to extract features from the selected frames. The extracted representations from two videos

are matched using a feed forward neural network. The results are demonstrated on the challenging

PaSC and YTF databases. The comparison with state-of-the-art results on both the databases show

that the proposed algorithm provides the best results on both the databases at low false accept rate,

even with limited training data. Apart from the benchmark protocols of both the databases, several

additional experiments have been performed to show the effectiveness of the proposed contribu-

tions: (i) joint feature learning in an autoencoder, (ii) sparse and low rank regularization in DBM,

and (iii) combination of SDAE and DBM in the proposed architecture.
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Chapter 5

Unravelling Robustness of Deep Learning

based Face Recognition Against Adversarial

Attacks

Deep learning paradigm has seen significant proliferation in face recognition due to the conve-

nience of obtaining large training data, availability of inexpensive computing power and memory,

and utilization of cameras at multiple places. Several algorithms such as DeepFace [222], DeepID

[192], FaceNet [183], and Liu et al. [122] are successful examples of the coalesce of deep learning

and face recognition. However, it is also known that machine learning algorithms are susceptible to

adversaries which can cause the classifier to yield incorrect results. One class of such adversaries

is spoofing based adversaries which use precaptured face images or videos to pass an attacker off

as a different individual [4, 140]. This research focuses on exploring and handling the other class

of attack where the accuracy of the targeted system is compromised by using adversarial input

images. Most of the time these adversaries are unintentional and are in the form of outliers. Re-

cently, it has been shown that fooling images can be generated in such a manner where humans

can correctly classify the images but deep learning algorithms misclassify them [60], [151]. Such

images can be generated via evolutionary algorithms [151] or adversarial sample crafting using the

fast gradient sign method [60]. Sharif et al. [185] explored threat models by creating perturbed

eye-glasses to fool face recognition algorithms. An adversarial attack on face recognition is not

acceptable as face biometric gets used in many high security applications such as passports, visa,

119



VGG = 0.23, 
OF = 0.2
Genuine!

VGG = 0.7, 
OF = 2.4
Impostor!

VGG = 0.5, 
OF = 0.07
Genuine!

VGG = 0.85, 
OF = 2.08
Impostor!

VGG = 0.9, 
OF = 2.8
Impostor!

VGG = 0.6, 
OF =  0.24
Genuine!

VGG = 1.0, 
OF = 2.9
Impostor!

VGG = 0.28, 
OF = 0.56
Genuine!

Add distortionAdd distortion

Add distortion

Original 
mated 
pair

Original 
non-mated 
pair

Add distortion

Add distortion

Attacker 
created a 
false reject

Attacker 
created a 
false accept

Figure 5-1: We show that deep learning based OpenFace and VGG can be deceived even by image
processing operations that mimic real world distortions.

and other law enforcement documents.

It is our assertion that it is not required to attack the system with sophisticated learning based

attacks; attacks such as adding random noise or horizontal and vertical black grid lines in the

face image cause reduction in face verification accuracies. Samples shown in Figure 5-1 show a

glimpse of the effect of image processing operations on two state-of-the-art deep learning based

face recognition algorithms. To the best of our knowledge, this is the first reported research on

finding singularities in deep learning based face recognition engines along with detection and

mitigation of such attacks. We believe that being able to not only automatically detect but also

correct adversarial samples at runtime is a crucial ability for a deep network that is deployed for

real world applications. With this research, we aim to present a new perspective on potential attacks

as well as a different methodology to limit their performance impact beyond simply including

adversarial samples in the training data.

The objective of this research is three-fold: (i) we demonstrate that the performance of deep

learning based face recognition algorithms can be significantly affected due to adversarial attacks -

both image processing based adversarial attacks and adversarial samples generated in context to the

recognition architecture. (ii) The first key step in taking countermeasures against such adversarial

attacks is to be able to reliably determine which images contain such distortions. We propose and

evaluate a methodology for automatic detection of such attacks using the response from hidden

layers of the DNN. (iii) Once identified, the distorted images may be rejected for further processing

or rectified using appropriate preprocessing techniques to prevent degradation in performance. To
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Table 5.1: Literature review of adversarial attack generation and detection algorithms.

Adversary Authors Description

Generation

[197] L-BFGS: L(x+ ρ, l) + λ||ρ||2 s.t. xi + ρi ∈ [bmin, bmax]
[60] FGSM: x0 + ε ∗ (OxL(x0, l0)
[113] I-FGSM: xk+1 = xk + ε ∗ (OxL(x0, l0)
[159] Saliency Map: l0 distance optmization
[149] DeepFool: for each class, l 6= l0,minimize d(l, l0)
[22] C & W: lp distance metric optimization
[148] Universal: Distribution based perturbation
[173] Blackbox: Uniform, Gausaaian, Salt and Pepper, Gaussian Blur, Contrast

Detection

[70] Statistical test for attack and genuine data distribution
[59, 145] Neural network based classification
[51] Randomized network using Dropout at both training and testing
[14] PCA based dimensionality reduction algorithm
[120] Quantization and smoothing based image processing
[128] Quantize ReLU output for discrete code + RBF SVM
[36] JPEG compression to reduce the effect of adversary

address this challenge without increasing the failure of process rate (by rejecting the samples),

the third contribution of this research involves a novel technique of selective dropout in the DNN

to mitigate these adversarial attacks. While we have showcased results with multiple deep face

networks in this research, we have used VGG to report the detection and mitigation results for

DeepFool and universal adversarial perturbations since it is the only network for which the authors

have provided pre-computed models.

5.1 Adversarial Attacks on Deep Learning based Face Recog-

nition

In this section, we discuss the proposed adversarial distortions that are able to degrade the perfor-

mance of deep face recognition algorithms. Let x be the face image input to a deep learning based

face recognition algorithm and l be the output class label (in case of identification, it is an identity

label and for verification, it is same or different). An adversarial attack function a(·), when applied

to the input face image, falsely changes the predicted identity label. In other words, if a(x) = l′

where, l 6= l′, then a is a successful adversarial attack on the network. While adversarial learning

has been used in literature to showcase that the function a(·) can be obtained via optimization
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Figure 5-2: Sample images representing the (b) grid based occlusion (Grids), (c) most significant
bit based noise (xMSB), (d) forehead and brow occlusion (FHBO), (e) eye region occlusion (ERO),
and (f) beard-like occlusion (Beard) distortions when applied to the (a) original images. (g) is the
universal perturbed [148] images of PaSC and MEDS databases.

based on network gradients, in this research we explore a different approach. We evaluate the

robustness of deep learning based face recognition in the presence of image processing based dis-

tortions. Based on the information required in their design, these distortions can be considered at

image-level or face-level. We propose two image-level distortions: (a) grid based occlusion, and

(b) most significant bit based noise, along with three face-level distortions: (a) forehead and brow

occlusion, (b) eye region occlusion, and (c) beard-like occlusion.

5.1.1 Image-level Distortions

Distortions that are not specific to faces and can be applied to an image of any object are catego-

rized as image-level distortions. In this research, we have utilized two such distortions, grid based

occlusion and most significant bit change based noise addition. Figure 5-2(b) and 5-2(c) present

sample outputs of image-level distortions.

Grid based Occlusion

For the grid based occlusion (termed as Grids) distortion, we select a number of points P =

{p1, p2, ..., pn} along the upper (y = 0) and left (x = 0) boundaries of the image according to a

parameter ρgrids. The parameter ρgrids determines the number of grids that are used to distort

each image with higher values resulting in a denser grid, i.e., more grid lines. For each point

pi = (xi, yi), we select a point on the opposite boundary of the image, p′i = (x′i, y
′
i), with the
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condition if yi = 0, then y′i = H and if xi = 0 then x′i = W , where, W ×H is the size of the input

image. Once a set of pairs corresponding to points P and P ′ have been selected for the image, one

pixel wide line segments are created to connect each pair, and each pixel lying on these lines is set

to 0 grayscale value.

Most Significant Bit based Noise

For the most significant bit based noise (xMSB) distortion, we select three sets of pixels X1,X2,X3

from the image stochastically such that |Xi| = φi×W ×H , where W ×H is the size of the input

image. The parameter φi denotes the fraction of pixels where the ith most significant bit is flipped.

The higher the value of φi, the more pixels are distorted in the ith most significant bit. For each

Pj ∈ Xi,∀i ∈ [1, 3], we perform the following operation:

Pkj = Pkj ⊕ 1 (5.1)

where, Pkj denotes the kth most significant bit of the jth pixel in the set and ⊕ denotes the bitwise

XOR operation. It is to be noted that the sets Xi are not mutually exclusive and may overlap.

Therefore, the total number of pixels affected by the noise is at most |X1 +X2 +X3| but may also

be lower depending on the stochastic selection.

5.1.2 Face-level Distortions

Face-level distortions specifically require face-specific information, e.g. location of facial land-

marks. The three face-level region based occlusion distortions are applied after performing auto-

matic face and facial landmark detection. In this research, we have utilized the open source DLIB

library [100] to obtain the facial landmarks. Once facial landmarks are identified, they are used

along with their boundaries for masking. To obscure the eye region, a singular occlusion band is

drawn on the face image as follows:

I{x, y} = 0,∀x ∈ [0,W ], y ∈
[
ye −

deye
ψ
, ye +

deye
ψ

]
(5.2)

Here, ye =
(
yle+yre

2

)
, and (xle, yle) and (xre, yre) are the locations of the left eye center and the right
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Table 5.2: Characteristics of the databases used for adversarial attack generation and detection.

Database Subjects Images
PaSC [12] 293 4,688
MEDS-II [2] 518 858

Table 5.3: Verification performance of existing face recognition algorithms in the presence of
different distortions on the PaSC database. All values indicate genuine accept rate (%) at 1% false
accept rate.

System PaSC
Original Grids xMSB FHBO ERO Beard

COTS 24.1 20.9 14.5 19.0 0.0 24.8
OpenFace 66.7 49.5 43.8 47.9 16.4 48.2
VGG-Face 78.4 50.3 45.0 25.7 10.9 47.7
LightCNN 89.3 80.1 71.5 62.8 26.7 70.7
L-CSSE 89.1 81.9 83.4 55.8 27.3 70.5

eye center, respectively. The inter-eye distance deye is calculated as: xre−xle and ψ is a parameter

that determines the width of the occlusion band. Similar to the eye region occlusion (ERO), the

forehead and brow occlusion (FHBO) is created where facial landmarks on forehead and brow

regions are used to create a mask. For the beard-like occlusion, outer facial landmarks along

with nose and mouth coordinates are utilized to create the mask as combinations of individually

occluded regions. Figure 5-2 (d), (e), and (f) illustrate the samples of face-level distortions.

5.1.3 Learning based Adversaries

Along with the proposed image-level and face-level distortions, we also analyze the effect of ad-

versarial samples generated using two existing adversarial models: DeepFool [149] and Universal

Adversarial Perturbations [148].

5.2 Adversarial Distortions: Results and Analysis

In this section, we first provide a brief overview of the deep face recognition networks, databases,

and respective experimental protocols that are used to conduct the face verification evaluations. We

attempt to assess how the deep networks perform in the presence of different kinds of proposed

distortions to emphasize the need for addressing such attacks.
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Table 5.4: Verification performance of existing face recognition algorithms in the presence of
different distortions on the MEDS database. All values indicate genuine accept rate (%) at 1%
false accept rate.

System MEDS
Original Grids xMSB FHBO ERO Beard

COTS 40.3 24.3 19.1 13.0 0 6.2
OpenFace 39.4 10.1 10.1 14.9 6.5 22.6
VGG-Face 54.3 3.2 1.3 15.2 8.8 24.0
LightCNN 60.1 24.6 29.5 31.9 24.4 38.1
L-CSSE 61.2 43.1 36.9 29.4 39.1 39.8

5.2.1 Databases

We use two publicly available face databases for our experiments, namely, the PaSC database

[12] and the MEDS [2] . The PaSC database contains still-to-still and video-to-video matching

protocols. We use the frontal subset of the still-to-still protocol which contains 4,688 images

pertaining to 293 individuals which are divided into equally sized target and query sets. Each

image in the target set is matched to each image in the query set and the resulting 2344 × 2344

score matrix is used to determine the verification performance.

The MEDS database contains a total of 1,309 faces pertaining to 518 individuals. Similar to the

case of PaSC, we utilize the metadata provided with the MEDS release 2 database to obtain a subset

of 858 frontal face images from the database. Each of these images is matched to every other image

and the resulting 858 × 858 score matrix is utilized to evaluate the verification performance. For

evaluating performance under the effect of distortions, we randomly select 50% of the total images

from each database and corrupt them with the proposed distortions separately. These distorted sets

of images are utilized to compute the new score matrices for each case.

5.2.2 Existing Networks and Systems

In this research, we utilize the OpenFace [7], VGG-Face [160], LightCNN [218], and L-CSSE

[135] networks to gauge the performance of deep face recognition algorithms in the presence of

the aforementioned distortions. The OpenFace library is an open source implementation of Facenet

[183] and is openly available to all members of the research community for modification and ex-

perimental usage. The VGG deep face network is a deep CNN with 11 convolutional blocks where
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each convolution layer is followed by non-linearities such as ReLU and max pooling. LightCNN

is another publicly available deep network architecture for face recognition that is a CNN with

maxout activations in each convolutional layer and achieves good results with just five convolu-

tional layers. L-CSSE is a supervised autoencoder formulation that utilizes a class sparsity based

supervision penalty in the loss function to improve the classification capabilities of autoencoder

based deep networks. In order to assess the relative performance of deep face recognition with

a non-deep learning based approach, we compare the performance of these deep learning based

algorithms with a COTS matcher. No fine-tuning is performed for any of these algorithms before

evaluating their performance on the test databases.

5.2.3 Results and Analysis

Tables 5.3 and 5.4 summarize the effect of image processing based adversarial distortions on

OpenFace, VGG-Face, LightCNN, L-CSSE, and COTS. On the PaSC database, as shown in Table

5.3, while OpenFace and COTS perform comparably to each other at about 1% FAR, OpenFace

performs better than the COTS algorithm at all further operating points when no distortions are

present. However, we observe a sharp drop in OpenFace performance when any distortion is in-

troduced in the data. For instance, with grids attack, at 1% FAR, the GAR of OpenFace drops

by 29.3% and of VGG by 28.1%, whereas the performance of COTS only drops by 16% which is

about half the drop compared to what OpenFace and VGG experience. We notice a similar scenario

in the presence of noise attack where the performance of OpenFace and VGG drops down by about

29% as opposed to loss of 21.2% observed by COTS. In cases of LightCNN and L-CSSE, they both

have shown higher performance with original images; however, as shown in Tables 5.3 and 5.4,

similar level of drops are observed. It is to be noted that for xMSB and grid attack, L-CSSE is

able to achieve relatively better performance because L-CSSE is a supervised version of autoen-

coder which can handle noise better. Overall, deep learning based algorithms experience higher

performance drop as opposed to the non-deep learning based COTS. In the case of occlusions,

however, deep learning based algorithms suffer less as compared to COTS. It is our assessment

that the COTS algorithm fails to perform accurate recognition with the highly limited facial region

available in the low-resolution PaSC images in the presence of occlusions. Similar performance
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Figure 5-3: Bar graph showing the effect of perturbation on the VGG model. Verification accuracy
is reported at 1% GAR.

trends are observed on the MEDS database on which for original images, deep learning based algo-

rithms outperform the COTS matcher with a GAR of 60-89% at 1% FAR respectively as opposed

to 24.1% by COTS. The accuracy of deep learning algorithms drops significantly more than the

accuracy of COTS.

We next performed a similar analysis with learning based adversaries on the PaSC database.

The results of VGGFace model with original and perturbed images are shown in Figure 5-3. It is

interesting to observe that the drop in accuracy obtained by simple image processing operations

is equivalent to the reduction achieved by learnt adversaries. This clearly shows that deep models

are not resilient to even simple perturbations and therefore, it is very important to devise effective

strategies for detection and mitigation of attacks.

5.3 Detection and Mitigation of Adversarial Attacks

As we can see in the previous section, adversarial attacks can substantially reduce the performance

of usually accurate deep neural network based face recognition methods. Therefore, it is essential

to address such singularities in order to make face recognition algorithms more robust and useful
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Figure 5-4: Flow chart for the proposed detection and mitigation methodology.

in real world applications. In this section, we propose novel methodologies for detecting and

mitigating adversarial attacks. First, we provide a brief overview of a deep network followed by

the proposed algorithms and their corresponding results.

Each layer in a deep neural network essentially learns a function or representation of the input

data. The final feature computed by a deep network is derived from all of the intermediate repre-

sentations in the hidden layers. In an ideal scenario, the internal representation at any given layer

for an input image should not change drastically with minor changes to the input image. How-

ever, that is not the case in practice as proven by the existence of adversarial examples. The final

features obtained for a distorted and undistorted image are measurably different from one another

since these features map to different classes. Therefore, it is implied that the intermediate repre-

sentations also vary for such cases. It is our assertion that the internal representations computed

at each layer are different for distorted images as compared to undistorted images. Therefore, in

order to detect whether an incoming image is perturbed in an adversarial manner, we decide that

it is distorted if its layer-wise internal representations deviate substantially from the corresponding

mean representations. The overall flow of the detection and mitigation algorithms is summarized

in Figure 5-4.

5.3.1 Network Analysis and Detection

In order to develop adversarial attack detection mechanism, we first analyze the filter responses

in CNN architecture. Visualizations presented in Figure 5-5 showcase the filter responses for a

distorted image at selected intermediate layers that demonstrate the most sensitivity towards noisy

data. We can see that many of the filter outputs primarily encode the noise instead of the input
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(a) Grids (b) Zoomed (c) Beard (d) Zoomed

(e) Grids (f) Zoomed (g) Beard (h) Zoomed

(i) Grids (j) Zoomed (k) Beard (l) Zoomed

(m) Grids (n) Zoomed (o) Beard (p) Zoomed

Figure 5-5: Visualizing filter responses for selected layers from the VGG network when the input
image is unaltered and affected by the grids and beard distortions. The first two rows present
visualizations for conv3_2 and pool3 layers for the original input images respectively. The next
two rows present visualizations for the same layers when the input images are distorted using
adversarial perturbations. The propagation of the adversarial signal into the intermediate layer
representations is the inspiration for our proposed detection and mitigation methodologies.

signal. We observe that the deep network based representation is more sensitive to the input and

while that sensitivity results in a more expressive representation that offers higher performance in
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Figure 5-6: Visualizing the distribution of genuine (undistorted) and impostor (distorted) sample
scores in the Canberra distance space. The scores are obtained by comparing the intermediate
layer outputs for the sample with the layer mean obtained using the undistorted training data for a
particular layer. In this illustration, we showcase the distributions for scores obtained using layers
3, 5, and 7 of the VGG network for the Multi-PIE database before normalization.

case of undistorted data, it also compromises the robustness towards noise such as the proposed

distortions. Since each layer in a deep network learns increasingly more complicated functions

of the input data based on the functions learned by the previous layer, any noise in the input data

is also encoded in the features thus leading to a higher reduction in the discriminative capacity

of the final learned representation. Similar conclusions can also be drawn from the results of

other existing adversarial attacks on deep networks, where the addition of a noise pattern leads to

spurious classification [60].

To counteract the impact of such attacks and ensure practical applicability of deep face recogni-

tion, the networks must either be made more robust towards noise at a layer level during training or

it must be ensured that any input is preprocessed to filter out any such distortion prior to computing

its deep representation for recognition.

In order to detect distortions we compare the pattern of the intermediate representations for

undistorted images with distorted images at each layer. The differences in these patterns are used

to train a classifier that can categorize an unseen input as an undistorted/distorted image. In this

research, we use the VGG [160] and LightCNN [218] networks to devise and evaluate our detection

methodology. From the 50,248 frontal face images in the CMU Multi-PIE database [69], 40,000

are randomly selected and used to compute a set of layer-wise mean representations, µ, as follows:

µi =
1

Ntrain

ΣNtrain
j=1 φi (Ij) (5.3)

130



where, Ij is the jth image in the training set, Ntrain is the total number of training images, µi

is the mean representation for the ith layer of the network, and φi(Ij) denotes the representation

obtained at the ith layer of the network when Ij is the input. Once µ is computed, the intermediate

representations computed for an arbitrary image I can be compared with the layer-wise means as

follows:

Ψi(I, µ) = Σλi
z

|φi(I)z − µiz|
|φi(I)z|+ |µiz|

(5.4)

where, Ψi(I, µ) denotes the Canberra distance between φi(I) and µi, λi denotes the length of the

feature representation computed at the ith layer of the network, and µiz denotes the zth element of

µi. If the number of intermediate layers in the network is Nlayers, we obtain Nlayers distances for

each image I . As illustrated in Figure 5-6, the undistorted and distorted samples are well separated

in the Canberra distance score space. These distances are normalized using min-max normalization

and then used as features to train a SVM [195] with the RBF kernel for two-class classification.

The kernel parameters for the SVM are optimized on the training data using a stochastic grid search

methodology.

5.3.2 Mitigation: Selective Dropout

An ideal automated solution should not only automatically detect but also mitigate the effect of an

adversarial attack so as to maintain as high performance as possible. Therefore, the next step in

defending against adversarial attack is mitigation. This can be achieved by discarding or prepro-

cessing (e.g. denoising) the affected regions. In order to accomplish these objectives, we again

utilize the characteristics of the output produced in the intermediate layers of the network. We

select 10,000 images from the Multi-PIE database that are partitioned into 5 mutually exclusive

and exhaustive subsets of 2,000 images each. Each subset is processed using a different distortion.

The set of 10,000 distorted images thus obtained contains 2,000 images pertaining to each of the

five proposed distortions. We use a smaller separate Multi-PIE subset of 1,680 faces (5 per subject)

for training the algorithm on DeepFool and universal perturbations. Using this data, we compute

a filter-wise score per layer that estimates the particular filter’s sensitivity towards distortion as
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follows:

εij = ΣNdis
k=1 ‖φij(Ik)− φij(I

′

k)‖ (5.5)

where, Ndis is the number of distorted images in the training set, εij denotes the score and φij(·)

denotes the response of the jth filter in the ith layer, Ik is the kth distorted image in the dataset,

and I
′

k is the undistorted version of Ik. Once these values are computed, the top η layers are

selected based on the aggregated ε values for each layer. These are the layers identified to contain

the most filters that are adversely affected by the distortions in data. For each of the selected η

layers, the top κ fraction of affected filters are disabled by modifying the weights pertaining to

0 before computing the features. We also apply a median filter of size 5 × 5 for denoising the

image before extracting the features. We term this approach as selective dropout. It is aimed at

increasing the network’s robustness towards noisy data by removing the most problematic filters

from the pipeline. We determine the values of parameters η and κ via grid search optimization on

the training data with verification performance as the criterion.

5.3.3 Experimental Protocol

For training the detection model, we use the remaining 10,000 frontal face images from the CMU

Multi-PIE database as undistorted samples. We generate 10,000 distorted samples using all five

distortions with 2,000 images per distortion that are also randomly selected from the CMU Multi-

PIE database. We use the same training data for universal perturbations with 10,000 distorted

and 10,000 undistorted samples. For DeepFool, we use a subset of 1,680 face images from the

CMU Multi-PIE database with 5 images from each of the 336 subjects with both distorted and

undistorted versions for training the detection algorithm. Since the VGGFace network has 20

intermediate layers, we obtain a feature vector of size 20 distances for each image. We perform

a grid search based parameter optimization using the 20, 000 × 20 training matrix to optimize

and learn the SVM model. For DeepFool, the size of the training data is 3, 360 × 20. Once the

model is learned, any given test image is characterized by the distance vector and processed by

the SVM. The score given by the model for the image to belong to the distorted class is used as a

distance metric. We observe that the metric thus obtained is able to classify distorted images on
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Table 5.5: Performance (accuracy %) of the proposed detection methodology (using LightCNN
and VGG as the target networks) compared to two existing detection algorithms. Grids = grid
based occlusion, xMSB = most significant bit based noise, FHBO = forehead and brow occlusion,
ERO = eye region occlusion, and Beard = beard like occlusion.

Distortion MEDS PaSC
LightCNN VGG [120] [51] LightCNN VGG [120] [51]

Beard 92.2 86.8 81.2 80.9 89.5 99.8 83.4 85.1
ERO 91.9 86.0 80.4 80.0 90.6 99.7 84.9 84.6

FHBO 92.9 84.4 79.8 79.6 81.7 99.8 78.3 77.8
Grids 68.4 84.4 62.1 62.4 89.7 99.9 85.1 85.7
xMSB 92.9 85.4 80.2 80.9 93.2 99.8 88.2 87.9

unseen databases. The mitigation algorithm is evaluated with both LightCNN and VGG networks

on both the PaSC and MEDS databases with the same experimental protocol as used in obtaining

the verification results in Section 5.2.

5.3.4 Results and Analysis

First, we present the results of the proposed algorithm in detecting whether an image contains ad-

versarial distortions or not using the VGG and LightCNN networks. Table 5.5 present the results

of adversarial attack detection. We choose these two as the model definition and weights are pub-

licly available. Each distortion based subset comprises of a 50% split of distorted and undistorted

faces. These are the same sets that have been used for evaluating the performance of the three face

recognition systems. As mentioned previously, the model is trained on a separate database which

does not have any overlap with the test set.

The proposed detection algorithm performs almost perfectly for the PaSC database with the

VGG network and maintains accuracies of 80-90% with the LightCNN network. The lowest per-

formance is observed on the MEDS database (classification accuracy of 68.4% with the LightCNN

network). The lower accuracies with the LightCNN can be attributed to the smaller network depth

which results in smaller size features to be utilized by the detection algorithm. It is to be noted that

the proposed algorithm maintains high true positive rates even at very low false positive rates across

all distortions on both databases which is desirable when the cost of accepting a distorted image is

much higher than a false reject for the system. We also observe that the quality based algorithms

struggle with high resolution distorted images and low resolution undistorted images, classifying
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them as undistorted and distorted respectively. Besides exceptionally poor quality images that are

naturally quite distorted, we observe that high or low illumination results in false rejects by the

algorithm, i.e., falsely detected as distorted. This shows the scope of further improvement and

refinement in the detection methodology. This is also another reason for lower performance with

the MEDS database which has more extreme illumination cases as compared to PaSC. We observe

both general no-reference image quality measures and face-specific quality measures to also be

insufficient for attack detection. We also test using the Viola Jones face detector [208] and find

that, on average, approximately 60% of the distorted faces pass face detection. Therefore, the

distorted face images cannot be differentiated from undistorted faces on the basis of failing face

detection. We attempt to reduce the feature dimensionality to deduce the most important features

using sequential feature selection based on classification loss by a SVM model learned on a given

subset of features. For the VGG based model, using just the top 6 features for detection, we obtain

an average accuracy of 81.7% on MEDS and 96.9% on PaSC database across all distortions. If

we use only one most discriminative feature to perform detection, we obtain 79.3% accuracy on

MEDS and 95.8% on PaSC on average across all distortions. This signifies that comparing the rep-

resentations computed by the network in its intermediate layers indeed produces a good indicator

of the existence of distortions in a given image.

In addition to the proposed adversarial attacks, we have also evaluated the efficacy of the pro-

posed detection methodology on two existing attacks that utilize network architecture information

for adversarial perturbation generation, i.e., DeepFool [149] and Universal adversarial perturba-

tions [148]. We have also compared the performance of the proposed detection algorithm with

two recent adversarial detection techniques based on adaptive noise reduction [120] and Bayesian

uncertainty [51]. Same training data and protocol was used to train and test all three detection ap-

proaches. The results of detection are presented in Table 5.5 and Figure 5-7. We observe that the

proposed methodology is at least 11% better at detecting image processing based adversarial at-

tacks as compared to the existing algorithms for all cases except for detecting DeepFool perturbed

images from the MEDS database where it still outperforms the other approaches by more than 3%.

We believe that this is due to the fact that MEDS has overall higher image quality as compared to

PaSC and even the impact of these near imperceptible perturbations (DeepFool and Universal) on

verification performance is minimal for the database. Therefore, it is harder to distinguish original

134



Figure 5-7: Summarizing the results of the proposed and existing detection algorithms on the PaSC
and MEDS databases.

Table 5.6: Mitigation Results (GAR (%) at 1% FAR) on the MEDS and PaSC databases.

Algorithm Database Original Distorted Corrected

LCNN
PaSC 60.5 25.9 36.2

MEDS 89.3 41.6 61.3

VGGFace
PaSC 54.3 14.6 24.8

MEDS 78.4 30.5 40.6

images from perturbed images for these distortions for all the tested detection algorithms.

Table 5.6 present the results for the mitigation algorithm. Mitigation is a two-step process to

enable better performance and computational efficiency. Figure 5-3 shows the effect of deepfool

and universal adversary on the verification performance using VGG model. First, using the pro-

posed detection algorithm we perform selective mitigation of only those images that are considered

adversarial by the learned model. Face verification results after applying the proposed mitigation

algorithm on the MEDS and PaSC databases are presented in Table 5.6. We can observe that the

mitigation model is able to improve the verification performance on both the databases with either

network and bring it closer to the original. Thus, we see that even discarding a certain fraction

of the intermediate network output, that is the most affected by adversarial distortions, results in

better recognition than incorporating them into the obtained feature vector.

135



5.4 Summary

To summarize, our work has three main contributions: (i) a framework to evaluate robustness of

deep learning based face recognition engines, (ii) a scheme to detect adversarial attacks on the sys-

tem; and (iii) methods to mitigate adversarial attacks when detected. Playing the role of an expert

level adversary, we propose five classes of image distortions in the evaluation experiment. Using

an open source implementation of Facenet, i.e., OpenFace, and the recently proposed VGG-Face,

LightCNN, and L-CSSE networks, we conduct a series of experiments on the publicly available

PaSC and MEDS databases. We observe a substantial loss in the performance of the deep learning

based systems when compared with a non-deep learning based COTS matcher for the same evalu-

ation data. In order to detect the attacks, we propose a network activation analysis based method in

the hidden layers of the network. When an attack is reported by this stage, we invoke the described

mitigation algorithm to show that we can recover from the attacks in many situations.
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Chapter 6

Conclusions and Future Work

This dissertation focuses on different aspects of feature representations for efficient and robust face

recognition and tries to bridge some of the gaps that exist in reaching near perfect face recognition

in a truly unconstrained environment. There are multiple avenues to improve the performance of

face recognition algorithms including fusion of multiple features, learning feature representations

in a data-driven manner, using rich data sources such as a video or RGB-D images, and address-

ing adversarial attacks that might compromise the algorithm’s integrity. This dissertation presents

algorithms based on these opportunities demonstrating the merits of attacking the problem of ac-

curate face recognition at the input and algorithm levels:

• We propose a novel RGB-D based face recognition algorithm that uses both texture and

attribute features to improve performance using data from consumer level sensors.

• We propose a novel methodology for feature level fusion using group sparse representation.

We also propose a kernelization based extension to it and successfully apply it in the domains

of RGB-D, cross-resolution, and multi-biometric recognition.

• We propose a mechanism to quantize the feature-richness along with a deep joint represen-

tation framework to perform accurate and efficient face recognition in videos.

• We explore the susceptibility of deep networks towards adversarial attacks and propose al-

gorithms to detect and mitigate such attacks.
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There still remains a lot of scope for future work and improvement. Improving feature extrac-

tion at the input and algorithm level is discussed throughout the dissertation and further improve-

ments in these areas is definitely a potential research direction.

• RGB-D video data can be utilized to further enhance the data sources and newer consumer

level RGB-D devices can be deployed to obtain higher fidelity depth data. This data can

also be used in conjunction with 3D model generation algorithms for improved robustness

towards pose variations.

• Future research in group sparsity based approaches can be focused towards applying the

group sparsity principle to various other junctures of fusing feature-like information. For

example, layer output aggregation and pooling in deep networks.

• Future research in video face recognition can be directed towards combining the proposed

architecture with a CNN to extract complimentary feature representations. Another direction

can be to explore the use of feature-richness in filtering large training databases designed for

deep network training. Filtering the data on the basis of feature-richness might facilitate

guided generation of useful samples while reducing the overall number of required data

points.

• There is a requirement for extensive future work in making deep networks robust towards

adversarial examples. First is to build more general solutions for detecting and mitigating

adversarial attacks that can work with all kinds of networks [5, 93]. Additionally, the reason

for the existence of adversarial perturbations should be explored in further detail. This may

shed more light in solving the fundamental flaws of data-driven feature representations and

make them more generalizable even when trained on a limited set of data. The idea of

selective dropout can be explored further to improve the robustness and performance of

deep learning architectures [165].

• An “augmentation” phase can be utilized such that additional sources of information can

be incorporated with face data to improve the decision accuracy. Figure 6-1 provides an

overview of where the augmentation phase can be added in the face recognition pipeline.

Additional information such as social context (the likely possibility that an individual will
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Figure 6-1: Illustrating a potential target for future work to improve face recognition further.
The augmentation phase can fit in between the matching and decision phases and supplement face
information with other cues that can aid overall recognition.

be present in a photograph with another subject depending on the overlap of their social

circles) can be added to the decision process in addition to the comparison of features to fur-

ther improve the reliability and performance of automated systems. The global context of an

image from which the face region of interest has been extracted can also act as an additional

signal that can be used to validate the decision of an automated algorithm. Continuous feed-

back can also be incorporated using the augmentation phase where the recent performance of

the algorithm can be utilized as a factor in deciding upon the reliability of future decisions.

Spatial and temporal context in the form of location and timestamp information can also be

critical in making the right decision in the absence of specialized sensors or multiple data

points (such as in surveillance applications). As social networks and mobile devices evolve

further, more accurate and rich information about the image/video capture and individuals

may become available to the face recognition system which can be included as part of the

augmentation phase.
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