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Abstract—Abundance and availability of video capture devices
such as mobile phones and surveillance cameras has instigated
research in video face recognition which is highly pertinent in
law enforcement applications. While the current approaches have
reported high accuracies at equal error rates, performance at
lower false accept rates requires significant improvement. In
this research, we propose a novel face verification algorithm
which starts with selecting feature-rich frames from a video
sequence using discrete wavelet transform and entropy computa-
tion. Frame selection is followed by representation learning based
feature extraction where three contributions are presented: (i)
deep learning architecture which is a combination of stacked de-
noising sparse autoencoder (SDAE) and deep Boltzmann machine
(DBM), (ii) formulation for joint representation in an autoen-
coder, and (iii) updating the loss function of DBM by including
sparse and low rank regularization. Finally, a multilayer neural
network is used as classifier to obtain the verification decision.
The results are demonstrated on two publicly available databases,
YouTube Faces and Point and Shoot Challenge. Experimental
analysis suggests that (i) the proposed feature-richness based
frame selection offers noticeable and consistent performance
improvement compared to frontal only frames, random frames,
or frame selection using perceptual no-reference image quality
measures, and (ii) joint feature learning in SDAE and sparse
and low rank regularization in DBM helps in improving face
verification performance. On the benchmark Point and Shoot
Challenge, the algorithm yields the verification accuracy of over
97%at 1% false accept rate whereas on the YouTube Faces
database, over 95% verification accuracy is observed at equal
error rate.

Index Terms—Deep Learning, Autoencoder, Deep Boltzmann
Machine, Face Recognition, Frame Selection

I. INTRODUCTION

V IDEO face recognition has become highly significant in
surveillance scenarios. For example, more than 80,000

people were identified and verified during the 2008 Beijing
Olympics with the help of face recognition in videos [1].
With advancements in technology, video capturing devices
are accessible to a large number of people in the form of
portable electronic devices such as phones and tablets. In
unconstrained scenarios, videos captured by such devices may
also be used by law enforcement agencies. Therefore, there
is a high motivation to utilize video data to perform accurate
face recognition. Fig. 1 shows frames from four video clips
in which the face regions have been detected and cropped.
While a single frame from a video can only capture limited
information, multiple frames capture a lot of information
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Fig. 1. A subset of frames illustrating the amount of information present
in a video. A single video can capture a subject’s face under different pose,
expression, and illumination variations. While some frames can be highly
useful for face recognition, others can be detrimental to performance. Images
are frames from the PaSC database [2].

about the face pertaining to its appearance under the effect of
common covariates such as pose, illumination, and expression.
By utilizing the large variety of information present in a video,
a robust and comprehensive representation of a face can be
extracted and accuracy can be improved.

Video face recognition has been extensively studied and
several algorithms have been proposed. Table I provides a
review of some of the algorithms along with the summary of
results reported on popular video face recognition databases.
Video face recognition algorithms can broadly be classified
into two types: (a) set-based and (b) sequence-based [26].
The set-based approaches consider a video as a set of im-
ages (frames) which are then modeled and matched using a
variety of methodologies. These approaches may not utilize
the temporal information contained in the video, i.e. the
order of frames in the original video may not matter. On
the other hand, sequence-based approaches are specifically
designed to utilize temporal information of the video. These
approaches model the video as a sequence of images and
apply sequence classification techniques for recognition. Some
of the recent techniques utilize large image dictionaries to
characterize videos [8], while some others have focused on
metric learning based approaches [10] or deep learning based
approaches [11]. For comparison, the results are generally
reported on benchmark databases such as the Honda UCSD
database [27], YouTube face database (YTF) [3], and recently
developed Point and Shoot Challenge (PaSC) database [2].

As shown in Table I, existing algorithms have attained high
performance on YouTube video face database [3]. However,
the protocol of this databases generally require reporting the
results at equal error rate (EER) [28]. From implementation
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TABLE I
REVIEW OF SELECTED PAPERS ON VIDEO FACE RECOGNITION THAT HAVE SHOWN RESULTS ON THE YTF AND PASC BENCHMARK FACE VIDEO
DATABASES. RESULTS MARKED UNRESTRICTED DENOTE ALGORITHMS THAT HAVE USED EXTERNAL TRAINING DATA DURING TRAINING. THE

ALGORITHMS FOLLOW THE STANDARD EXPERIMENTAL PROTOCOL DURING TESTING FOR BOTH DATABASES TO FACILITATE COMPARISON.

Authors Algorithm Database Verification Accuracy
Wolf et al., 2011 [3]1 Matched background similarity L2 mean with LBP

YTF [3]

76.4%
Wolf and Levy, 2013 [4]1 SVM-Minus similarity score with background similarity 78.9%
Li et al., 2013 [5]1 Probabilistic elastic matching 79.1%

Cui et al., 2013 [6]2 Spatial-temporal face region descriptor + Pairwise-constrained
multiple metric learning

79.5%

Mendez-Vazquez et al., 2013 [7]2 Volume structured ordinal features 79.7%
Bhatt et al., 2014 [8]1 Clustering based re-ranking and fusion 80.7%
Hu et al., 2014 [9]1 Large margin multi-metric learning for face and kinship verifi-

cation in the wild
81.3%

Hu et al., 2014 [10]1 Discriminative deep metric learning 82.3%
Taigman et al., 2014 [11]1 Nine-layer deep network 91.4 % (unrestricted)
Wang et al., 2015 [12]1 Discriminant Analysis on Riemannian manifold of Gaussian

distributions
73.01 AUC

Khan et al., 2015 [13]1 Adaptive Sparse Dictionary 82.9%
Li et al., 2015 [14]1 Eigen-PEP for video face recognition 84.8%
Li et al., 2015 [15]1 Hierarchical-PEP for video face recognition 87.0%
Sun et al., 2015 [16]1 Semi-supervised convolutional neural network 93.2% (unrestricted)
Schroff et al., 2015 [17]1 Unified embedding learned using deep CNN 95.1% (unrestricted)
Parkhi et al., 2015 [18]1 Eleven-layer deep convolutional neural network with triplet loss

based face embedding
97.3% (unrestricted)

Ding and Tao, 2016 [19]1 Ensemble of Deep Convolutional Neural Networks 94.96% (unrestricted)
Yang et al., 2016 [20]1 GoogLeNet [21] features with aggregation 95.5% (unrestricted)
Tran et al., 2016 [22]1 3D Morphable Face Models regressed using a CNN 88.8% (unrestricted)
Beveridge et al., 2013 [2]1 Local region principal component analysis

PaSC [2]

8% (handheld) 10% (control)
Wang et al., 2015 [12]1 Discriminant Analysis on Riemannian manifold 18.3% (handheld) 18.7% (control)
Li et al., 2015 [15]1 Hierarchical-PEP for video face recognition 30.7%
Huang et al., 2015 [23]1 Projection Metric Learning on Grassmann Manifold 43.9% (handheld) 43.6% (control)
Huang et al., 2015 [24]1 Hybrid Euclidean-and-Riemannian Metric Learning 59% (handheld) 58% (control)

Ding and Tao, 2016 [19]1 Ensemble of Deep Convolutional Neural Networks 95.9% (handheld-unrestricted) 96.2%
(control-unrestricted)

Goswami et al. [25]1 Memorability based frame selection and deep learning PaSC 89% (handheld), 94% (controlled)
YTF 88.6% (unrestricted)

YTF [3] 93.4%, 95.4% (unrestricted)

Proposed1 Feature-richness based frame selection and deep learning (joint
learning in autoencoder with sparse and low rank DBM) PaSC [2]

93.1% (handheld), 97.2% (handheld-
unrestricted), 95.9% (control), 98.1%
(control-unrestricted)

1denotes set based algorithms, 2denotes sequence based algorithms.

0.49
0.53 0.54

0.79
0.85 0.88 0.91 0.93

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

EigenPEP [14] 3DMM_CNN [22] DeepFace [11] Proposed

G
e

n
u

in
e

 A
cc

e
p

t 
R

at
e

Verification Rate on YouTube Faces Database

0.01 FAR EER

Fig. 2. Summarizing the performance of some of the best performing face
verification algorithms on the YouTube faces database [3]. It is evident that
there is a huge gap in the performance at low false accept rates as compared
to performance at EER. We showcase that the proposed algorithm performs
well even at a low false accept rate.

perspective, the algorithms are required to minimize false
accept rate (FAR) or false reject rate (FRR). However, lower
EER does not necessarily mean low FAR or FRR. Fig. 2
illustrates the performance of some of the existing algorithms
on the YouTube Faces database [3]. It is observed that these

algorithms attain very high accuracies at equal error rate,
however, their performance at lower false accept rates is
significantly lower. For example, DeepFace [11] yields over
91% verification accuracy at EER but only 54.1% at 1% false
accept rate (FAR). For many security related applications, such
as video surveillance, it is desirable to achieve high verification
performance while minimizing the false accept rates. There-
fore, it is our assertion that there is a significant scope of
improvement in the performance of video face recognition and
additional research is required, especially focusing at lower
false accept rates.

A. Research Contributions

In general, video face verification involves matching using
all the frames present in two videos. However, not all frames
are equally informative and some frames might suffer from low
image quality or extreme variations due to pose, expression,
and illumination. Due to the presence of these covariates of
face recognition, some frames may affect the inter-class and
intra-class variations. In other words, it is highly probable that
features extracted from such a frame might lead to incorrect
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Fig. 3. Illustrating the steps involved in the proposed face recognition algorithm.

results. Therefore, it is important to select and utilize the high
information content in a video carefully and efficiently which
makes video data more challenging as well as rewarding for
face recognition. To address some of these limitations and to
improve overall performance, we propose a novel video face
recognition algorithm, that utilizes frame selection process,
followed by a deep learning architecture for feature extraction
and matching as illustrated in Fig. 31.

The first contribution of this research is a novel algorithm
for no-reference feature-richness based frame selection that
quantifies feature-richness based on entropy [29] in the wavelet
domain and enables better selection of frames for recognition
as compared to traditional no-reference biometric quality mea-
sures [30], [31], [32]. The second contribution is designing a
novel joint feature learning framework which can be utilized
to combine intermediate features computed in a deep network.
Deep learning architectures generally compute a series of
intermediate features from input data and utilize the final
layer of feature only for representation and classification. In
the proposed deep architecture, we combine the intermediate
representations computed by an autoencoder using a joint
representation layer. This joint representation is utilized to
retain the informative features of different granularities and
is used as input to a Deep Boltzmann Machine (DBM) which
interprets and enhances this combined information to create a
feature vector for each input face. The proposed framework
models the learned features as sparse and low-rank at the
same time using ℓ1-norm and trace-norm regularizations to
improve the performance of the overall deep architecture.
The learnt joint representation is input to a neural network
for classification. The effectiveness of the proposed algo-
rithm is evaluated on two large publicly available benchmark
databases: the YouTube Faces (YTF) video [3] and Point and
Shoot Challenge (PaSC) video [2].

II. PROPOSED FACE RECOGNITION ALGORITHM

The proposed algorithm is divided into three steps: (i) frame
selection, (ii) deep learning based feature extraction, and (iii)

1A preliminary version of the proposed algorithm was published in IEEE
IJCB, 2014 [25].

face verification using learnt representations. An overview of
the proposed algorithm is presented in Fig. 3.

A. Entropy based Frame Selection

Depending on the frame rate and duration, a video clip of
4−6 seconds may contain 100-200 frames. Existing literature
for video face recognition has either used all the frames, or
processed some (randomly) selected frames, or have proposed
algorithms for frame selection. Processing all the frames can
result in inclusion of bad and redundant information. Liu et
al. [33] proposed to partition the video into frame clusters
and select the most representative frames from each cluster
using Principal Component Analysis (PCA). Park et al. [34]
proposed to select frames by estimating pose and motion blur
information for each frame using Active Appearance Models
(AAM) and selecting frames with controlled pose and minimal
blur. Jillela et al. [35] utilized optical flow to create super-
resolved frames by using short five frame sub-sequences while
avoiding the sub-sequences which demonstrate high inter-
frame motion.

The proposed algorithm presents a novel perspective to-
wards frame selection by utilizing feature richness as the
criteria. It is our assertion that quantifying the feature richness
of an image helps in extracting the frames that have higher
possibility of containing discriminatory features. In order to
compute feature-richness, first the input (detected face) image
I is preprocessed to a standard size and converted to grayscale.
By performing face detection first and considering only the
facial region, we ensure that other non-face content of the
frame does not interfere with the proposed algorithm. The
image is normalized using its mean and standard deviation.
Thereafter, the discrete wavelet transform (DWT) of the pre-
processed image I is computed as follows:

[IAp, IHo, IV r, IDg] = DWT (I) (1)

Here, IAp captures the approximation coefficients of the
image, whereas [IHo, IV r, IDg] contain the detail coefficients
in horizontal, vertical, and diagonal sub-bands respectively.
The high and low pass filters used for decomposition depend
on the type of mother wavelet used. In this research, we have
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Fig. 4. Feature-richness distributions for two different videos. Some of the most feature-rich (values close to 1) and least feature-rich frames (values close
to 0) are presented for illustration. We can see that the high fidelity frames are assigned a higher feature richness score and the poor frames which showcase
artifacts such as occlusion and blur are assigned a low feature-richness score. Note that the total number of frames in the two videos is different.

utilized a bi-orthogonal mother wavelet which is symmetric
and efficiently encodes edge features. The detail and approx-
imation coefficients obtained using Eq. 1 represent the first
level DWT coefficients. Another level of DWT is applied on
the approximation band, IAp, as follows:

[I ′Ap, I
′
Ho, I

′
V r, I

′
Dg] = DWT (IAp); (2)

Here, I ′Ap and [I ′Ho, I
′
V r, I

′
Dg] represent the second level

DWT approximation and detail coefficients of input image I
respectively. DWT is useful to enable multi-resolution analysis
of the given image. While the first level DWT presents the
coefficients for the finer details of the image, the second
level DWT encodes the global features while focusing less
on fine details. We have observed that with images of size
80 × 100 and below, the third level DWT is unable to
preserve sufficient edge information and is not useful for frame
selection. Therefore, in this research, we consider only two
levels of DWT.

For an image region, entropy signifies the variation in
pixel intensity values. To quantify the feature-richness of an
image, entropy [29] is computed by using both levels of DWT
coefficients. The local entropy of each DWT band is computed
by dividing each band into 3 × 3 windows. On applying the
algorithm to a DWT band instead of the image, the entropy
value captures the local variations in high frequency and
approximation subbands contained in the image. The entropy,
H(κ), of an image window κ is computed.

H(κ) = −
n∑

i=1

p(κi)log2p(κi) (3)

where, n is the total number of pixel values, and p(κi)
is the value of the probability mass function for κi which
represents the probability of pixel value κi appearing in the
neighborhood. If the size of the window κ is Mκ ×Nκ then

p(κi) =
nκi

Mκ ×Nκ
(4)

Here, nκi denotes the number of pixels in the window with
value κi. The entropy value of each window is combined to
compute the feature-richness value of a band.

HF =
ω∑

i=1

(|Hi|) (5)

Here, HF denotes the feature-richness score of a DWT band,
ω is the number of windows in the band and Hi denotes
the entropy of the ith window. The final score of image I ,
HF (I), is obtained by aggregating the feature-richness values
of individual bands.

HF (I) = HF (I ′Ap) +HF (I ′Ho) +HF (I ′V r) +HF (I ′Dg)

+HF (IHo) +HF (IV r) +HF (IDg) (6)

Given a video V , the feature-richness score of a frame fi is
represented as HF (fi). Since the score of each frame depends
on the distribution of intensity values in a frame, it is important
to normalize the scores across the frames in one video. Let
mi represent the feature-richness value corresponding to the
ith frame fi, it is obtained using min-max normalization.

mi =
HF (fi)−min(HF)

max(HF)−min(HF)
(7)

where, HF denotes all the feature-richness scores for the video
V and min(HF) and max(HF) denote the minimum and
maximum values in HF, respectively. Higher values of m
signify a more feature-rich frame. Fig. 4 shows the feature-
richness distribution for two videos of different individuals
from the YouTube Faces database [3] along with sample
frames of high, average, and low feature-richness values. Once
the score of each frame is computed, adaptive frame selection
is performed to determine the optimum set of frames to
represent a video.

Let σm denote the standard deviation and µm denote the
mean pertaining to the set of feature-richness values of the
video V . In order to decide which frames are selected for
verification, φi is computed corresponding to each frame fi.

φi =

{
1, if mi ≥ µm + σm

2
0, otherwise

}
(8)
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To perform adaptive frame selection, each frame with φ = 1
is selected from a given video. These frames are utilized
for feature extraction using the deep learning architecture
described in the next section.

B. Deep Learning Framework for Feature Extraction

Once the feature-rich frames are obtained, the next step
involved feature extraction and matching. Several state-of-the-
art algorithms in recent literature use convolutional neural
network. In this paper, we propose a stacked denoising autoen-
coders (SDAE) and Deep Boltzmann Machine (DBM) based
algorithm that can yield good results with limited training
data while simultaneously being able to utilize more training
data to further improve performance. First, we briefly present
an overview of SDAE and DBM followed by the proposed
architecture.

1) Stacked Denoising Autoencoder and Deep Boltzmann
Machines: An autoencoder [36], [37] maps the data x ∈ Rα

into feature (latent representation) f using a deterministic
(encoder) function gΘ such that,

f = gΘ(x) = s(w · x+∆) (9)

where, Θ = {w,∆} is the parameter set, s represents the
sigmoid, w is the α′ × α weight matrix, and ∆ is the offset
vector of size α′. Feature f can be mapped to feature vector
x̂ of dimensionality α using a decoder function g′Θ′ such that,

x̂ = g′Θ′(f) = s(w′ · f +∆′) (10)

Here, Θ′ = {w′,∆′} is the decoder parameter set such that
argmin

w,w′
||x− x̂||22. The parameters are optimized by utilizing

the unsupervised training data. Denoising autoencoder [37],
a variant of autoencoder, operates on the noisy input data
xn and attempts to reconstruct x̂ such that f = gΘ(x̂n) =
s(w · xn + ∆). It is observed that this variant is robust
to noisy data and has good generalizability. Further, adding
sparsity constraint helps in learning useful features and the
cost function is updated as,

||x− x̂||22 + β
∑
j

KL(ρ ∥ ρ̂j) (11)

where, ρ is the sparsity parameter, ρ̂j is the average activation
of the jth hidden unit, KL(ρ ∥ ρ̂j) = ρ log ρ

ρ̂j
+ (1 −

ρ) log 1−ρ
1−ρ̂j

is the KL-divergence, and β is the sparsity penalty
term. KL divergence measures the difference between a true
probability distribution and its approximation. By setting the
value of ρ to a small value (such as 0.05), the number of data
points for which the jth unit is activated can be forced to be
low, which introduces sparsity of features. Smaller values of ρ
and larger values of β promote more sparse features. However,
a higher value of β conversely reduces the importance of
accurate reconstruction. The values of ρ and β are learnt
during the training and validation stages to achieve a trade-
off between reconstruction performance and learning more
generalizable features. If the autoencoders are stacked in a
layered manner, they are called as stacked autoencoders and

form a deep learning architecture to discover “patterns” in the
input data.

Deep Boltzmann Machine is an undirected graphical model, a
deep network architecture, with symmetrically coupled binary
units [38]. It is designed by layer-wise training of Restricted
Boltzmann Machine (RBM) and stacking them together in an
undirected manner. A RBM has stochastic visible and hidden
variables which are connected and the energy function is
defined as:

E(v, h; θ) = −
D∑
i=1

F∑
j=1

Wijvihj −
D∑
i=1

bivi −
F∑

j=1

ajhj (12)

Here, v ∈ {0, 1}D denotes the visible variables and h ∈
{0, 1}F denotes the hidden variables, respectively. The model
parameters are denoted by θ = {a,b,W}. Wij denotes the
weight of the connection between the ith visible unit and
jth hidden unit and bi and aj denote the bias terms of the
model. For real valued visible variables such as image pixel
intensities, generally, Gaussian-Bernoulli RBMs are utilized
and the energy is defined as:

E(v, h; θ) = −
D∑
i=1

vi
σi

F∑
j=1

Wijhj −
D∑
i=1

(vi − bi)
2

2σ2
−

F∑
j=1

ajhj

(13)
Here, v ∈ RD denotes the real-valued visible vector and θ =
{a,b,W, σ} are the model parameters. A single Gaussian-
Bernoulli RBM can learn a representation of the input data.
However, multiple such RBMs can be stacked in a layer-
wise manner to learn increasingly complex representations of
data in the form of a DBM. In this research, a three layer
DBM is utilized with a greedy learning approach [39]. A three
layer DBM comprised of Gaussian-Bernoulli RBMs can learn
complex representations of a real-valued input vector v ∈ RD

using a sequence of layers of hidden units h(1), h(2), and h(3).
The first layer connects the visible units to the first layer of
hidden units. Thereafter, subsequent layers connect the hidden
units of one layer to the hidden units of the other, causing the
hidden units of a layer to act as the visible units for the next
layer and so on. The energy of this DBM can be defined as:

E(v,h; θ) = −
D∑
i=1

F1∑
j=1

W
(1)
ij

vi
σi

h
(1)
j −

F1∑
j=1

F2∑
l=1

W
(2)
jl h

(1)
j h

(2)
l

−
F2∑
l=1

F3∑
m=1

W
(3)
lm h

(2)
l h(3)

m −
D∑
i=1

(vi − bi)
2

2σ2

−
F1∑
j=1

a
(1)
j h

(1)
j −

F2∑
l=1

a
(2)
l h

(2)
l −

F3∑
m=1

a(3)m h(3)
m

(14)

Here, D,F1, F2, F3 are the number of units and visi-
ble and hidden layers, and θ = {W(1),W(2),W(3),
b,a(1),a(2),a(3), σ} is the set of model parameters rep-
resenting visible-to-hidden and hidden-to-hidden symmetric
connection weights, bias terms, and the Gaussian distribution
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Fig. 5. Proposed deep learning architecture for facial representation: from
input layer (image), two hidden layer representation are computed using SDAE
encoding function. A joint representation is then obtained which combines the
information from two SDAE encoding layers. Using joint representation as
input, a DBM is used for computing a final feature vector.

Fig. 6. Joint learning framework: features learned from the first and second
levels of autoencoder, i.e., f1 and f2 are given as input to DBM to learn the
joint representation J.

standard deviation, respectively. The probability assigned by
this model to a visible vector v is given by the Boltzmann
distribution:

P (v; θ) =
1

Z(θ)

∑
h

exp
(
−E

(
v,h(1),h(2),h(3); θ

))
.

(15)
Here, Z(θ) is the normalizing constant. If only W(1) is
considered, the derivative of the log-likelihood with respect
to the model parameters is:

δlogP (v; θ)

δW(1)
= EPdata

[vh(1)T ]− EPmodel
[vh(1)T ] (16)

Here, EPdata
[·] denotes the expectation with respect to the data

distribution and EPmodel
[·] is the expectation with respect to

the distribution defined by the DBM as in Eq. (15). Similar
derivatives are obtained for W(1) and W(2), with the product
vh(1) replaced by h(1)h(2) and h(2)h(3) respectively.

2) Unsupervised Joint Feature Learning: SDAE and DBM
both individually learn the useful (intermediate) representation
of input data. While the SDAE learns two layers of image-level
features that can be best utilized to reconstruct the original
input, in this paper, we propose a joint representation layer

that learns the important features from each constituent layer.
This joint layer representation combines two different levels
of granularities in features to obtain a better representation.
Further, this joint feature is used as input to a DBM to obtain
the final representation. While SDAE and joint representation
are robust to noise in the input data, DBM learns the internal
complex representations probabilistically. Therefore, it is our
assertion that the proposed architecture should be able to
produce a robust representation compared to using SDAE
or DBM in isolation. Further, DBM is able to interpret the
features learned by the joint representation and combine each
of its components as required to obtain an enhanced higher
level discriminative representation, especially after fine-tuning.

Let the size of the input data be M × N ; in the pro-
posed architecture, each layer of SDAE is one-fourth the
size of its previous layer. Layer-by-layer greedy approach
[40] with stochastic gradient descent is utilized to train the
SDAE followed by fine-tuning with back-propagation method.
Intermediate representations obtained using the 2-hidden layer
SDAE are further combined to obtain a joint representation as
illustrated in Fig. 5. The two layers of size M

2 ×N
2 and M

4 ×N
4

are utilized as input and one joint layer of size 2×
(
M
4 × N

4

)
is learned. Let f1 be the representation learned by the first
layer of SDAE and f2 be the feature learned by the second
layer of SDAE, the joint representation J can be learned using
Eq. (17).

J = G(f1, f2) (17)

Here, G is the joint learning function to obtain J. In this
research, using encoder-decoder approach, we defined the cost
function associated with Eq. (16) as:

argmin
Φ

(∥ f1 − f ′1 ∥22 + ∥ f2 − f ′2 ∥22 +R) (18)

where, Φ represents the set of all the variables to be learnt and
R is a regularizer. For ease of explanation, we first present the
formulation with linear activation. Eq. (17) can be written as,

J = W1f1 +W2f2 (19)

Using Eq. (18), the associated cost can be written as,

argmin
Φ

(∥ f1 −W ′
1W1f1 −W ′

1W2f2 ∥22 +

∥ f2 −W ′
2W2f2 −W ′

2W1f1 ∥22 +R) (20)

As shown in Fig. 6, this approach learns the weights Φ =
{W1,W2,W ′

1,W ′
2} to obtain the joint representation J. In a

similar fashion, non-linear cost function can be written as (for
simplicity, bias terms are omitted),

argmin
Φ

(∥ f1 − s(W ′
1[s(W1f1)])− s(W ′

1[s(W2f2)]) ∥22 +

∥ f2 − s(W ′
2[s(W2f2)])− s(W ′

2[s(W1f1)]) ∥22 +R) (21)

Adding ℓ2-norm regularization term on W1,W2 and dropout
[41] on the joint representation network, Eq. (21) can be
written as,
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argmin
Φ

(
∥ f1 − s(W ′

1[s(W1f1)])− s(W ′
1[s(W2f2)]) ∥22 +

∥ f2 − s(W ′
2[s(W2f2)])− s(W ′

2[s(W1f1)]) ∥22 +

(λ1 ∥ W1 ∥22 +λ2 ∥ W2 ∥22)
)
dropout

(22)

The joint representation combines abstract and low-level
features obtained from SDAE encoding layers and is used
as input to a three hidden layer DBM, i.e. J acts as the
visible vector. Similar to Eq. (14), the energy of this DBM
is represented as:

E(J,h; θ) = −
D∑
i=1

F1∑
j=1

W
(1)
ij

Ji
σi

h
(1)
j −

F1∑
j=1

F2∑
l=1

W
(2)
jl h

(1)
j h

(2)
l

−
F2∑
l=1

F3∑
m=1

W
(3)
lm h

(2)
l h(3)

m −
D∑
i=1

(Ji − bi)
2

2σ2

−
F1∑
j=1

a
(1)
j h

(1)
j −

F2∑
l=1

a
(2)
l h

(2)
l −

F3∑
m=1

a(3)m h(3)
m

(23)

Inspired from [42], [43], we believe that the learned weight
matrix can be modeled as sparse and low rank at the same
time and therefore, a regularization approach incorporating
both of these can improve feature learning. Hence, we extend
the loss function of DBM (RBM) by introducing trace-norm
regularization technique.

Let L be the loss function of RBM (DBM) with the energy
function defined in Eq. (23). Along with ℓ1-norm, trace-norm
is added to the loss function as follows:

Lnew = L+A ∥ W ∥1 +B ∥ W ∥τ (24)

where ∥ · ∥1 is the ℓ1-norm, and ∥ · ∥τ is the trace-norm,
and A, B are the regularization parameters which control
sparsity and low-rankness. In general, elastic net regularization
(∥ · ∥1 + ∥ · ∥2) [44] may be used; however in this
formulation, we propose to utilize trace-norm in conjunction
with ℓ1-norm for learning representation in RBM (DBM).
While ℓ1-norm induces sparsity in the weight matrix, trace-
norm induces features to have low-rankness. The weight
matrix learned by the updated loss function has the benefits of
both the regularizations and as shown in experimental results,
improves the overall verification performance.

The size of the first two layers of the DBM is set to 2 ×(
M
4 × N

4

)
and the final layer is set to MN

4 . A pre-training
approach [39] combined with generative fine-tuning [45] is
followed to train the DBM. The final hidden layer provides a
complex representation of the input which can be utilized for
classification.

C. Face Verification using Feature Richness and Deep Learn-
ing based Representation

As shown in Fig. 3, the proposed framework utilizes the
frame selection, feature extraction, and classification archi-
tecture for video based face recognition. During training, the

stack of SDAE joint representation and DBM is utilized for
facial representation. Let Igallery and Iprobe be the two de-
tected, preprocessed and geometrically normalized face images
to be matched. These images are resized to M × N (in our
experiments, it is 80×100) and converted into vector form. The
trained architecture is used to extract the features from Igallery
and Iprobe, respectively. According to the previous discussion,
the input to the feature extraction module is the MN size
image vector and the output is a vector of length

(
MN
4

)
.

Features are extracted for each selected frame in a video
and given as input to a five layer neural network (one input
layer - 3 hidden layers - one output layer) for classification
(verification). The neural network classifier is trained to verify
a pair of input images (frames) input as a concatenated feature
vector of size MN

2 , using all the frames in the training videos.
The output of the network is a scalar match score.

During testing, the most feature-rich frames are selected
from each of the gallery and probe videos, and matched using
the proposed feature extraction and matching algorithm. The
output of neural network (classifier) is undecimated and match
scores are computed. The videos to be matched may have
significant variations in quality and feature-richness. It has
been shown in literature that if the images are of very different
quality, then the matching performance may deteriorate [46].
Therefore, we perform a post-processing step to select frame-
pairs with similar feature-richness and discard the remaining
pairs. Let V1 and V2 be the two videos to be matched, a
pair-wise feature-richness value is computed for each possible
frame-pair using the algorithm explained in Section II-A.

[
m1,1m1,2;m2,1m2,2; ...,mi,1mj,2; ...,mN1,1mN2,2

]
(25)

mi,1mj,2 denotes the product of feature-richness value asso-
ciated with the pair formed by the ith frame from V1 and the
jth frame from V2. N1 and N2 denote the total number of
selected frames from V1 and V2 respectively. Let σ

′

m be the
standard deviation and µ

′

m be the mean pertaining to the set
of the pair-wise feature-richness values for all pairs possible
between V1 and V2. To finally select the pairs for decision
making, following equation is utilized:

Υi,j =

{
1, if mi,1mj,2 ≥ µ

′

m +
σ
′
m

2
0, otherwise

}
(26)

If the combined score of a pair fi,1fj,2 is more than the
threshold, i.e., if Υi,j = 1, then this pair is considered for
computing the match score. While pairs with Υi,j < 1 are
not considered for verification, other selected frame-pairs are
weighted according to the joint feature-richness value. For
frame-pair fi,1fj,2, this weight is computed as Υi,jmi,1mj,2.
A pair where both participating frames are highly feature-rich
is assigned a higher weight compared to other combinations.
Here, facial coordinates obtained during face detection are
used to ensure that frontal-only and semi-profile images are
not matched with profile faces (i.e, when pose variations are
very large). The final match score is computed in the form of
a weighted sum of scores obtained from each participating
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TABLE II
DETAILS OF THE YOUTUBE AND PASC DATABASES.

Database
No. of Avg. no. of

Subjects Videos Videos per
subject

Frames
per video

YouTube Faces 1595 3425 2.15 181.3
PaSC (Handheld) 265 1401 4 to 7 234.8
PaSC (Control) 265 1401 4 to 7 239.0

frame-pair. The undecimated/unthresholded network (classi-
fier) output of these pairs are combined using weighted sum
rule [28] and a verification threshold is applied to provide the
final decision of accept or reject (same or not same) at a fixed
false accept rate.

III. RESULTS AND ANALYSIS

In order to evaluate the efficacy of the proposed algorithm,
face verification2 experiments are performed on two popular
video benchmark databases: YouTube Faces [3] and the Point
and Shoot Challenge [2]. Three different experiments are per-
formed to demonstrate the efficacy of the proposed algorithm.

• compare the performance of state-of-the-art results re-
ported on these databases with the proposed algorithm,

• evaluate the effectiveness of individual components of the
proposed algorithm, and

• evaluate the generalization capability by evaluating the
performance with cross database training and testing sets.

A. Database and Experimental Protocol

The YouTube Faces database contains 3,425 videos down-
loaded from YouTube belonging to 1,595 individuals. The
PaSC database contains 1,401 handheld and 1,401 control
(high resolution) videos pertaining to 265 individuals. Videos
in the PaSC database capture individuals in various indoor
and outdoor locations while performing a predefined activity.
The details of both the databases are summarized in Table
II. Both YouTube Faces database [3] and PaSC database
[2] have predefined experimental protocols. For the YouTube
faces database, we have followed the restricted protocol which
consists of 10 splits, each containing 250 genuine and 250
impostor pairs. No information outside of these splits is used
during any stage of the evaluation. The results are reported
with 10 fold cross validation, 9 splits are used for training
and one split for testing.

The PaSC database contains videos from a handheld camera
of low resolution and a control camera of high resolution. The
handheld-to-handheld experiment evaluates the accuracy of an
algorithm when matching videos of low resolution, whereas
the control-to-control evaluates the accuracy for high resolu-
tion videos. The experiments are performed for both handheld-
to-handheld and control-to-control protocols of video face
recognition. Training is performed on a separate set of training
videos provided with the database and the signature sets

2In biometrics, recognition has two components: verification (1:1 matching)
and identification (1:N) matching. In this paper, we have interchangeably used
verification and recognition to report 1:1 matching performance.

already provided with the PaSC database are used to select
the pairs for testing.

For both databases, the training data is divided into two
parts: first part is utilized as unlabeled data for training the
proposed joint representation model and second part is used for
supervised training. Data augmentation with different image
processing operations such as mirror/flip, color/grayscale, and
jittering, are also applied to increase the training database
size. After training, the proposed algorithm is evaluated on
the testing data. The metadata and annotations provided with
each database are used to perform face detection and pose de-
tection (to determine pose) as applicable. Receiver Operating
Characteristic (ROC) curves are computed for each experiment
and the verification accuracies are reported at multiple false
accept rates.

B. Experimental Results
1) Results on YouTube Faces Database: ROC curves of

existing algorithms and the proposed face recognition algo-
rithm on the YouTube faces database are shown in Fig. 7.
It is evident that the proposed algorithm not only achieves
high accuracy at low FARs, but also achieves state-of-the-art
performance of 0.93 GAR at equal error rate, without outside
training data. We next analyzed selected top-performing algo-
rithms to understand their performance at 0.01 FAR which is
more pragmatic with respect to real world scenarios. As shown
in Fig. 8, the proposed algorithm substantially outperforms
these algorithms at lower FARs. At 0.01 FAR, the proposed
algorithm achieves GAR of 0.79 whereas, the next best GAR is
0.54 by DeepFace3. It is our assertion that selection of feature-
rich frames and the proposed joint representation architecture
helps to yield state-of-the-art face verification performance.
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Fig. 7. ROC curves comparing the verification performance of the proposed
algorithm with existing results reported on the YTF database webpage.

3Since the ROC curve of FaceNet is not available, the results of FaceNet
at different FARs could not be reported.



SUBMITTED TO IEEE T-IFS 9

2) Results on PaSC Database: As explained in Section
3.1, Point and Shoot Challenge database has two protocols:
handheld and control. Table III summarizes the results of
the proposed algorithm along with existing results reported
on both the protocols. Beveridge et al. [2] reported the per-
formance of PittPatt and Local Region Principal Component
Analysis (LRPCA) on both handheld and control subsets. The
results show that at 0.01 FAR, the GAR of the proposed
algorithm is more than twice of PittPatt. At 0.01 FAR, the
proposed algorithm yields 0.93 and 0.96 GAR on the handheld
and control subsets, respectively. Beveridge et al. [24], [47]
have reported the results of the PaSC Video Face and Person
Recognition Competitions. Table III shows the genuine accept
rates of the algorithms reported in the competitions along
with the results of the proposed algorithm. These results
show that the proposed algorithm yields at least 34% higher
verification accuracy than existing algorithms that have not
utilized external data for training.

3) Impact of Frame Selection: Frame selection is an in-
tegral component of the proposed algorithm. The algorithm
selects feature-rich frames from the given video and utilizes
them for video to video matching. To evaluate the effectiveness
of the proposed frame selection algorithm, multiple exper-
iments are performed, including comparison with standard
image quality measures.

Ideally, if the frames are selected optimally, then they should
yield the best verification performance. To evaluate this, we
have compared the verification performance of the proposed
feature-rich frames with only frontal frames and when frames
are selected randomly. Fig. 9 shows sample frames from the
PaSC database. It illustrates randomly selected frames, frontal
frames, most feature-rich frames and the least feature-rich
frames as well. It can be observed that the most feature-rich
frames are distinct in nature and of good quality whereas,
the least feature-rich frames computed using the proposed
frame selection algorithm do not contain very distinguishing
information and are of poor quality. It is also interesting to note
that the most feature-rich frames are not necessarily the frontal
frames. The experiments are performed with both YouTube
and PaSC databases and the results are presented in Fig. 10. It
is evident that selecting the most feature-rich frames provides
the best performance across all three protocols. Correlating
these images with the accuracies re-emphasizes our hypothesis
that frontal frames are not always optimal and hence do not
necessarily provide the best verification results.

We also compare the performance of the proposed frame
selection approach with frame selection based on no-reference
image quality metrics namely BRISQUE [32], NIQE [30],
and SSEQ [31]. The source codes provided by the respective
authors have been utilized for each of these approaches.
Similar to the proposed approach, frames are selected based on
the quality measure and used in the proposed framework. We
have also evaluated the performance of our preliminary frame
selection approach [25] and the verification results obtained
with each of the frame selection algorithms and the proposed
face recognition algorithm are presented in Table IV. We
observe that using any of the existing quality assessment
algorithms results in a noticeable decline in the verification
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Fig. 8. Summarizing the verification performance of the proposed algorithm
and state-of-the-art algorithms on the YouTube Faces database.

TABLE III
VERIFICATION ACCURACIES ON THE PASC DATABASE. RESULTS OF

EXISTING ALGORITHMS ARE REPORTED FROM RESPECTIVE REFERENCES.

Algorithm GAR at 0.01 FAR
Handheld Control

ISV-GMM [47] 0.05 -
LBP-SIFT-WPCA-SILD [47] 0.09 -
PLDA-WPCA-LLR [47] 0.19 -
Eigen-PEP [47] 0.26 -
LRPCA Baseline [2] 0.08 0.10
PittPatt Baseline [2] 0.38 0.49
Surrey [24] 0.13 0.20
SIT [24] 0.31 0.35
Uni-Lj [24] 0.33 0.39
UTS [24] 0.38 0.48
CAS [24] 0.59 0.58
MDLFace [25] 0.89 0.94
Proposed 0.93 0.96

Fig. 9. Sample frames from the PaSC database: (a) random frames, (b) frontal
frames, (c) most feature-rich frames, and (d) least feature-rich frames.

performance. On the YouTube faces database, the performance
varies from 0.62 to 0.79 GAR, whereas on the handheld
subset of the PaSC database the performance varies from
0.82 to 0.93 GAR by only changing the frame selection
approach. The proposed feature-richness based frame selection
approach consistently outperforms the quality based measures
on all the protocols of both the databases. This experiment
suggests that high image quality may not represent high feature
richness and can affect the overall verification performance.
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Fig. 10. ROC curves comparing the verification performance of the proposed algorithm with frame selection approaches on the two databases.

TABLE IV
COMPARING THE RESULTS OF THE PROPOSED FRAME SELECTION

ALGORITHM WITH EXISTING IMAGE QUALITY ASSESSMENT ALGORITHMS
AND RANDOM FRAME SELECTION.

Algorithm
GAR at 0.01 FAR

Frame Selection YTF PaSC PaSC
Handheld Control

All 0.74 0.89 0.92
BRISQUE [32] 0.62 0.82 0.84

Image Quality NIQE [30] 0.62 0.83 0.82
SSEQ [31] 0.62 0.82 0.82

Memorability MDLFace [25] 0.69 0.89 0.94
Proposed 25 0.75 0.91 0.94
Feature 50 0.77 0.91 0.93
Richness Adaptive 0.79 0.93 0.96

This is consistent with existing observations in biometrics
quality literature [46]. We further analyze the performance
of the proposed algorithm with fixed number of frames i.e.,
without adaptive approach, as well as without using any frame
selection. As shown in Table IV, with all frames, top-25
and top-50 feature-rich frames, the verification accuracies are
relatively lower. This shows the usefulness of the “adaptive”
nature of the proposed algorithm. These experiments also
validate our hypothesis that not all frames are useful for video
face recognition.

4) Analysis of Deep Learning Architecture: Individual
components of the proposed deep learning framework are
experimentally evaluated to determine the efficacy of the
algorithms. In this experiment, only one component is changed
and the remaining components of the proposed framework are
left unchanged and only the feature extractor module is varied
across different experiments. These components include: (a)
single layer denoising autoencoder, (b) two layer SDAE,
(c) DBM, and (d) SDAE+DBM without the proposed joint
representation layer.

Table V summarizes the GAR at 0.01 FAR for each of
these components on both YouTube and PaSC databases (using
feature-rich frames). From the results, it is evident that both
SDAE and DBM are required in the proposed architecture to
extract meaningful representation for face recognition. Using
only DBM provides better performance than only using a

TABLE V
ANALYZING THE PERFORMANCE OF INDIVIDUAL COMPONENTS OF THE

PROPOSED ALGORITHM FOR FACE RECOGNITION.

Modified Architecture
GAR at 0.01 FAR

YouTube PaSC
Handheld Control

1 Layer DAE only 0.21 0.09 0.12
2 Layer SDAE only 0.39 0.28 0.39
DBM only 0.41 0.48 0.49
SDAE+DBM 0.61 0.87 0.93
Proposed: SDAE+DBM 0.79 0.93 0.96with joint representation

2-layer SDAE. However, neither DBM nor SDAE is able
to achieve even 50% verification accuracies individually. A
significant improvement is observed when SDAE and DBM
are stacked sequentially. The proposed joint representation
further improves the performance of the architecture, resulting
in an improvement of up to 0.18 in GAR for the YouTube faces
database. As mentioned previously, the joint representation
combines different layers of feature granularity and from the
results, it is evident that it is able to further improve upon
the features learned by the deep architecture. This observation
strengthens the requirement for the additional layer of learning
after SDAE before the features are utilized by DBM.

An additional experiment is performed to evaluate the
efficacy of the addition of trace-norm regularization. For this
experiment, ℓ2-norm, ℓ1-norm, elastic net (ℓ1+ℓ2 norm), trace-
norm (ℓτ ) only, and (ℓ1 + ℓτ ) are evaluated in the proposed
framework (as shown in Eq. 24). For these regularizers, we
observe that (ℓ1+ℓτ ) yields the best results followed by elastic
net. Incorporating single norms i.e., ℓ1-norm and ℓ2-norm only,
yield almost similar performance and are 1-2% (at 1% FAR)
less than (ℓ1 + ℓτ ) regularization.

The number of parameters in a deep neural network is de-
termined by the weights and bias of each layer. The proposed
algorithm involves a total of 22.5 million parameters whereas,
other deep architectures such as Deepface [11] contain many
more parameters (e.g. 120 million for Deepface). We observe
that even with a relatively small number of parameters, the
proposed algorithm achieves higher performance than Deep-
face. While architectures proposed in [18] and [17] perform
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TABLE VI
GAR FOR CROSS DATABASE EXPERIMENTS AT 0.01 FAR.

Training Set Testing Set
YTF PaSC-Handheld PaSC-Control

YTF 0.79 0.72 0.78
PaSC 0.43 0.93 0.96
PaSC + YTF 0.83 0.96 0.97

better on the YouTube database than the proposed algorithm,
both involve a much higher number of parameters and have
utilized large amounts (2.6 million and 200 million images
respectively) of training data (the results are reported on the
unrestricted setting of YouTube). It is to be noted that for
these experiments, the proposed algorithm is not trained with
external training data.

5) Cross Database Experiments: The generalizability of an
algorithm can be evaluated in situations where the training and
testing data belong to different databases, i.e, cross-database
experiments. To evaluate the effectiveness of the proposed
algorithm in cross database scenarios, we have performed three
different experiments:

• Training and testing databases belong to the same
database. For instance, training with YouTube faces train
set and testing with YouTube faces test set.

• Training and testing databases belong to different
database. For instance, training with YouTube faces train
set and testing with PaSC test set.

• Training database is from multiple databases whereas, the
testing is performed with a single database. For instance,
training with both YouTube faces and PaSC train sets and
testing on YouTube faces test set.

The results of all three experiments are presented in Table
VI. On training with the YouTube Faces database and testing
with the PaSC database, the proposed algorithm yields 0.72
GAR at 0.01 FAR which is considerably better than the
results of many existing algorithms. On the other hand, the
performance on the Youtube faces database suffers heavily
when training data is taken only from the PaSC database. This
may be due to the fact that the overall quality of faces in
the Youtube video faces database is lower than the training
set of the PaSC challenge database. Since the representation
module has not seen low quality frames and noisy faces during
training, it is unable to perform well on the YouTube database.
On combining the training set from both the databases, i.e.
PaSC + YTF training, the accuracies of both testing cases are
improved. This is a well understood phenomena in deep learn-
ing - more training data is useful in improved representation
and thereby achieving higher accuracies.

C. Comparison with Recent CNN based Algorithms

We next compare the performance of the proposed algorithm
with some recently proposed CNN based algorithms on the
benchmark protocols of the YTF and PaSC face databases.
As shown in Table I, convolutional neural networks have
demonstrated state-of-the-art results in deep learning based
video face recognition; however, they generally use external
data for training. Therefore, we have reported the results

of the proposed algorithm in three settings: (i) without any
external training data, (ii) using YTF and PaSC for training
(as discussed in Section III-B), and (iii) using external training
data of 2.48 million (with augmentation).

Table VII summarizes the results of the proposed and
existing algorithms. Results of existing algorithms are reported
directly from the associated publications, and the results
for [18] are taken from [19]. Since we have not manually
pruned the PaSC database for falsely detected faces, we report
the corresponding performance values for [19]. We observe
that even without utilizing any external data, the proposed
algorithm is able to achieve comparable accuracies. Using
large training data, the accuracy improves and with 2.48
million training data, the verification rate is higher compared
to existing algorithms. In terms of computational requirements,
on a 32 core server with Tesla K80 GPU with 512 GB RAM,
the proposed algorithm requires approximately 29 hours to
train with external data. Once the model is trained, it requires
about 2 seconds to match two videos.

On analyzing the architectures, we observed that in order
to optimize the network for a given problem, a deep CNN
architecture requires a large number of layers, which results
in a large number of parameters to optimize. This requires
large number of training data so that all the parameters of the
network can be estimated without overfitting. The proposed
algorithm achieves comparable performance with a network of
lesser depth (9 layers as compared to 22 layers in [20]) with
relatively less training data. We also assert that the proposed
architecture can be applied to solve other challenging problems
where relatively less labeled data is available such as newborn
face recognition [50].

IV. CONCLUSION

Verifying identities in videos has several applications in
social media, surveillance, and law enforcement. Existing
approaches have achieved high verification accuracies at equal
error rate; however, achieving high performance at low false
accept rate is still an arduous research challenge. In this
research, a novel video face verification algorithm is proposed
which utilizes frame selection and deep learning based feature
representation. The proposed algorithm starts with adaptively
selecting feature-rich frames from input videos using wavelet
decomposition and entropy. The proposed deep learning ar-
chitecture which combines SDAE joint representation with
DBM is used to extract features from the selected frames. The
extracted representations from two videos are matched using a
feed forward neural network. The results are demonstrated on
the challenging Point and Shoot Challenge and YouTube Faces
databases. The comparison with state-of-the-art results on both
the databases show that the proposed algorithm provides the
best results on both the databases at low false accept rate,
even with limited training data. Apart from the benchmark
protocols of both the databases, several additional experiments
have been performed to show the effectiveness of the proposed
contributions: (i) joint feature learning in an autoencoder,
(ii) sparse and low rank regularization in DBM, and (iii)
combination of SDAE and DBM in the proposed architecture.
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TABLE VII
COMPARING THE VERIFICATION ACCURACY OF RECENT CNN BASED METHODS WITH THE PROPOSED ALGORITHM.

Algorithm External Training Data Layers YTF (at EER) PaSC (at 1% FAR)
Control Handheld

Trunk-Branch Ensemble CNNs with Batch Normalization [19]# 2.68 Million$ 18 + 11 + 11∗ 94.9 98.0 97.0
VGG Face [18]+ 2.62 Million 21 97.4 91.3 87.0
GoogLeNet [21] features with aggregation [20] 3 Million 22 95.5 - -
CNN-3DMM Estimation [22] 0.49 Million 101 88.8 - -

Proposed SDAE-DBM Joint Representation
No 9 93.4 95.9 93.1

YTF + PaSC 9 95.0 96.6 96.1
2.48 Million 9 95.4 98.1 97.2

#Results on YTF are obtained from [19], results on PaSC are obtained from [48]. $2.68 million images obtained by augmenting 0.49M original images
from the CASIA-WebFace database [49] using horizontal flipping and image jittering as explained in [19]. ∗The method uses a primary network with 18

layers and two secondary networks with 11 layers each. +PaSC results are obtained from [19].

As a future research, we plan to extend the algorithm for “face
recognition in crowd” with multiple subjects in each video.
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