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ABSTRACT

Ocular recognition algorithms, including iris biometrics, have
been used in several applications including large scale national
ID projects. The deployment of large-scale biometric systems is ex-
pected to rely on using mobile devices to ensure wide-spread adop-
tion of these biometric recognition systems. Ocular images captured
using mobile devices may have challenges such as uncontrolled illu-
mination, complex background, and geometric distortions. Further,
among many enrollees of large scale biometrics program, some may
have ocular diseases and most common in elderly is cataract. While
itis established that iris recognition may be challenging due to ocular
diseases, this paper investigates periocular recognition with pre and
post cataract surgery images. In this research, we present and release
a mobile periocular database of 145 subjects', a unique database of
its kind. Baseline results also include a framework which achieves
over 69% accuracy at rank-10 and around 24% genuine accept rate
at 1% false accept rate in inter-session experiments.

Index Terms— Mobile biometrics, unconstrained environment,
cataract, periocular.

1. INTRODUCTION

Ocular recognition has come a long way since Daugman’s seminal
work proposing the iris as a biometric trait [1]. Ocular is the re-
gion of combination of Eyebrow, pupil, sclera vasculature, and iris
together [2]. Large scale biometric recognition systems such as the
India’s UIDAI (Aadhar) Program often rely on the iris as a distin-
guishing modality. While enrollment of subjects may be performed
using specialized sensors in constrained environment, the long term
utilization of such biometric programs is expected to rely on real-
world sensors such as mobile camera devices. Incorporating iris
recognition in mobile devices Jillela er al. [3] surveyed segmenta-
tion approaches of iris in visible spectrum.

A significant amount of individuals enrolled in these national
identification program databases belong to elderly population and
statistically, ocular pathologies have been quite prevalent among this
age group. Recently, Mateusz et al. [4] reported that the perfor-
mance of iris recognition algorithms is affected by ocular patholo-
gies. Among all such ocular diseases, cataract is a commonly found
one. India’s Aadhaar program, the largest publicly deployed bio-
metric system is expected to consist of 8.25 million candidates suf-
fering from cataract by 2020 [5], thus rendering iris recognition un-
reliable [6]. In 2010, Bharadwaj ef al. proposed the use of peri-
ocular biometrics when iris recognition fails [7] and demonstrated
that for recognition at a distance, periocular recognition can be more
accurate than iris recognition. Smereka er al. [8] established that
periocular region may be more discriminative than iris for recogni-
tion in unconstrained scenarios. Unsuitable iris images may result
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Fig. 1: Sample images from the IIITD Cataract Mobile Periocular
database. The first row represents the eye region and iris images
captured before surgery and the second row represents the eye region
and iris after surgery.

due to specular reflection, occlusion by eyelid and eyelashes, error
in segmentation, and image blur. It has been observed that specific
regions in periocular images are more discriminative; thus, these re-
gions must be retained after segmentation. A similar study has been
conducted for visible to NIR periocular recognition by Raghavendra
et al. [9] in which they found that morphological features of NIR eye
images are important. Similar study have been conducted by Sharma
et. al. [10]. On the other hand in visible images, the eyebrows are
more important and require bigger periocular region so that they are
suitable for recognition. Inspired from these observations, in this
research, we propose the use of periocular biometrics for recogniz-
ing the identity of individuals suffering from cataract. However, due
to the manner in which large scale projects are implemented, along
with cataract, the recognition challenge also entails acquisition with
mobile devices in unconstrained environment. Such kind of acquisi-
tion leads to several additional challenges including translation, ro-
tation, and blur. To address these challenges, there are three primary
contributions of this research.

e We first prepared a novel unconstrained periocular database
of cataract patients. To the best of our knowledge, this is the
first mobile periocular database of cataract patients.

e A framework for recognition of unconstrained periocular im-
ages taken from handheld mobile phones is proposed. The
results are demonstrated in both verification and identifica-
tion scenarios on the proposed database.

2. IIITD CATARACT MOBILE PERIOCULAR DATABASE

In literature, there exist databases that contain iris images of patients
suffering from cataract [4]. However, to the best of our knowledge,
none of these databases contain images capturing periocular infor-
mation using mobile sensors. Therefore, the IIITD Cataract Mobile
Periocular Database (CMPD) is prepared using a mobile device in



unconstrained environment. The database is captured in two differ-
ent sessions; pre and post, the pre-operative session have cataract
affected periocular images and the post-operative sessions includes
effects such as swelling and redness in the ocular region. These ef-
fects succinctly capture pre-post surgery variations. The duration
between the two sessions lies in the range of 7 to 10 days. The
CMPD database contains images corresponding to 145 subjects and
the number of samples for each subject varies from 3 to 6. The
images are captured using a MicroMax A350 Canvas Knight mo-
bile phone which is equipped with a 16 megapixel camera. Table
1 summarizes the database characteristics and sample images of the
database are shown in Fig. 1.

Along with performing identification and verification for indi-
viduals suffering from cataract disease, the database also presents
several challenges due to unconstrained capture using a mobile de-
vice:

e Rotation, translation and blur: Since images are captured in
unconstrained scenario by a handheld mobile phone, there is
high variability among images of the same subject depending
on the way the phone was held and the distance at which the
image was captured. Thus, matching of these images before
and after surgery is a challenging task.

e Partial face: Most of commercial-off-the-shelf (COTS) sys-
tems fail to detect partial faces due to unavailability of the
entire face. Thus, registration of these periocular images is
extremely challenging.

Table 1: Attributes of the IIITD Cataract Mobile Periocular database.

Sessions 2
Pre-operative subjects 145
Post-operative subjects 99
Number of classes 290
Total number of images 2380
Resolution of an image 4608 x 3456

Common subjects across sessions 56
Mobile camera resolution 16 megapixels

3. PROPOSED FRAMEWORK

A number of approaches have been proposed in the literature [7, 11]
to match periocular images by extracting texture information using
descriptors such as Local Binary Pattern (LBP) [12], Histogram of
Oriented Gradient (HOG) [13], and Scale Invariant Feature Trans-
form (SIFT) [14]. These features perform well when the images are
properly registered. However, when the images are captured in un-
constrained scenarios using mobile devices, segmentation and reg-
istration becomes difficult followed by matching of the images. In
this research, our primary focus is to evaluate the effectiveness of ef-
ficient feature extraction algorithms for matching cataract operated
images. First, periocular region is heuristically segmented from the
input images and registered. Since the images are captured in an
unconstrained environment, it is important to select translation and
rotation invariant features which are discriminatory in nature. There-
fore, three kinds of features are extracted from the periocular images:

1. Dense SIFT (DSIFT) features are extracted from a set of key-
points which are sampled at regular intervals on a uniform
grid. Each keypoint generates a descriptor of length n x 16,
where n is the number of orientations.

2. Gabor features [15] use Gabor filter to convolve images with
multiple filters. Let x = [z1 xz}T be the image coordinates.
The response of the Gabor filter g(x):

1 _

T T
_ e %z Amnze]komnz (1)
27 anbn

Gmn ()

where, A, is defined as

—sinqﬁm} {a;g 0 } {coscﬁm

COSPm, 0 b;z —SiNGm

SINGOMm
COSPm,

COSPm
SINPm

and it is the bandwidth and orientation of the filter, and kg
is the frequency modulation vector. Gabor descriptors are
obtained by averaging filter responses at eight orientations
(0°,45°,---,315°).

3. Scattering Network (ScatNet) [16] features compute succes-
sive wavelet transforms of periocular images. Let S,z be a
ScatNet feature where, n be the number of levels of the deep
convolutional network. Formulation of ScatNet features is as
follows:

Sox = {z * ¢} ?2)
Sz = {lx*wh,91|*¢} 3)

The above equations represent 2-level decomposition of pe-
riocular images and * represent convolution operation. ¢ is
an averaging window and ;¢ is a wavelet subsampling by
factor of 27 and rotated by (8 — 1)/L.

Fig. 3 illustrates the features obtained periocular images. The di-
mensionality of these three features are 9216, 1488, and 8184 re-
spectively.

e Principal Components Analysis (PCA) is used to perform di-
mensionality reduction on the feature space. Principal com-
ponents corresponding to 99% eigen-energy in the PCA sub-
space are retained.

e C(lassification is performed using projection of samples on the
PCA subspace to learn a Linear Discriminant Analysis (LDA)
subspace.

e Cosine similarity is used to match a pair of samples and gen-
erate the match scores.

e The match scores are fused using weighted sum fusion. The
weights w; for the scores are chosen on the basis of the ac-
curacy of the features of initial training dataset. The score
fusion matrix, .S, is evaluated as follows:

S = wi xtanh(S1)+wsz xtanh(S2)+ws xtanh(Ss) (4)

where, w1, w2, and ws are the weights of ScatNet, DSIFT,
and Gabor features, respectively. Before fusion, the scores
are normalized using tanh normalization rule.

4. EXPERIMENTAL RESULTS AND ANALYSIS

We perform experimental analysis in two stages. In the first part,
variability within a class for a single session is studied. In the sec-
ond part, the performance of our algorithms is evaluated by matching
images across sessions. 50% of the IIITD CMPD database is used
to perform training while the remaining 50% of the database is used
for testing. A total number of 56 subjects are common across the



Average Gabor | .
Filter Response PCA » LDA, Cosine
N D
ScatNet o ] = _ o
Features PCA » LDA, Cosine 4\ Vie Decision
A
. DSIFT L 3!  pca »{ LDA, Cosine
Input Image Segmentation Features

Fig. 2: Pipeline of mobile periocular recognition in unconstrained scenario.
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Fig. 3: Feature visualization of periocular image, (a) DSIFT visual-
ization, (b) Gabor visualization, and (c) ScatNet visualization.
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Algorithm 1 Proposed algorithm

1: procedure REGISTRATION, FEATURE EXTRACTION, DIMEN-
SION REDUCTION, CLASSIFICATION, SCORE LEVEL FUSION
2: Initialization: Manual annotation of eye corner points
eyeCl and eyeC2.
for each periocular image do
I < af fineTransform(eyeC1,eyeC?2)
featuresp <~ DSIFT(I)
featuresy « Gabor(I)
featuresscar < ScatNet(I)
for Each features i do
: ReducedDim; —
{D, g, scat}
10: LD; + LDA(ReducedDim;)
11: Score; < cosine(LD;)

12: S+ w1 xtanh(Sp)+wz xtanh(Sy)+ws X tanh(Sscat)
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sessions; images of these subjects are utilized for testing and the
remaining are used for training. Along with analyzing the perfor-
mance of the proposed framework with three different features, we
also study the effect of registration on periocular recognition with
these features. Therefore, the results are computed both with and
without image registration. Both verification and identification ex-
periments have been performed on registered periocular images and
unregistered periocular images.

ROC and CMC curves shown in Fig. 4 suggest that within pre
and post (before surgery and after surgery), the intra-class variation
is small and feature extractors specifically, Scatnet and DSIFT yield
good accuracy. It is interesting to observe that the proposed peri-
ocular framework yields 91% verification accuracy when iris recog-
nition algorithms are unable to even segment and process the iris.
However, with inter-session variation the accuracies reduce signifi-
cantly. It is our assertion that this reduction is due to the post op-
erative surgical effects and changes due to unconstrained environ-

ment. Analysis of feature extractors show that ScatNet outperforms
other descriptors in registered as well as unregistered images. Since
DSIFT features are extracted from images when uniform grid points
are overlaid on the periocular images, DSIFT performs poorly when
images are not registered and is observed to perform better for regis-
tered images. However, the fusion framework improves the perfor-
mance by more than 50% compared to the best performing feature
among the three. For instance, Scatnet yields 14.48% rank-1 iden-
tification accuracy with pre-post surgery whereas after fusion, the
performance improves to 22.41%. The whole experiments utilizing
the image size of 31 X 48 and dimensionality of DSIFT, gabor and
scatnet features are 9216, 1488, and 8184 respectively.

5. CONCLUSION AND FUTURE RESEARCH

This paper presents two fold contributions: (i) prepare and share mo-
bile pericoular database with pre-and-post cataract surgery images
captured in unconstrained settings and (ii) presenting baseline per-
formance which shows that cataract surgery affects periocular recog-
nition. On IIITD Cataract Mobile Periocular database, it is observed
that ScatNet features outperform other texture descriptors. In future
work, biometric quality analysis [17] is potentially viable extension
to explore periocular quality when periocular affected by ocular dis-
eases.
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Fig. 4: (a) ROC curves showing verification and, (b) CMC curve shows identification performance for mobile periocular images. The first
row represents within-session performance and the second row represents across-session performance. First column represents performance
of left periocular image and second column represents performance of right periocular image.
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Table 2: Rank-1 identification accuracy on the unconstrained mobile periocular database.

S1-S2 (pre-post surgery)

S1 (pre-surgery)

S2 (post-surgery)

Techniques Unregistered Registered

L R L R L R L R
DSIFT+ PCA+LDA | 78.30 82.27 | 84.21 87.85 | 10.04 6.90 | 22.83 | 17.24
ScatNet+ PCA+LDA | 89.15 93.31 | 94.26 93.92 | 14.19 | 15.17 | 22.15 | 14.48
Gabor+ PCA+LDA | 38.98 48.50 | 48.33 4766 | 692 | 276 | 727 | 4.14
Proposed 88.14 91.97 | 95.22 96.73 | 16.26 | 15.51 | 30.10 | 22.41

Table 3: Verification accuracy (at 1% FAR) on the unconstrained mobile periocular database.

S1 (pre-surgery)

S2 (post-surgery)

S1-S2 (pre-post surgery)

Techniques Unregistered Registered

L R L R L R L R
DSIFT+ PCA+LDA | 72.97 77.00 | 82.86 84.19 8.62 | 6.58 | 17.59 | 15.91
ScatNet+ PCA+LDA | 85.61 91.37 | 91.90 94.65 | 13.79 | 1345 | 19.66 | 14.78
Gabor+ PCA+LDA | 39.19 48.33 | 45.71 46.36 | 5.17 | 299 | 5.06 3.78
Proposed 91.00 85.47 | 92.30 94.88 | 15.52 | 13.75 | 24.48 | 20.23
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