
FACE IDENTIFICATION FROM LOW RESOLUTION NEAR-INFRARED IMAGES

Soumyadeep Ghosh, Rohit Keshari, Richa Singh and Mayank Vatsa

IIIT Delhi, India

ABSTRACT

Face identification from low quality and low resolution Near-
Infrared (NIR) face images is a challenging problem. Since surveil-
lance cameras typically acquire images at a large standoff distance,
the effective resolution of the face is not large enough to identify the
individuals. Moreover for a 24-hour surveillance footage, images in
low light and at nighttime are acquired in NIR mode which makes
the identification problem even more challenging. We propose an ef-
fective method using both hand-crafted and learned features for face
identification of low resolution NIR images. We show that learned
features contribute considerably to the performance of identification
algorithm, and that using both feature level and score level fusion in
a hierarchal approach gives good performance. The results demon-
strate the effectiveness of the proposed approach on images which
are of low quality, low resolution and acquired under challenging
illumination conditions in near-infrared mode by surveillance cam-
eras.

Index Terms— Low resolution face recognition, Near Infrared,
Autoencoder, Restricted Boltzmann Machine.

1. INTRODUCTION

Until the last decade, the primary usage of face recognition [1] was
for access control which involved matching images of cooperative
subjects in controlled environment. However, in the last decade,
surveillance has become one of the foremost application areas for
face recognition. A study [2] conducted by the British Security
Industry Authority (BSIA) estimated that UK has has 5.9 million
CCTV cameras, thus there is one camera for every 11 people. Gener-
ally surveillance cameras have large standoff distance which affects
image quality and the effective resolution of the face is also low. Ad-
ditional challenges such as illumination, expression and image qual-
ity makes the problem even more difficult. In literature this is known
as face recognition at a distance (FRAD) [3]. Fig. 1 shows such sam-
ple surveillance quality images. The frame quality and recognition
performance also depends on a lot of other factors such as the kind
of camera used, depth of field, field of view of the camera, effec-
tive resolution and focal length of the camera. Surveillance cameras
are fixed at a point and are used to capture images throughout day
and night. Due to insufficient amount of visible light during night-
time, these cameras capture near infrared (NIR) spectrum images.
Thus, the problem escalates to identification of individuals from low
quality Near-Infrared face images acquired at very poor illumination
conditions.

Several approaches have been proposed for matching visible to
near-infrared face images. Most of them [5, 6, 7, 8, 9] used subspace
and dictionary based techniques for matching visible (VIS) to NIR
face images. Yi et al. [10] trained a multimodal learning based model
to learn shared representation of VIS and NIR images and utilized it
for cross spectral face recognition.

 

Fig. 1: Images in the SCface database [4], (a) Visible gallery image,
(b)-(d) visible spectrum images acquired from surveillance cam-
eras from different standoff distances, (e) NIR mugshot image, (f)-
(h) NIR images acquired from surveillance cameras from different
standoff distances

.

On the other hand, there have been several methods in literature
for cross-resolution face recognition. Bhatt. et al. [11] proposed
a co-transfer based learning approach for matching faces across
resolution. Biswas et al. used multidimensional scaling [12] for
face recognition across pose, illumination, and resolution. In these
works, results were shown on surveillance quality images in visible
spectrum. However, there are a very few approaches which have
attempted to provide a solution to both these problems in a single
algorithm. The only method known to the best of our knowledge
is by Kang et al. [13], which provided a restoration based approach
for matching visible and NIR face images taken at nighttime. An
extensive camera setup was used to acquire the images at different
distances during both daytime and nighttime. They used Locally lin-
ear embedding [14] to restore the long distance images, and matched
using an existing heterogeneous face matching algorithm [15]. Most
of the face recognition algorithms for low quality images have
used sophisticated restoration and preprocessing methods prior to
recognition [16]. The near-infrared face recognition at a distance
(NFRAD) [17] problem deals with both cross spectral and cross dis-
tance face matching. To the best of our knowledge there is no work
in literature which has explored the effectiveness of unsupervised
feature learning for this problem.

1.1. Research Contribution

The research contribution of this paper is two-folds.

• Propose an algorithm which combines learned and hand-
crafted features for cross-resolution near infrared face recog-
nition.

• Without performing any preprocessing or enhancement for
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Fig. 2: Steps involved in the proposed method showing hierarchical fusion at both feature and score level.

the low quality images, the algorithm yields state-of-the-art
results on the SCface database (cross spectral cases).

2. PROPOSED ALGORITHM

In this research, we propose a face recognition algorithm which
is a combination of learnt and handcrafted features. As shown in
Fig. 2, the features are learned using Stacked Denoising Autoen-
coder (SDAE) [18] and Restricted Boltzmann Machine (RBM) [19].
Along with these two, DSIFT [20] features are extracted that provide
histogram of oriented gradients at densely sampled keypoints. It is
also shown that performing feature level fusion of learned features
with dense SIFT yields superior identification accuracies. Finally,
an efficient architecture is proposed which uses both feature level
and score level fusion at different levels.

2.1. Feature Extraction

In literature, histogram of Oriented gradient based features (D-SIFT)
have been shown [8] to be effective in visible (VIS) to NIR face
recognition. SIFT [20] features were also shown [11, 12] to be ef-
fective in low resolution face recognition. Therefore we have ex-
tracted dense SIFT features from 72 × 72 images. Each keypoint
gives a descriptor of size 128, all the descriptors from the keypoints
of an image are concatenated to produce the descriptor of the en-
tire image. Along with D-SIFT, two learnt representations are also
extracted.

2.1.1. Stacked Denoising Autoencoder

A classical autoencoder learns a function fθ which is a mapping of
the input data x′to a representation y given by

y = fθ(x
′) = s(Wx′ + b) (1)

known as the encoder, where x′ is the corrupted version of x. The
decoding part deals with the reconstruction of x′ given by

x̂ = gθ′(y) = s(W ′y + b′) (2)

where x̂ is the reconstructed data. The objective function is to mini-
mize the reconstruction error given by

Lθ(x, x̂) = argminθ||x− x̂||2 +
λ

2
||W ||2 (3)

where λ
2
||W ||2 is the L2 regularization term which prevents overfit-

ting by performing weight decay.

2.1.2. Restricted Boltzman Machine

The Restricted Boltzman Machine (RBM) [19] is an undirected
graphical model which has two layers, namely visible layer V ∈
{0, 1}A and the hidden layer h ∈ {0, 1}B , containing stochastic
units. In the model, each unit in the visible layer is connected to
each unit in the hidden layer. RBM models the following energy
function E : {0, 1}A+B → R defined as

E(v, h; θ) = −
A∑
i=1

B∑
j=1

viwi,jhj −
A∑
i=1

bivi −
B∑
j=1

ajhj (4)

where the model parameters are θ = a, b,W . The joint distribution
of the hidden and visible layers is given by:

P (v, h; θ) =
1

z(θ)
exp(−E(v, h; θ)) (5)

The above formulation is for a binary RBM, when the visible
units are real values we use a Gaussian RBM [19]. This model is
pre-trained on a large set of data and then fine-tuned on target data
which makes feature extraction by this model efficient.

2.2. Classification and Fusion

As illustrated in the block diagram (Fig. 2), DSIFT and SDAE fea-
tures are normalized and then concatenated to create a combined fea-
ture vector. Two 2-layer neural networks are learnt, one for the con-
catenated feature vector and another for RBM. The neural networks
are trained using stochastic gradient descent algorithm to generate
the match scores. The match scores are further normalized and then
combined using weighted sum rule for final classification/decision.

3. EXPERIMENTS AND ANALYSIS

Since surveillance primarily requires identification with low resolu-
tion videos captured in visible and NIR spectrums, the efficacy of
the proposed algorithm is evaluated in identification mode. The per-
formance of the proposed framework is evaluated using the SCface
database [4] which contains low resolution face images in both NIR
and visible spectrum.
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Fig. 3: Visualization of the learned weights of (a) RBM and (b) layer 1 of SDAE after 100 epochs of training

3.1. Dataset and Protocol

The SCface database [4] has 4160 images of 130 subjects acquired
using 8 different surveillance cameras mounted at different angles
and 3 different standoff distances: 1, 2.6 and 4.2 meters. Each
camera produces images of 3 different resolutions depending on the
standoff distance. The closest standoff distance produces image of
resolution 72 × 72, followed by 48 × 48 and 32 × 32. Out of the
8 cameras, 3 cameras operate in NIR mode, using which images
are acquired at challenging illuminating conditions at nighttime. We
use 72 × 72 and 48 × 48 images of 6 cameras (5 visible spectrum
cameras and 1 NIR camera) for training the neural network classi-
fier. Since stacked denoising autoencoder and restricted Boltzman
Machine require large amount of data for learning representations,
they are pre-trained on 50, 250 face images of the CMU MultiPIE
database [21], and fine-tuned on the 72 × 72 and 48 × 48 images
of these 6 cameras of the SCface database. Images from the other
2 NIR cameras with 48 × 48 and 32 × 32 resolution are used for
testing in identification mode. As can be seen in Fig. 1, such images
are of extremely low quality and the faces in 32 × 32 NIR images
are barely recognizable.

3.2. Experiments

Faces are detected by using the Viola Jones face detector [22]. Since
the quality of low resolution NIR videos is very poor, Adaboost
based face detector is not able to extract all the faces from the frames.
Therefore, in such cases, faces are manually detected. For extracting
DSIFT features, we use 25 keypoints in each image, aligned on an
uniform grid, keeping the spatial bin size to 12 pixels. Thus the di-
mensionality of DSIFT features for each image is 3200. For training
the SDAE, we use two layer network having 4096 and 2048 nodes in
the first and second hidden layers respectively. For L2 regularization
used in the SDAE the value of λ is 0.3 . The trained RBM has 2048
nodes in the hidden layer. The neural network classifier has 2 hid-
den layers having 512 and 256 nodes in them. The neural network
has 130 nodes in the output layer which is equal to the number of
subjects in the database.

We have compared the performance of the proposed architec-
ture (Fig. 2) with several other architectures namely, using raw pix-
els, DSIFT, SDAE and RBM as features, feature fusion by com-
bining these features and COTS (FaceVacs [23]). For each of these
architectures we have trained a neural network classifier and the clas-
sification results are summarized in Table 1.

Table 1: Rank 1 identification accuracies of different algorithms on
different resolutions of the NIR probe images.

Algorithm Rank 1 accuracy (%)
48× 48 32× 32

FaceVacs [23] (COTS) 3.50 2.94
Pixels + Neural Network( NN) 14.03 5.91
DSIFT + NN (A) 23.34 22.16
SDAE + NN (B) 16.73 10.34
RBM + NN (C) 28.40 13.30
RBM + SDAE + NN (D) 35.41 21.18
(SDAE + DSIFT) + NN (X) 37.35 29.06
(RBM + DSIFT) + NN (Y) 45.52 32.07
Score Fusion of (C) and (X) 53.81 37.03

3.3. Analysis of Results

The identification results obtained after performing the above exper-
iments are given in Table 1 and CMC curves are shown in Fig. 4,
for both 48 × 48 and 32 × 32 probe images. The analysis of the
experimental results are as follows:

• As shown in previous research [8], DSIFT yields competi-
tive accuracies on this problem. RBM features perform bet-
ter than DISFT features for 48 × 48 probe images, which
shows that unsupervised learned features are more effective
than handcrafted features which has been extensively used by
recent methods [12, 11] for face recognition on surveillance
quality images. It can also be seen that RBM features per-
form better than SDAE features for both 32×32 and 48×48
images. It can be observed from the visualization of learned
weights of RBM and SDAE (Fig. 3) that the representation
learned by the former are much better than the latter. The
experimental results (Table 1) also correlate with this obser-
vation.

• The feature level fusion of RBM/SDAE features with D-SIFT
yields increment in identification accuracies. This shows that
fusion of handcrafted and learned features are effective. Fu-
sion at the score level gives further improvement in identi-
fication accuracies. Using both feature level and score level
fusion gives the best results for both 32 × 32 and 48 × 48
images.

• FaceVacs [23], a commercial-off-the-shelf (COTS) system
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Fig. 4: Identification accuracies of existing algorithms and different variants of the proposed algorithm on the SCface database when probe
images are of size (a) 48× 48 and (b) 32× 32.

yields lower accuracies compared to the proposed algorithm.
The COTS yields rank-1 identification accuracy of 2.94%
and 3.50% for 32 × 32 and 48 × 48 NIR probe images
respectively. This demonstrates that even high performing
commercial face recognition systems cannot recognize low
resolution images efficiently.

• Fig. 5 shows some of the images that were incorrectly clas-
sified and correctly classified. It can be seen that the images
that were not classified correctly are generally of extremely
low quality. However, some of the poor quality images were
correctly classified as well as shown in Fig. 5(b). It can be ob-
served that if the image quality is poor with minor presence
of other covariates such as pose, then the image is generally
correctly classified. However, very poor quality images as
shown in Fig. 5(a) are difficult to recognize. It is worth men-
tioning unless there is familiarity, these images are difficult to
be matched by humans as well.

3.4. Running time

The unsupervised feature extractors are pretrained on MultiPIE [21]
database which is performed in 2.1 hours for the RBM and 4.2 hours
for the SDAE to train. After feature extraction, training the neural
network classifier is performed in considerably less time. For exam-
ple, training two layer neural network classifier for SDAE+DSIFT
features is performed in 4.2 minutes. During testing, the speed of
classification is about 1613 images per second. All implementations
are perfrormed on a desktop with 3.4 GHz Intel Core i7 processor
and 16GB of RAM.

4. CONCLUSION

We propose an effective method for identification of low resolu-
tion, low quality NIR images acquired by surveillance cameras under
challenging illumination conditions from varying standoff distances.

(a)

(b)

Fig. 5: Sample probe images demonstrating the results. (a) incor-
rectly classified probe images, (b) correctly classified probe images.

Of all the different architectures studied, the best performing one
uses both feature level fusion and score level fusion. It utilizes the
effectiveness of using both hand-crafted and learned features. Identi-
fication results on the SCface database demonstrate the effectiveness
of the algorithm compared to a commercial algorithm and existing
algorithms. In future, we plan to explore other algorithms for learn-
ing features to further improve the performance along with analyzing
the effect of preprocessing on recognition performance.
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