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Abstract—Classifier fusion is a well-studied problem in which
decisions from multiple classifiers are combined at the score,
rank, or decision level to obtain better results than a single
classifier. Subsequently, various techniques for combining classi-
fiers at each of these levels have been proposed in the literature.
Many popular methods entail scaling and normalizing the scores
obtained by each classifier to a common numerical range before
combining the normalized scores using the sum rule or another
classifier. In this research, we explore an alternative method
to combine classifiers at the score level. The Pool Adjacent
Violators (PAV) algorithm has traditionally been utilized to
convert classifier match scores to confidence values that model
posterior probabilities for test data. The PAV algorithm and other
score normalization techniques have studied the same problem
without being aware of each other. In this first ever study to
combine the two, we propose the PAV algorithm for classifier
fusion on publicly available NIST multi-modal biometrics score
dataset. We observe that it provides several advantages over
existing techniques and find that the interpretation learned by the
PAV algorithm is more robust than the scaling learned by other
popular normalization algorithms such as min-max. Moreover,
the PAV algorithm enables the combined score to be interpreted
as confidence and is able to further improve the results obtained
by other approaches. We also observe that utilizing traditional
normalization techniques first for individual classifiers and then
normalizing the fused score using PAV offers a performance boost
compared to only using the PAV algorithm.

I. INTRODUCTION

Classification is a popular research area since many func-
tionalities and advantages associated with modern computing
systems rely on it. It is a significant component in a multitude
of research problems such as object classification, biometrics,
speech recognition, weather prediction, financial trend analy-
sis, or natural language processing. A classifier usually takes
some form of input from the domain of the problem (e.g., an
image, a video, or a text), compares it based on another input
or an existing model, and provides some sort of a classification
score representing the degree of similarity or dissimilarity
between the two inputs to it. Depending on the type of
classifier, this score may denote various quantities which may
or may not be directly interpretable. While classification by a
single classifier can be achieved by comparison of one score to
the other, in many cases it is advantageous to utilize multiple
classifiers, trained with different parameters, methodologies, or
subsets of data. As shown in Fig. 1, in biometrics, classifier
fusion helps in cases when the non-ideal images are captured
where unimodal classifier alone may not achieve required
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Fig. 1. An illustration to showcase the requirement for fusion in biometrics:
(a) fusion not needed when the images are of good quality, (b) fusion needed
when there are large variations in quality.

level of accuracy. Combining multiple classifiers to improve
results has been studied extensively in literature [1], [2], [3]. A
detailed review of biometrics fusion algorithms can be found
in [4]

The traditional classifier fusion framework is illustrated in
Fig. 2(a). When multiple classifiers are to be combined, the
scores have to be normalized before they are combined such
that they lie in a common domain. Therefore, score normal-
ization is an integral part of classification and has received
proportionate attention in the literature. A comprehensive
review of existing score normalization techniques along with
brief descriptions, comparative analysis, and evaluation has
been presented by Jain er al. [5] where the authors discuss
the merits and demerits of popular score normalization tech-
niques such as min-max, z-score, and fan-h normalization [6].
There are many other forms of score normalization techniques
pertaining to specific applications such as speaker verification
[7], metasearch [8], and signature verification [9].

In this paper, we present the Pool Adjacent Violators (PAV)
algorithm to improve score normalization techniques for clas-
sifier fusion by coupling with traditional score normalization.
While the PAV algorithm has been utilized extensively for
calibrating classifier scores to probability estimates, its utility
in combining classifiers and interaction with traditional score
normalization methods has not been explored, to the best of
our knowledge. The PAV algorithm [10] has traditionally been
utilized for calibrating classifier scores into probability esti-
mates [11]. Fawcett and Niculescu-Mizil [10] demonstrate how
the PAV algorithm is functionally equivalent to the Receiver
Operating Characteristic Convex Hull (ROCCH) algorithm
which tries to find potentially optimal classifiers based on the
convex hull of points in ROC space. Aronowitz et al. [12]
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Fig. 2. An overview of the traditional and the proposed score normalization frameworks for classifier fusion.

have also utilized the PAV algorithm as a method of calibrating
classifier scores to probability estimates. In other applications,
Brummer and Doddington [13] have used it as an ideal refer-
ence to compare against the performance of their proposed
prior-weighted proper scoring rules. Mandasari et al. [14]
have applied the PAV algorithm in the computation of mis-
calibration cost of their quality measure function for speaker
recognition systems. Kim et al. [15] have also utilized the PAV
algorithm in conjunction with expectation maximization (EM)
based thematic clustering to evaluate cluster quality when
summarizing topical contents automatically from documents.
As shown in Fig. 2(b), in the proposed framework, two
or more scores obtained using different classifiers are first
converted to a common numerical range using an appropriate
traditional score normalization technique, such as min-max or
tan-h normalization. Then, the normalized scores are com-
bined using sum rule and the PAV algorithm is used on this
combined score to obtain a mapping between the old score
values and the new PAV normalized values which are utilized
to perform classification. As indicated in the overview, we
may also apply PAV as a traditional score normalization to
the individual scores. We evaluate both the cases as part of the
proposed approach. In this paper, we provide the details of the
proposed framework for using PAV as a score normalization
technique for combining classifiers, evaluate and analyze its
impact on fusion performance, and draw observations about
its interactions with the established score normalization tech-
niques which should help the classification community.

II. METHODOLOGY

First, we present a brief overview of some of the existing
score normalization techniques that are utilized for score-level
classifier fusion, followed by the details of the PAV algorithm
and the proposed framework.

A. Existing Score Normalization Techniques

A number of different methods have been proposed in the
literature to address the problem of score normalization, an
analytical review of which is presented in [5]. Since not all
score normalization techniques offer robustness and the ease
of converting data to a common numerical range, in this
research, we focus on two popular and effective normaliza-
tion techniques, namely, min-max and tan-h normalization

techniques. Min-max normalization is a well known statistical
data normalization which scales each data point based on the
minimum and maximum values in the score distribution as
follows:

;) s — min(S)
maz(S) —min(S)’

where, S is the score distribution to which the original score s
belongs, s’ is the new score after normalization, and min(S)
and maxz(S) denote the minimum and maximum value of
the score distribution S, respectively. Min-max normalization
converts all data to the fixed numeric range of [0, 1] and
enables fusion by sum rule for classifiers which originally
produce scores in varying data ranges. Tan-h normalization
[6] also performs a scaling of the data, but operates using
Hampel estimators [6] when determining its statistical scaling
parameters to achieve robustness against outliers. It also offers
the benefit of converting data to the same fixed numeric range
as min-max normalization for every classifier. It is formulated
as follows:

o =1 {tanh <0.01 <S_“>) + 1} : )
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where, s is the original score, s’ is the score after normal-
ization, and i and o denote the mean and standard deviation
estimates, respectively, of the Hampel estimators of the score
distribution. The estimator is based on the following influence
function:

)

m 0<|m| < a,
asign(m) a<|m|<b,

wim) = asign(m) (%) b<|m|<e, ©)
0 |m| > e.

The influence function W processes each score in the
distribution and determines its influence on the final estimated
distribution. Here, m is a score from the distribution, and a,
b, and c are three thresholds that can be adjusted to control
the tradeoff between robustness to outliers and efficiency. In
this research, we set a = o, b = 20, and ¢ = 30, where o is
the standard deviation of the score distribution estimated using
median absolute deviation.



B. The Proposed Methodology

While traditional classification consists of predicting a label
for given data points during testing, many applications require
that the classifier instead provide a score that indicates the like-
lihood that a data point belongs to a particular class. Usually,
the value of the score provides a measure of the classifier’s
confidence that the data point belongs to that particular label.
In the case of binary classification, such scores may be utilized
to generate Receiver Operating Characteristic (ROC) curves,
which help in evaluating a classifier’s performance by varying
the acceptance threshold for the true class and recording the
true and false accepts. However, not every application scenario
can be addressed even with these scores, since each classifier
produces them differently and it is difficult to deterministically
quantize the difference between two different data points
solely based on these scores. For instance, it is not possible to
say that one prediction is 36% more accurate than the other if
the scores vary by 36%. It is also important to know the actual
posterior probability estimate to be able to make decisions
efficiently in cost-sensitive scenarios where false accepts might
be more penalized than false rejects or vice versa.

Researchers have proposed different methods to address
the issue of calibrating the classifier scores to interpretable
probability scores. Let C' be a binary classifier that maps
input data points, X, to real-valued scores S, i.e., C(X) =
S € R. A calibration algorithm creates a function, f, such
that, f(C(X)) = S’ € [0,1], i.e., the new scores S’ lie in
the range [0, 1] and provide an estimated posterior probability
that the each data point in X belongs to the positive class.
The PAV algorithm is a non-parametric isotonic regression
based method to obtain the desired mapping f, proposed
by Zadrozny and Elkan [11]. The core assumption driving
the PAV algorithm is that the scores output by the classifier
are monotonically increasing with respect to the posterior
probability to be estimated. In other words, if a data point
has a higher classifier score for the positive class compared
to another then it must have a higher probability of belonging
to the positive class. It is to be noted that the PAV algorithm
simply calibrates the scores to reflect the probabilities rather
than an arbitrary value so that quantifiable comparisons such
as the one discussed above become possible.

Algorithm 1 PAV algorithm

1: Input: Scores and associated labels, (s;,y;) with length
n
2: Output: The probability estimates, S’
3: Sort the scores s; in increasing order from 0 to n
Initialize probability estimates, s} — y;, and groups G;
54
while s is not isotonic do
for all Gi_1,Gi € G do
if s;_; > s; then
Create merged group Gy, from G;_1,G;
Vs’ € G M(Gk)

o

R A A

Given a set of training data consisting of scores and labels,
(si,yi), where s; and y; are the i*" score and associated label
respectively, isotonic regression determines the calibration
mapping f as follows:

f=a@?m§:@r—dﬁﬁ2 (4)

The learned mapping function, f, can then be utilized to
convert classifier scores to probability estimates during testing.
The PAV algorithm implements the isotonic regression by
a group based methodology. A basic outline of the PAV
algorithm is presented in Algorithm 1. Here, u(Gy) denotes
the mean score value of all instances belonging to the group
G, First, the algorithm sorts the provided scores and ini-
tializes an initial mapping, 2y, with the corresponding labels.
Each positive sample is assigned the probability of 1, and
each negative sample is assigned a 0 probability. Also, the
algorithm creates groups, initially placing each data point in
its own group. Then, it iteratively examines the groups in
the probability estimates and checks for adjacent violations of
the sorted order. By design, the mapping should be isotonic,
and hence a violation is essentially when a group appears
out of order compared to its adjacent group. To rectify the
violation, the algorithm pools together the violating adjacent
groups and assigns the average value of the pooled group to
all its members. It repeats the process till no violations exist
and the mapping has become monotonically increasing with
respect to the classifier score.

When combining classifiers, the traditional pipeline involves
normalizing the scores, {S1,S52,...5,.}, from the involved
classifiers using a score normalization technique such as min-
max or tan-h normalization and then using the normalized
scores, {S57,5%,...5], } for fusion. Here, n. denotes the
number of classifiers involved in the fusion. A simple and
yet effective fusion strategy utilized in literature is sum rule
fusion [4] which essentially aggregates the normalized scores
from each classifier to obtain the fused score U for each data
instance:

U:iﬂ (5)
=1

We propose the addition of another step in the pipeline
(refer Fig. 2), where the fused scores U are then converted
to PAV calibrated probability values, P, before being used for
determining class label and evaluating classifier performance.
Since the PAV algorithm has been shown to be functionally
equivalent to the ROCCH algorithm [10], it transforms the
scores such that they are both interpretable and optimal as
per the ROCCH algorithm [16]. It has been shown in [16]
that only a classifier which lies on the convex hull of the
points in ROC space can potentially be optimal. Applying the
PAV algorithm to transform the fused score helps optimize the
performance of the fused classifier and by design makes it lie
on the convex hull. However, it is to be noted that while a
perfect function mapping would indeed determine an optimal



classifier using the scores, the entire distribution of scores is
not known during training. Therefore, the optimality of the
learned classifier after applying score normalization and PAV
depends on how well the training data represents the actual
distribution during testing.

It is to be noted that PAV normalization can not only be
applied to the fused score at the end of the pipeline, but also
in place of a traditional score normalization technique. As a
replacement for a traditional score normalization, it provides
robustness to outliers due to the averaging process and also
converts data to a common numeric range for each classifier.
Applying PAV at both the individual classifier and fused score
levels produces a purely PAV normalized score, which we
assess and compare with the other alternative normalization
techniques in the following section.

III. RESULTS AND ANALYSIS

We first provide the details of the database and experimental
protocol utilized in the evaluation of the proposed framework.
Then, we present the results along with our observations and
analysis.

A. Database and Experimental Protocol

In order to evaluate the performance of the proposed ap-
proach, we utilize the publicly available NIST Biometrics
Scores Set Release 1 (BSSR1) database. This database con-
tains three partitions. Set 1 contains face and fingerprint scores
from the same set of 517 individuals using two fingerprint
scores (two left index fingerprints (L) and two right index
fingerprints (R)) and two separate face matchers (C and G). It
contains a total of 534,578 scores. Set 2 contains fingerprint
score data for 6000 subjects with two fingerprint scores per
subject, one from the comparison of two left index fingerprints
(L) and another from the comparison of two right index
fingerprints (R). It contains a total of 72,000,000 scores. Set 3
contains face score data for 3000 subjects with two different
face matching algorithms (C and G). It contains a total of
36,000,000 scores. We compute and present classifier fusion
results on all three partitions of the BSSRI1 database. We
utilize the symbols C, G, L, and R to denote the two face
matchers and two fingerprint scores respectively in the ROC
curves presented in the results section.

To emulate a real scenario where not all of the data is avail-
able to the score normalization technique at once, we perform
10 fold cross validation on each set of the BSSR1 database.
We divide the available scores into 10 partitions, keeping
the number of genuine and impostor scores same across
each fold. 9 such partitions are used for training each score
normalization method, and the remaining partition is used for
testing. The process is repeated 10 times and the test partition
scores thus obtained are used to evaluate the performance.
We report results in form of Receiver Operating Characteristic
(ROC) curves for each set, evaluating the genuine accept rate
(GAR) at varying false accept rate (FAR) values. For min-
max normalization, training involves learning the minimum
and maximum value of the score distribution from the training
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Fig. 3. Baseline performance for individual matchers on all three sets of the
NIST BSSRI1 database without utilizing any normalization techniques.

data and using these learned values to perform normalization
during test time. For the fan-h based normalization technique,
learning involves computing the Hampel estimator and its
mean and standard deviation from the training data and using
those values for the test data. The PAV algorithm learns the
calibration function in the form of a mapping between the
original scores for each classifier and classifier combination
and the corresponding PAV calibrated scores assigned to them
during training. In order to estimate the PAV score of an
unseen score value during test time, its nearest neighbor is
searched in the original score and the corresponding PAV score
is assigned to it. Since the number of scores is quite large,
especially in the case of set 2 and set 3, this operation can
be computationally expensive. We, therefore, down-sample the
mapping by retaining only the mean of all the original score
values that correspond to a single PAV normalized value. Since
the PAV algorithm produces a stepwise function, the number of
unique values in the learned PAV scores are much lesser than
the entirety of the original scores, leading to a large reduction
in the computational requirement at the cost of being highly
accurate for boundary cases.

B. Experimental Results

Fig. 3 presents the baseline performance by the individual
matchers (C, G, L, and R) across all the three sets of the
BSSRI1 database. The baseline performance for each individual
classifier is computed using the original scores as provided in
the database without any scaling or normalization technique
applied.

Fig. 4 presents the ROC curve for the fusion of all four
classifiers (2 face matchers (C and G) + 2 fingerprint scores
(L and R)) using the sum rule and different normalization
techniques. We observe that the two best performing fusion
schemes are those that utilize the PAV normalization on the
fused score. We also observe that applying the PAV algorithm
boosts the performance of min-max normalization when it is
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Fig. 4. Fusion of all classifiers on Set 1 of the NIST BSSR1 database. Fig. 6. Fusion of two classifiers on Set 1 of the NIST BSSR1 database.
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Fig. 5. Scatter plots depicting the score distributions for set 1 of the BSSR1
database, (a) before and (b) after applying PAV normalization.

applied on the individual classifiers. However, we do also
note that the tan-h normalization algorithm does not benefit
as much from the application of PAV in this case. Fig. 6
presents the results when only two of the face scores or two
of the fingerprint scores are fused together. We observe here
that the min-max normalization is unable to perform well on
the test data due to not knowing the entire score distribution
beforehand. On the other hand, applying the proposed PAV
normalization improves the performance; utilizing a purely
PAV based normalization at both the individual and fused
score levels offers the best results for combining the scores
from the face matchers. We can also clearly note the convex
hull behavior from PAV normalized scores in the case of
tan-h normalization for the face matchers, even though it
clearly does not fare well with the face matcher scores as
compared to using the fingerprint scores. The performance
for all combinations is comparable when the two fingerprint
matchers are fused together. A scatter plot of the scores after
and before PAV normalization for a combination of the two
face matchers (C+G) and the two fingerprint matchers (L+R)
with each other is presented in Fig. 5. We observe that the
general separability of data instances improves and the overlap
between the genuine and impostor scores reduces for most
instances after applying PAV normalization.
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Fig. 7. Fusion of both classifiers on Set 2 of the NIST BSSR1 database.

Fig. 7 presents the results for Set 2 with the two fingerprint
scores, denoted by L and R. While purely PAV normalization
does not perform the best for this scenario, using min-max or
tan-h normalization first, and applying PAV afterwards to the
fused score achieves the best performance while displaying
the convex-hull behavior in the ROC space. We note that even
if the effectiveness of the purely PAV normalization depends
on the type of data distribution, similar to other existing
score normalization techniques, PAV normalization applied on
any other score normalization technique consistently offers
improvements in performance besides converting the fused
score to interpretable probability estimates. The performance
improvement obtained depends on the training of the PAV
mapping and how close the classifier can reach to its convex
hull version without the normalization.

Fig. 8 presents the results for Set 3 which contains scores
from two face matchers, denoted by C and G. Again, we
observe that PAV normalization helps boost the fused perfor-
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Fig. 8. Fusion of both classifiers on Set 3 of the NIST BSSR1 database.

mance. For the best performing curve, PAV applied over tan-
h normalization, higher gains are achieved when the original
curve is far from its convex hull before the two curves con-
verge at about 0.01 FAR. Purely PAV normalization performs
competitively with the other alternatives and becomes the best
option for a system looking to operate at 0.01 FAR. PAV does
not offer much of a gain in performance for the min-max
normalization in this set, but still achieves small gains across
FAR intervals where the min-max curve is separated from its
convex hull. The key observations are summarized below:

« When PAV is utilized to normalize scores from two
classifiers individually, before fusing them with the sum
rule, it is similar to any other score normalization algo-
rithm and its performance depends on the quality of its
learned mapping and the distribution of the data itself.
It offers competitive performance at all times and is the
best performing normalization approach for combining
the face matchers in Set 1 and at the 0.01 FAR operating
point for Set 3.

o When PAV is utilized to normalize fused scores that have
been obtained using another normalization algorithm, it
offers gains in performance depending on the nature
of the curve obtained using the original fused scores.
PAV normalization boosts the performance of the fusion,
especially when the normalization approach applied to the
individual classifiers performs poorly, as we consistently
observe from all of the presented results.

o The interpretation learned by the PAV normalization
which it utilizes to convert scores to probability esti-
mates can display robustness towards unseen data when
the original distribution might change substantially from
training to testing. While the scaling learned by the tan-h
and min-max normalization algorithms does not hold well
for set 1, the PAV normalization algorithm still performs
much better.

IV. CONCLUSION AND FUTURE RESEARCH DIRECTIONS

In this paper, we have explored the utility of the PAV
algorithm as a score normalization technique for classifier
fusion at the score level. The PAV algorithm offers several
advantages besides the convenience of normalizing data to
a common numeric range. It converts scores to interpretable
probability estimates and normalizes scores to achieve a curve
closer to the convex hull of the performance curve obtained
using the original scores in ROC space, by design. Through
a series of experiments on the NIST BSSRI1 database, we
observe that it also showcases robustness and consistency
when utilized as either a normalization technique for the
individual classifiers or the fused score obtained using existing
normalization techniques. The current approach may be fur-
ther augmented by exploiting the probabilistic nature of the
normalized scores when fusing two classifiers.
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