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Abstract—The advent of near infrared imagery and it’s
applications in face recognition has instigated research in cross
spectral (visible to near infrared) matching. Existing research has
focused on extracting textural features including variants of his-
togram of oriented gradients. This paper focuses on studying the
effectiveness of these features for cross spectral face recognition.
On NIR-VIS-2.0 cross spectral face database, three HOG variants
are analyzed along with dimensionality reduction approaches and
linear discriminant analysis. The results demonstrate that DSIFT
with subspace LDA outperforms a commercial matcher and other
HOG variants by at least 15%. We also observe that histogram
of oriented gradient features are able to encode similar facial
features across spectrums.
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I. INTRODUCTION

Traditional face recognition utilizes visible spectrum im-
ages captured in controlled environment with cooperative
users. Several algorithms have been able to achieve very high
accuracy in these conditions [1], [2]. On the other hand, uncon-
trolled environment with variations due to pose, illumination,
expression and occlusion is still a research challenge and re-
searchers are attempting to enhance the state-of-art. To mitigate
the effect of illumination variation, Li et al. [3] proposed
to utilize near infrared (NIR) spectrum. The efficacy of NIR
spectrum based face recognition systems is based on the fact
that faces captured in NIR spectrum do not vary much with
changes in illumination. However, the use of NIR spectrums
introduced few new research directions. One such direction
is matching an NIR spectrum image with a visible spectrum
(VIS) image. Such a requirement arises when the gallery and
probe images are not captured in the same spectrum. For
instance, in law enforcement applications, the gallery image
might be a VIS mugshot image whereas the probe can be a
NIR image captured using surveillance cameras. This research
challenge is known as cross-spectral face matching and often, it
is encompassed under broader research of heterogeneous face
matching [4].

As shown in Fig. 1, VIS and NIR images are acquired in
different bands of electro-magnetic spectrum and information
captured in the two spectrums are not same. Since VIS and
NIR spectrums are adjacent, human skin has similar response
to incident lights of the two spectrums. VIS image captures
face texture information whereas NIR image is not very rich in
texture, since NIR light penetrates into skin tissues [5]. These
fundamental differences in the acquired information introduces
the challenge of data heterogeneity.
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Fig. 1. Top row contains VIS images and bottom row contains NIR images,
captured in multiple sessions with varying illumination and facial expressions.

A. Literature Review

Data heterogeneity in face recognition can be addressed
either by finding spectrum invariant features or by modeling
the heterogeneity. In recent past, significant research has been
carried out for NIR to VIS face matching. Almost all the
existing approaches can be broadly categorized into two ap-
proaches - synthesis and direct matching. Synthesis approaches
try to model the mapping between VIS and NIR face images,
thus bringing images of both the spectrums to same/pseudo
same spectrum. On the other hand, direct matching approaches
largely rely on using spectrum invariant features.

Synthesis approaches: NIR image is first synthesized from
VIS image or vice versa followed by matching the synthesized
NIR and original NIR images, or synthesized VIS and orig-
inal VIS images. Chen et al. [6] proposed a transformation
approach for synthesizing VIS images from NIR images by
reducing the intra-personal differences. Similarly, Wang et
al. [5] proposed an analysis-by-synthesis approach. Lei et
al. [7] proposed coupled spectral regression wherein graph
embedding framework is used to first represent every face and
then two different learned projections are used to project the
NIR and VIS images on a discriminative common subspace
for classification. Zhu et al. [8] introduced a transductive
framework which is based on learning a subspace such that
modality differences are removed but intra-domain features are
preserved.

Direct matching approaches: Yi et al. [9] used canonical
correlation analysis based learning in linear discriminant anal-
ysis (LDA) subspace for matching. Liao et al. [10] utilized
multi-scale block local binary patterns as the feature set with
regularized LDA classifier. Klare et al. [11] extracted local bi-
nary pattern (LBP) and histogram of oriented gradients (HOG)
features from VIS and NIR images. Random subspaces based
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Fig. 2. Illustrating the computation of (a) DSIFT, (b) Dalal-Triggs variant of HOG, and (c) UoCTTI variant of HOG.

ensemble of classifier is utilized along with nearest neighbor
(NN) and sparse representation based matching. Similarly,
Maeng et al. [12] utilized HOG features for cross-spectrum
and cross-distance face matching. Most of these algorithms are
evaluated on small scale datasets, such as heterogeneous face
biometrics (HFB) dataset [13] and CARL[14] which comprise
limited number of subjects and/or undefined experimental
protocols. Therefore, claims regarding generalizability of per-
formance may not be made confidently and benchmarking can
be challenging.

B. Research Contributions

Although HOG features have been explored for VIS to NIR
matching, to the best of our knowledge, a study analyzing the
effectiveness of different HOG variants, along with different
classifiers and distance metrics is not yet performed. Since
the overall performance of a recognition system is a function
of the combination of feature and classifier, such a study
may unravel the best suited framework. It would also help
understand the nature of these features in context of VIS
to NIR face matching. NIR-VIS 2.0 dataset [15], a recently
created dataset, addresses the issues of fixed protocol and
dataset size. It is our assertion that this dataset may be more
helpful in understanding and/or solving the problem of VIS
to NIR face matching. Therefore, in this research, all the
experiments are performed on the NIR-VIS 2.0 dataset. The
key contributions of this work are:

• Evaluation and performance analysis of three HOG
variants, namely

◦ Dense Scale Invariant Feature Transform
(DSIFT) [16],

◦ Dalal-Triggs HOG (HOG-DT) [17], and
◦ HOG-UoCTTI [18],

along with classification by LDA and direct feature
matching.

• Studying the role of dimensionality reduction and
distance metrics.

• Understanding the difficulty of the problem by estab-
lishing baseline performance using a commercial-off-
the-shelf system.

II. VARIANTS OF HISTOGRAM OF ORIENTED GRADIENT

FEATURES

HOG features have been widely used for object detec-
tion [16]. The basic intuition that an object can be effectively
represented using edge orientations is the base of HOG feature
based object detection approaches. There are many variants
of HOG descriptors such as DSIFT [16], HOG-DT [17],
and HOG-UoCTTI [18]. All the variants involved computing
image gradient orientations. The image is tessellated into cells
and for each cell gradient orientations are computed and
binned into discrete orientation bins. These binned orientations
are weighted and/or normalized to obtain the final feature
descriptor. The details of the three aforementioned variants
are as follows:

1) DSIFT or Classical HOG [16]: As the name suggests,
DSIFT computes SIFT features [16] on a dense grid of fixed
key points. As shown in Fig. 2(a), 4× 4 grid of cells is used
keeping the key point in the center of the grid. Histogram of
directed gradient orientation are computed for each cell, which
are weighted using a Gaussian function centered at the key
point. The final descriptor is obtained by stacking the weighted
histograms of each cell. If the number of orientations is set as
no, the gradient directions are uniformly sampled in [0, 2π),
and the final descriptor of every key point is of length 16no.



Fig. 3. Illustrating the stages involved in the proposed evaluation framework.

Fig. 4. Illustrating the 8× 8 grid of key points on a face image.

2) Dalal-Triggs HOG [17]: As shown in Fig. 2(b), HOG-
DT employs undirected gradient orientations and for every
cell, binning is performed in 2no directions uniformly sampled
in [0, 2π), which is folded into two to get no dimensional
histogram. A grid of 2 × 2 cells defines a block, where
each block has two overlapping cells with adjacent horizontal
and vertical blocks. Thus, each cell is shared by four blocks
(represented with different colored squares in Fig. 2(b)). l2-
norm of each block is used as the normalization factor. Thus,
for every cell four normalization factors are obtained from the
four blocks which share the specified cell. The final descriptor
of each cell is defined as stacking of four copies of the cell
histograms, each normalized with one normalization factor.
Thus, the final descriptor of every cell is of length 4no.

3) HOG-UoCTTI [18]: The HOG-HoCTTI variant per-
forms similar operations as HOG-DT with and without folding
the cell histogram into two. Thus, it employs both undi-
rected and directed gradients. As shown in Fig. 2(c), four
histograms of undirected gradients are averaged to obtain an
no dimensional histogram. Similar operation is performed for
directed gradients to obtain an 2no dimensional histogram.
The final descriptor is obtained by stacking the averaged
directed histogram, averaged undirected histogram, and four
normalization factors pertaining to undirected histograms. This
leads to the final descriptor of size 4 + 3× no.

III. EVALUATION FRAMEWORK

As shown in Fig. 3, the evaluation framework for matching
VIS and NIR images involves feature extraction, followed
by an optional stage of dimensionality reduction and classi-
fication. Evaluation is performed with the three variants of
HOG and raw pixel intensity features. The reduced dimen-
sional representation of features is achieved either by principal
component analysis (PCA) [19] or hetero-component analysis
(HCA) [15]. The dimensionality reduced features are classified
using nearest neighbor (NN) and LDA with Euclidean and
Cosine distance metrics. This section provides details about
each component of the matching pipeline.

A. Feature Extraction

As illustrated in Fig. 4, fixed key points based approach is
used to extract oriented gradient features. Let the image size

Fig. 5. A VIS (top left) and NIR (top right) images of an individual, and
visualization of their corresponding HOG features are shown in bottom row.

be H×W , a grid of m×m key points is defined on an image
by specifying the step-size to cell-size ratio of W

m
along the

width and H

m
along the height of the image. For the selected

key points, features are extracted which contain magnitude and
gradient. For every key point, these are represented in a single
vector of length d. For classical HOG d = 128, for HOG-
DT d = 36, and for HOG-UoCTTI d = 31 (no is set as 8,
9, and 9, respectively and m = 8 leads to a total of 64 key
points located on a uniform grid). For every key point, HOG
is then stacked to generate the final feature descriptor for a
given face image and it is denoted by f . Size of the extracted
feature descriptor is (m×m)×d. If the shape of the object is
not affected in the images captured in two different spectrums,
the edge orientation related features are spectrum invariant. As
shown in Fig. 5, if the shape of the input face is same, the edge
orientation information encoded using HOG is similar for VIS
and NIR face images for the same subject. Therefore, HOG
features make a suitable choice for matching VIS and NIR
face images.

B. Dimensionality Reduction

Dimensionality of the feature descriptor f is (m×m)×d.
Generally, the size of this descriptor is 2,000-10,000 which is
a significantly large feature vector size with the training set of
approximately 2000 samples. Therefore, it may be advisable to
perform dimensionality reduction prior to matching. PCA [19]
and HCA [15] are chosen as two candidate dimensionality
reduction algorithms.

Let Fi be the vectorized version of feature descriptor of
the ith training image. If feature descriptor of the ith image
has dimensions (m × m) × d then Fi, a column vector, has



dimensions (m × m × d) × 1. Let the size of the training
set be N , which contains a mix of NIR and VIS images. The
feature matrix of the complete training set is of size N×(m×
m × d) and every row corresponds to the feature vector of a
training image. In order to apply PCA, the covariance matrix
is computed as follows,

C =
1

N

N
∑

i=1

(Fi − µ)T (Fi − µ) (1)

where µ = 1

N

∑N

i=1
Fi is the mean feature vector. Eigenvalue

decomposition of covariance matrix is performed to obtain
its eigenvectors and eigenvalues. As illustrated in Fig. 6,
PCA subspace is the vector space spanned by k eigenvectors
corresponding to the largest eigenvalues. Out of the top-k
vectors, HCA [15] discards top-r eigenvectors as they may
not represent information pertaining to identity. Thus, the
HCA subspace is spanned by k − r vectors. Let the total
variance consist of three components, Cid, Cs, and Cn. Here,
Cid represents the variation due to the presence of multiple
subjects, Cs represents the variation due to two spectrums,
and Cn represents the variation due to noisy or un-useful
components. The rationale for selecting k components in PCA
is the assumption that top components represent Cid, whereas
HCA assumes that k − r components obtained after rejecting
the top r components represent the same information. k is
chosen such that top-k eigenvectors represent 99% of the total
eigenenergy. Usually, r is chosen empirically from the devel-
opment set. To obtain the reduced dimensional representation
of a feature descriptor, it is mean normalized and projected
into the respective subspace. The outcome of this step is
a dimensionality reduced feature descriptor for each image
which is a very close approximation of the original feature
vector.

(a) PCA

(b) HCA

Fig. 6. Illustrating PCA and HCA in terms of the components used. d is
the total number of components. k is the number of components used in PCA
and r is the number of components rejected in HCA.

C. Classifier and Distance Metrics

Matching in feature space and in learned discriminative
space is performed using nearest neighbor and LDA. The
projections of the gallery and probe features are matched using
two distance metrics, namely euclidean and cosine distance.
Let x and y be the two projections to be matched, the euclidean
distance is defined as

E(x, y) =

√

∑

i

(xi − yi)2

and the cosine distances is defined as

CosDist(x, y) = 1− xyT√
xxT

√

yyT
.

IV. EXPERIMENTS AND ANALYSIS

Following the evaluation framework shown in Fig. 3, NIR-
VIS 2.0 dataset is used for performance evaluation. Three
sets of experiments are performed: (1) establish the baseline
performance using FaceVacs which is a commercial-off-the-
shelf (COTS) system, (2) evaluate the effectiveness of HOG
variants, classifiers, dimensionality reduction techniques, and
distance metrics, and (3) to compare the effectiveness of HCA
with PCA.

A. Database and Protocol

NIR-VIS 2.0 dataset [15] consists of 17,850 NIR and VIS
images (combined) pertaining to 725 subjects of varying age
groups. The images were acquired in four different sessions
with a resolution of 128 × 128. The protocols defined for
performance evaluations consist of two views. View 1 is for
development of solution/algorithm and selection of optimum
parameters. It consists of train development and test develop-
ment sets. View 2 is for reporting performance, which may
also require optimizing parameters. View 2 consists of 10
splits of train and test sets for random subsampling cross
validation. In both the views, there are equal number of
subjects in train and test sets. The performance is reported in
terms of rank-1 identification accuracy and cumulative match
characteristic (CMC) curves are shown. Mean and standard
deviation over the 10 folds are also reported. Face images used
for evaluation are already cropped and registered. Hence, no
further preprocessing is performed on the face images.

B. Analysis

The baseline algorithm by Li et al. [15] utilizes PCA with
cosine metric as the similarity measure. The face symmetry is
leveraged along with application of HCA to further enhance
the performance. As shown in Table I, this leads to rank-1
accuracy of 23.70% and standard deviation of 1.89%. On this
dataset, this has been the state-of-the-art accuracy till now.
To understand the performance of existing commercial match-
ers, identification performance is computed with FaceVacs.
Though the performance of FaceVacs is significantly better
than existing baseline, there is a significant scope of further
improvement.

TABLE I. BASELINE RANK-1 IDENTIFICATION ACCURACIES (%).

Classifier Accuracy

PCA + Symmetry [15] 09.26±0.66

PCA + Symmetry + HCA [15] 23.70±1.89

FaceVacs 58.56±1.19

Table II and Fig. 7 report the rank-1 identification accu-
racies and CMC curves of various combinations of features,
dimensionality reduction techniques, and classifiers in the
proposed evaluation framework. The key observations are as
follows.

• The best performance is achieved by DSIFT with
subspace LDA i.e. PCA+LDA and cosine distance



Fig. 7. CMC plots illustrating the performance of different combinations of features, dimensionality reduction techniques, and classifiers in the proposed
framework.

metric. This even outperforms the FaceVacs matcher
with a significant margin of ~15%.

• Consistently across all the features, performing dimen-
sionality reduction with PCA either results in signifi-
cant improvement or at least maintains the recognition
accuracy (with exception in only one case).

• The performances of DSIFT, HOG-UoCTTI, and
HOG-DT reveal that the later lags in the compari-
son of formers. Note that, DSIFT and HOG-UoCTTI
utilize directed gradient whereas HOG-DT utilizes
undirected gradient. The performance difference may
be attributed to this property and for VIS to NIR face
matching directed gradients are more effective than
undirected gradients.

• Classification of raw DSIFT features with LDA yields
poor results than with NN, however reduced dimen-
sional representations surpass FaceVacs. This may be
due to the small sample size (SSS) problem as the
number of samples in training (number = ~6100) is
less than the raw feature length of DSIFT (dim =
8192). These results are obtained when regularization
is performed to address singularity of within-class
scatter which may arise due to the SSS problem.

• Consistently in all the experiments cosine metric out-
performed euclidean distance. This suggests that for
the proposed VIS to NIR matching framework, cosine
distance may be a better distance metric.

• We have also performed experiments with LBP fea-

TABLE II. RANK-1 IDENTIFICATION ACCURACY OF PIXEL INTENSITY AND HOG FEATURES IN COMBINATION WITH DIMENSIONALITY REDUCTION

TECHNIQUES, CLASSIFIERS, AND DISTANCE MEASURES.

Pixel Intensity DSIFT HOG-DT HOG-UoCTTI

Raw PCA Raw PCA Raw PCA Raw PCA

NN
Euclidean 1.64±0.31 1.64±0.24 14.11±1.09 14.12±1.08 8.00±1.22 8.00±1.21 9.78±1.66 9.86±1.62

Cosine 3.92±0.79 2.43±0.41 14.10±1.08 17.04±1.03 10.17±1.28 12.89±1.48 12.30±1.42 15.21±1.59

LDA
Euclidean 1.09±0.44 9.10±2.21 2.93±0.58 47.01±1.99 11.73±1.46 25.14±2.33 23.49±1.88 32.28±1.23

Cosine 9.04± 0.63 43.44±1.59 8.52±1.26 73.28±1.10 13.84±1.83 48.27±1.43 27.52±1.62 59.51±1.35



tures and the results with HOG features seem to be
more appropriate than LBP for visible to near-infrared
face matching. Moreover, in our experiments on NIR-
VIS-2.0 database, LBP does not seem to add value in
feature level fusion as well.

• Note that, in Li et al. [15], baseline algorithm is
different than in this paper which may explain the
difference in accuracy between both. In this research,
PCA is applied to preserve 99% eigenenergy whereas
in [15] PCA preserves 98% eigenenergy with an
additional unit length normalization on samples.

Since Li et al. [15] observe HCA to be more useful than
PCA, we investigate HCA for the best performing combination
of DSIFT with subspace LDA and cosine distance metric. The
results are reported in Table III. It has been observed that
dimensionality reduction using HCA degrades the performance
compared to PCA. The key intuition behind HCA is that in
case of heterogeneous data samples, the largest variation in
total variance is due to spectrum differences. These variations
will be even more than the actual inter-class variabilities which
provide discriminative information.

Table III shows the effect of using HCA by replacing PCA
in the best performing combination of DSIFT+PCA+LDA.
Further, HCA with raw pixel intensity values is also evaluated.
Similar to Li et al. [15], in nearest neighbor matching, the
accuracy improves when HCA is employed instead of PCA.
However, when matching is performed in the discriminant
space learned by LDA, HCA leads to significant performance
reduction compared to PCA. It shows that LDA benefits from
the top components which are otherwise strictly rejected in
HCA. It also means that the top components contain informa-
tion useful for identification; however simple nearest neighbor
(without LDA) is not able to leverage that information.

TABLE III. COMPARING RANK-1 IDENTIFICATION ACCURACIES (%)
OBTAINED BY USING HCA AND PCA FOR DIMENSIONALITY REDUCTION.

Dimensionality LDA NN

Reduction DSIFT Intensity DSIFT Intensity

PCA
Euclidean 47.01±1.99 9.10±2.21 14.12±1.09 1.64±0.24

Cosine 73.28±1.10 43.44±1.59 17.04±1.03 2.43±0.41

HCA
Euclidean 29.82±2.08 5.77±1.91 23.64±1.58 6.39±1.99

Cosine 58.43±1.17 34.57±1.49 38.64±1.44 21.97±1.47

V. CONCLUSION

This paper presents an evaluation framework to analyze the
effectiveness of HOG features for cross spectral (visible to near
infrared) face recognition. In conjunction with feature space,
PCA and HCA subspaces as well as LDA, a detailed analysis is
performed on the NIR-VIS-2.0 database. Experimental results
show that DSIFT+PCA+LDA+Cosine distance achieves the
rank-1 identification accuracy of 73.28% and outperforms
state-of-the-art by a significant margin of ~50% and COTS
by ~15%. It is also observed that directed orientation is more
useful for recognition than undirected orientations. In future,
we plan to extend the framework with distance metric learning
and domain adaptation approaches to further improve the
accuracy.
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