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Abstract—Large scale biometrics projects rely on capturing
images/signal from multiple sensors. For example, in India’s
Aadhaar project, multiple fingerprint sensors of different make
and model are used for data collection. Similarly, in law enforce-
ment applications, different agencies use different fingerprint
sensors. These scenarios cause two potential problems: (i) sensor
inter-operability and (ii) protecting/recording chain of evidence.
While sensor inter-operability in fingerprints is a well studied
problem, automatically recording chain of evidence is a relatively
less explored research problem. For both the problems, one
potential approach includes automatically identifying sensors
based on the input image. This paper presents a novel fingerprint
sensor identification algorithm based on multiple features such
as Haralick, entropy, statistical and image quality features. The
proposed algorithm is evaluated on a large database with 30,000
images with 15 fingerprint sensor classes. The proposed algorithm
achieves an accuracy of 96% and computationally requires less
than 10 milliseconds for an image.

I. INTRODUCTION

Prevalence and success of large scale biometrics projects
such as UIDAI and FBI AFIS has instigated continuous growth
in biometric sensor design and algorithm/system development.
Different kinds of sensors are being manufactured and used
in these large scale projects to captured the data/images. In
such a scenario, the problem of inter-operability is common
where the images acquired using different sensors are matched
together via various pattern matching algorithms. These dif-
ferent sensors, while they capture same biometric modality,
may provide different information. For example, as shown in
Fig. [T} there are various types of fingerprint sensors such as
optical, capacitive, and thermal which can provide different
information. Looking at these example images, it is very
evident that the image quality can vary according to the sensor
properties.

In a multi-sensor environment, one important aspect is
identifying the sensor from which the image is being captured.
This serves two important purposes: (1) helps in establishing
the chain of command for forensics and law-enforcement
applications and (2) can be useful for addressing sensor inter-
operability. In fingerprint recognition, establishing a chain of
evidence with tens of devices in the market is an important
research challenge. As Bartlow et al. [4]] have mentioned, we
should be able to determine that which image is captured
from which sensor, which manufacturer, and which device.
Bartlow et al. also proposed to utilize sensor noise pattern for
identifying the sensor from the fingerprint images and also
implemented brand and unit level sensor identification model.

Another interesting application of sensor identification can be
related to attacks on a biometrics system where biometric
templates can be modified [24]. The first step in such cases
would be to determine the source model from which the image
is generated. It is important to note that very few researchers
have worked on identifying biometrics (fingerprint) sensors
from the given images.

As mentioned previously, another purpose of sensor identi-
fication is related to inter-operability. Several researchers have
explored the problem of fingerprint sensor inter-operability,
some of them are mentioned in Table I Ross and Jain
[25] studied fingerprint inter-operability with several sensing
technologies that are widely used for capturing the fingerprint
impressions. They observed that the (i) number of minutia
extracted from the images captured using optical sensor is
higher than the images captured using solid state sensor and
(ii) cross sensor matching performance is lower than the
same sensor performance. Ross and Nadgir [26] presented the
thin-plate spline model for sensor calibration to improve the
cross-sensor performance of the fingerprint matcher. In 2013,
Marasco et al. [|17] showed that the genuine scores are higher
when both gallery and probe images are captured using same
sensors. They proposed a combination of features and match
scores obtained from fingerprint matcher to improve cross-
sensor fingerprint recognition performance. Image quality,
pattern noise, intensity and direction related features are also
proposed to enhance the cross sensor matching performance.
Modi et al. [20] statistically analyzed the minutia count,
image quality, and matching performance. Quality score of the
images captured using different sensor shows high similarity
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Fig. 1: Samples fingerprint image captured using four different
sensors: (a) CrossMatch (Optical), (b) Digital Persona (Opti-
cal), (c) Atmel (Thermal-sweeping), and (d) Synthetic. Images
are taken from the FVC-2006 [7]].



TABLE I: Summarizing the literature in fingerprint sensor inter-operability.

[ Authors | Database | Contribution
Ross and Jain [25] (2004) MSU DBI and VERIDICOM | Optical vs Solid state sensors inter-operability case study.
Ross and Nadgir [26] (2008) | MSU Minutia + Distortion + TPS calibration.
Bartlow et al. [4] (2009) WVU, Clarkson, FVC Wavelet denoising, PRNU and Correlation noise reference pattern
Modi et al. [20] (2009) Many Minutia count + Image quality + FNMR.
Jia et al. 9] (2012) Fingerpass Cross database and sensor type level inter-operability + Verifinger SDK
Lugini et al. [14] (2013) WVU dataset Large scale study on sensor inter-operability.
Marasco et al. [17] (2013) In-house Features + Match Score + DET + NFIQ quality.
Mason et al. 18] (2014) In-house NFIQ and MITRE + COTS.
Yang et al. [28]] (2015) Many Finger vein+ SLIC + ROI + Finger body tracking.

while the minutia count across databases have no relation.
Yang et al. [28] proposed the super pixel based finger vein
ROI extraction across sensors. Mason et al. [18] showed
fingerprint image quality analysis across sensors and gender
using two different quality algorithms. They used NFIQ and
MITRE quality algorithms for comparing the performance
across images. They used three kinds of matchers to generate
the match scores from the gallery and probe images from same
and different sensors. The results show that the error obtained
with same sensor matching is lower than matching images
captured with different sensors. Jia et al. [9] prepared the cross
device fingerprint database using nine different sensors while
considering the model and technology in the consideration.
They also observed that the cross-device fingerprint matching
gives the higher error in comparison to the same device
fingerprint matching. They showed that differences in image
resolution and image size can affect the area available for
matching. Fingerprint impression can be acquired by pressing
or sweeping the finger on the sensor. In this paper, the authors
observed large sensor inter-operability between the optical
press and capacitive press sensors. Lugini et al. [[14] performed
the large scale fingerprint sensor inter-operability study. They
showed that genuine match scores are much higher while
matching the same fingerprint images captured using the same
sensor. They also observed that false non-match rates are
greatly affected by the cross sensor matching while false match
rate remains un-affected in sensor inter-operability.

Existing sensor classification techniques can be classified
into three groups: i) based on sensor pattern noise [15], [[19],
ii) using hand-crafted or learned feature extraction and clas-
sification [_2], [11]], and iii) based on color filter analysis [5],
[22]. In this paper, we present a fingerprint sensor classification
algorithm based on mélange of handcrafted features including
texture features, entropy features, image quality, and statistical
features. Since several different kinds of variations can be ob-
served with different sensors, the proposed algorithm utilizes
a spectrum of features to encode the variations followed by
learning a non-linear multi-class classifier for classification.

II. PROPOSED FINGERPRINT SENSOR CLASSIFICATION
ALGORITHM

Fig. [2] illustrates the steps involved in the proposed al-
gorithm. It uses texture, local intensity, image quality, and
statistical features along with a non-linear classification model.

Since different sensors provide images of different sizes, they
are first resized to a fixed size using the bicubic interpola-
tion. The algorithm extracts four different kinds of features:
Haralick [8], entropy, statistical, and image quality measure.
Haralick and entropy features are texture features and these are
better encoded in the wavelet domain. Therefore, we compute
the Redundant Discrete Wavelet Transform (RDWT) of the
input fingerprint image. Fig. [3] shows the four bands obtained
after the RDWT decomposition. Haralick and entropy features
are extracted from these individual sub-bands. Statistical fea-
tures capture intensity based statistical properties of the image
and therefore they are extracted directly from the resized input
images only. Similarly, image quality features [3]] are extracted
from the input images only. The details of feature extraction
and classification algorithm are described below.

A. Feature Extraction

Statistical Features: To capture the local intensity variations
of the images captured using different kinds of sensors, images
are divided into four blocks of equal size. Each block is further
divided into four sub-blocks of equal size. For each block
and sub-block, mean and standard deviation are calculated.
The statistical feature vector is generated by concatenating the
mean and standard deviation from each of the sub-blocks and
blocks. The total dimension of combined features, F}, is 40
(32 for the sub-blocks and 8 for the blocks).

Entropy: To calculate the entropy features, each image is first
decomposed using two-levels of the redundant discrete wavelet
transform. Each level of RDWT decomposition provides four
sub-bands, namely approximation, horizontal, vertical, and
diagonal. Each sub-band is of equal size as the original image.
Entropy over each decomposed sub-bands are calculated using

Equation [T}
ai

where E(-) is the entropy of sub-band H;, and p; and o;
are the mean and standard deviation of the " sub-band
respectively. The entropy of each sub-band is concatenated to
generate the second feature vector F5. The final feature vector
is obtained by concatenating all the entropy values measured
over each wavelet decomposed sub-band. Computing the fea-
tures from the second level of RDWT decomposition yields
entropy feature vector of size eight values.
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Fig. 2: Illustrating the steps involved in the proposed
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Fig. 3: RDWT decomposition: (a) original image, (b) approx-
imate, (c) horizontal, (d) vertical, and (e) diagonal band. First
row represents the first level and the second row contains the
second level of RDWT.
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Haralick: Texture features are computed with the motivation
that fingerprint images are rich in texture which is dependent
on how this information is captured by the fingerprint sensor.
Hence, encoding how much of the texture information is
captured using a given sensor can be helpful in identifying
the sensor. Haralick texture features [8] measure the intensity
homogeneity and other local texture information. To compute
the Haralick texture features, images are first decomposed
using the RDWT and 13 Haralick features are calculated.
The list of Haralick features are mentioned in Table [ and
the details of these features can be found in [8]. Haralick
features are computed over the entire image and each of
the RDWT sub-bands thus providing a total of 13 and 104

algorithm for fingerprint sensor classification.

TABLE II: Haralick features extracted from the images.

Contrast

Sum of Squares: Variance

Sum Average

Sum Entropy

Information Measure of Correlation 2
Information Measure of Correlation 1

Angular Second Moment
Correlation

Inverse Difference Moment
Sum Variance

Entropy

Difference Entropy
Difference Variance

TABLE III: IQM features extracted from the images.

Mean Square Error Peak Signal to Noise Ratio

Average Difference Structural Content

Normalized Cross-Correlation Maximum Difference

Laplacian Mean Squared Error Normalized Absolute Error

Spectral Magnitude Distortion Spectral Phase Distortion

Weighted Spectral Distortion Median Spectral Magnitude Distortion

Median Spectral Phase Distortion | Weighted Median Spectral Distortion

Czekanowski Distance Mean of Wavelet Sub-bands (4)

Mean of Image Mean Absolute Error

features, respectively. Thus, the dimensionality of the Haralick
feature vector is 117 for an image.

Image Quality Measures (IQM): IQM captures image quality
characteristics of the input image [3]|. In this research, we
have computed 21 image quality measures and these features
are listed in Table [l Some of the Image quality measures
computed in this paper are explained below:

e Mean of the original image and mean of the single level
wavelet decomposed sub-bands are computed.

« Minkowski measures using equation [3] computes the dif-
ference between the pixel intensities between the original
image and the corrupted image. v = 1 corresponds to
mean absolute error and v = 2 corresponds to mean
square error.

e Minkowski Measure

K

_ 1 1
Mv—?E:W
k=1

N
> 1Ckling) = Cr(i )l (3)

3,j=1

e Correlation Measure



TABLE IV: Summarizing the database characteristics.

Database Sensors | Sensor Models Data | Train Data | Test Data
FVC 2002 [16] 4 (a) Identix (Optical) (b) Biometrika (Optical) (c) Precise Biomet- 3,200 800 2,400
rics (Capacitive) and (d) SFinGe v2.51 (Synthetic)
FVC 2006 [7] 4 (a) CrossMatch (Optical) (b) Digital Persona (Optical) (c) Atmel | 6,720 800 5,920
(Thermal-sweeping) and (D) SFinGe v3.0 (Synthetic)
IIIT-D MOLF 4 (a) Lumidigm Venus IP65 Shell (Optical) (b) Secugen Hamster-IV | 16,400 800 15,600
[127] (Optical) (c) CrossMatch L-Scan Patrol (Optical) and (d) Latent
(CMOS sensor)
CASIA  Cross 3 (a) UrU 4000B (Optical) (b) Authentec AFS-II (Capacitive) and | 3,000 600 2,400
Sensor [/1]] (c) Symwave sw6800 (Capacitive)

N-1 ‘ CoN A e
M= Y 1o 232 min(Ci(is 3), Culiy 5)
N2 TN A
i,j=0 Yohe1 Cn(i, 5) + Ci(i, )
“)
o Spectral Measure
N-1 " ;
Tk(u,v) = W;O Cr(m, n)exp[—QﬂimM]ea:p[—QTrinN]
&)

where I'y(u,v) denotes the Fourier transform of the
original image and 'y, (u, v) denotes the Fourier transform
of the corrupted image.

o Magnitude spectra (Equation [6) and phase spectra of
the image with block and without block are used as a

features.
1 3 N-1
— 3 2
M = 135 Z X_jo||rk<u,v>|f|rk<u,v>|| (©)

o The weighted sum of the magnitude and phase spectra is
also computed.

JZ)\JM+(1—/\)J¢ @)

where A is the weighted factor between the magnitude
and phase spectra. Jy; and J, are the Magnitude and
Phase spectra respectively. \ is set to 2.5 x 1075,

Where k=1..3 represents the color channels and C, C are
the original and gaussian corrupt image respectively. N is the
size of the squared image.

B. Classification

Once the features are extracted, the classification is per-
formed using a multi-class support vector machine [6]. The
multi-class classifier is trained according to the number of
sensors in the database, i.e. the number of classes is same
as a number of sensors. The parameter and kernel of an
SVM classifier is learned using training data and it is found
that the rbf kernel is performing best for fingerprint sensor
classification.

III. DATABASE AND EXPERIMENTAL PROTOCOL

The results of the proposed algorithm are shown by combin-
ing 4 publicly available databases containing fingerprint im-
ages from 15 different sensors. These databases are Fingerprint

verification competition (FVC) 2002 and 2006, IIIT-D MOLF,
and CASIA multi-sensors database. Table [[V] summarizes the
characteristics of all four databases and Fig. [4| shows sample
images from these databases.

e FVC 2002 [16] is collected using four different sensors.
We are using set A of this database for our experiments.

e FVC 2006 [7] is also acquired from four different finger-
print sensors and we are using Set A of this database.

o IIIT-D MOLF database [27] is captured using five differ-
ent capturing methods. In this paper, we are using data
corresponding to four sensors. It contains 16,400 images
collected from 100 different subjects.

o CASIA Cross Sensor database [1] is collected using three
different sensors. 10 fingerprint impressions per person
from 100 different fingers are captured for this database.

Combining all four databases, the experiments are per-
formed with 17,960 images collected from the optical scanner,
2,800 images from capacitive, 4, 400 images to CMOS, 1, 680
images to thermal sweeping, and 2,480 synthetically gener-
ated images. From each database, 200 images corresponds to
particular sensor are used for training the SVM model and the
remaining images are used for testing the classifier. As shown
in Table out of the total 29, 320 images, 3, 000 images are
used for training and the remaining (around 90%) images are
used for testing.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

Table shows the classification results of the proposed
algorithm and comparison with existing sensor classification
techniques [4]], [[10]], [12]. Among these existing algorithms,
only Bartlow et al. [4] is related to fingerprint sensor identi-
fication. The results show that the proposed algorithm yields
the classification accuracy of above 96% and is almost 29%
higher than the next best performing algorithms. Further, Table
[V] also shows that individual features are at least 4.4% less
accurate than the mélange of features. We also observe that if
we remove any of the feature set, then the accuracy is reduced.
Further, in the proposed algorithm, selection of wavelet de-
composition and mother wavelet can have a significant impact
on the performance. The proposed algorithm uses RDWT with
DB1 mother wavelet. We also performed comparison with
RDWT and DWT with two other mother wavelets: DB9 and
biorthogonal 9/7. We observed that the classification accuracy
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Fig. 4: Sample images from the four database - every image
is collected from a different sensor.

TABLE V: Sensor classification results of the proposed and
existing algorithms on the multisensor database.

Algorithm Classification Accuracy (%)
HOG [10] 67.18
Li et al. [12] (128 x 128) 34.33
Li et al. [12] (256 x 256) 50.68
Bartlow ef al. 51.84
Statistical features 90.44
Entropy 52.85
Haralick over image 76.32
Haralick (images + RDWT) 92.08
1QM 90.79
Proposed 96.52

with all the combinations varies within 1.5% of each other
and RDWT + DBI yields the best results.

In order to further understand the effectiveness of the
proposed algorithm, we manipulated the original images with
random gaussian noise, blur, and cropping. The main motiva-
tion behind this alteration is that in real time the original image
can be affected due to some these variations. We applied two
kinds of Gaussian noise, (1) with a variance of 0.01, (2) with
a variance of 0.05 and (3) original image is cropped from the
center to size 120 x 120 and Gaussian noise with variance
0.01 is added. Fig. [5] shows sample images with the three
artifacts. Table |VI| summarizes the results of this experiment.
Adding noise reduces the accuracy of the proposed algorithm
to a certain extent but it has a significant affect on existing
algorithms and in the worst case, it reduces the accuracy by
almost 25%.

Even though the total dimensionality of all the features is
not very high, we performed another set of experiments to
understand the effect of feature selection. We implemented
six different feature selection algorithms to choose the most
important features from the pool of the features proposed.

TABLE VI: Sensor classification accuracy with tampered
images (with dbl wavelet filter).

Artifacts Proposed | HOG [10] | Bartlow et al. [E[]—
Original Images 96.52 67.18 51.84
Gaussian Noise (0, 0.01) 94.57 71.22 42.87
Gaussian Noise (0, 0.05) 92.00 67.96 41.86
Gauss_lan Noise (0, 0.01) 87.57 55138 26.19
cropping from center

The feature selection algorithms used are based on: (1) Mu-
tual Information (MI), (2) Statistical Dependency (SD), (3)
Sequential Forward Selection (SFS), (4) Sequential Floating
Forward Selection (SFFS) (5) Random Subset Feature Se-
lection (RSFS), and (6) Genetic Algorithm and Information
Theory [13], [21]], [23]]. Statistical feature selection method
is based on the criteria that the selected feature have the
association with the class label or not. If the feature has
high correlation with class labels then it is considered useful
for classification. Statistical dependency between two random
variables is calculated such that higher the value of SD, the
higher the chance of dependence between the feature and its
corresponding class label. RSFS is an iterative algorithm that
randomly selects a subset of features from the feature pool
and performs K-Nearest Neighbor classification to check the
relevance of the features. SFS feature selection works in the
forward direction of feature set update and the feature set that
yields highest accuracy is selected. SFFS works in three steps:
the first step is similar to SFS in which some features are
selected from the pool and the scores are calculated. In the
next two steps, it removes some low relevance features from
the selected set based on the principle of conditional exclusion.
Least important feature from the selected features is removed
and the feature selection algorithm attempts to find the highest
scoring features. Finally, for genetic and information theory
based feature selection, initial chromosomes are generated by
randomly selecting the features with repetition. Based on the
maximum relevance and min-redundancy techniques, genetic
learning parameters are selected such that the best performing
features are preserved. Table [VII] summarizes the results with
a feature selected in terms of a number of features selected
as important and the corresponding classification accuracy. A

(d)

Fig. 5: Images illustrating the effect of adding noise: (a)
original images, (b) Gaussian noise of variance 0.01, (c)
Gaussian noise of variance 0.05, and (d) Gaussian noise of
variance 0.01 after cropping from center to size 120 x 120.



TABLE VII: Classification accuracy by applying different
features selection algorithms on the proposed set of features.

Algorithm No. Sotfli‘iiflures Accuracy %
Original Features 186 96.52
Mutual Information 100 96.24
Statistical Dependency 100 96.35
SES 12 91.98
SFES 19 94.71
RSFS 35 97.02
Genetic Algorithm 100 96.83

minimum number of features are given by Sequential forward
selection but it also reduces the accuracy to 91.98%. The
best results are obtained by random subset feature selection
algorithm which selects 35 features and yields an accuracy of
97.02%, slightly higher than original features. Among these
35 selected features, 10 features are statistical features, 10 are
Haralick features, 11 are image quality features, and 4 are
entropy based features. This shows that all four features are
equally important for achieving higher accuracies.

Ideally, sensor classification algorithm should not require
a lot of computational resources or time. In that regard, the
proposed algorithm is computationally highly cost effective.
On an ¢7-4770 desktop PC with 16 GB RAM and Matlab
programming, the algorithm requires only 0.008 seconds to
process a fingerprint image and provide a classification result.

V. CONCLUSION

The main contribution of this paper is presenting a novel
fingerprint sensor identification algorithm via mélange of
multiple features such as Haralick texture, entropy, and in-
tensity information. The algorithm extracts variety of features
that are used by a SVM classifier to identify the source of
the fingerprint images. The experiments are performed on a
combination of multiple databases including FVC 2002, FVC
2006, CASIA cross sensor and IIIT-D MOLF database. The
proposed feature extraction algorithm yields an accuracy of
over 96% and requires very less processing time which makes
it effective for real time applications.
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