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Abstract

Latent fingerprints are important evidences used by law enforcement agencies. However, current state-of-the-art
for automatic latent fingerprint recognition is not as reliable as live-scan fingerprints and advancements are required
in every step of the recognition pipeline. This research focuses on automatically segmenting latent fingerprints to
distinguish between ridge and non-ridge patterns. There are three major contributions of this research: (i) a machine
learning algorithm for combining five different categories of features for automatic latent fingerprint segmentation,
(ii) a feature selection technique using modified RELIEF formulation for analyzing the influence of multiple category
features on latent fingerprint segmentation, and (iii) a novel SIVV based metric to measure the effect of the segmen-
tation algorithm without the requirement to perform the entire matching process. The image is tessellated into local
patches and saliency based features along with image, gradient, ridge, and quality based features are extracted. Fea-
ture selection is performed to study the contribution of the various category features towards foreground ridge pattern
representation. Using these selected features, a trained Random Decision Forest based algorithm classifies the local
patches as background or foreground. The results on three publicly available databases demonstrate the efficacy of
the proposed algorithm.
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1. Introduction

Latent fingerprints are (un)intentional deposition of ridge patterns on a surface that comes in contact with a fin-
gerprint. In law enforcement applications, latent fingerprints are used as a crucial forensic evidence for crime scene
analysis. Existing semi-automated procedures for latent fingerprint matching consist of: (1) preprocessing, (2) manual
annotation of features such as minutiae and singular points, (3) search for top-k probable matches (typically k = 50)
using an Automated Fingerprint Identification System (AFIS), and (4) manual verification of the candidate list by
forensic experts. The preprocessing stage consists of (i) quality check of latent fingerprints, (ii) segmenting the fore-
ground fingerprint regions from the noisy background, and (iii) enhancing the clarity of ridge patterns. In current
approaches, forensic experts have to manually pre-process a large number of fingerprints which is time consuming
and not scalable. Therefore, automating these steps can significantly increase the efficiency of AFIS. With the same
intent, FBI’s Next Generation Identification (NGI) [1] aims at building an automated “lights-out” latent fingerprint
matching system.

This research paper focuses on automating the task of latent fingerprint segmentation. As shown in Figure 1, some
of the factors involved in making latent fingerprint segmentation a difficult problem are that fingerprints may be of poor
ridge clarity [3] or certain latent fingerprints may not have a clear boundary due to smudges and background noise. A
recent survey by Sankaran et al. [4] discusses the challenges involved in automatic latent fingerprint segmentation.

• Poor ridge clarity: The varying background surfaces, smudges, and non-linear distortion introduced while
lifting, as shown in Figure 1(a), reduces the ridge information in the print.
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Figure 1: (a) Sample latent fingerprint images from the NIST SD-27 database [2] demonstrating the effect of background information on ridge
information and (b) latent fingerprint samples illustrating the problem of segmentation.

• Structured marks: Structured markings such as arch, lines, and characters, as shown in Figure 2(a), have
patterns that are similar to ridges, thereby adding to the challenges faced by an automatic latent fingerprint
segmentation algorithm.

• Optimal representation: The output of fingerprint segmentation can be represented in multiple ways, as shown
in Figure 3. Selecting the optimal representation with maximum information is an essential research challenge.

• Performance metric: The performance of the preprocessing stage is usually evaluated as an improvement in
rank-k matching performance [5], [6]. However, as the overall latent print matching involves other complex
stages like minutia extraction and matching, there is a desire to evaluate the success of preprocessing stage as-is.

• Overlapped prints: Two or more latent fingerprints may be overlapped, as shown in Figure 2(b). Estimating
the orientation of latent fingerprints independently and segmenting individual fingerprints in such cases is also
a difficult problem.

Some latent fingerprint segmentation approaches have been developed in literature which are summarized in Ta-
ble 1. In 2008, Karimi and Kuo [7] proposed an automated latent fingerprint segmentation technique by measuring
the variability in the ridge frequency and gradient in the local blocks. The performance of their algorithm was visu-
ally demonstrated using two images from the NIST SD-27 database [2]. In 2011, Short et al. [8] proposed a latent
fingerprint segmentation technique by cross-correlating latent prints with an ideal template of ridge patterns. The
correlation strength identifies ridge-like patterns thereby segmenting the foreground regions. Their algorithm yielded
an Equal Error Rate (EER) of 33.8% on the NIST SD-27 database. Choi et al. [9] combined fingerprint orientation
tensor and frequency tensor information to segment foreground from background. They showed a rank-1 performance
accuracy of 16.28% on the NIST SD-27 and 35.19% on the WVU database. Their approach also yielded a Missed
Detection Rate (MDR) of 14.78% and a False Detection Rate (FDR) of 47.99% in NIST SD-27 database. Zhang et
al. [5] proposed an Adaptive Directional Total Variational (ADTV) model which is a variation of TV-L2 model. The
ADTV model is suitable for decomposing textures with orientation patterns. The orientation pattern forms a defined
structure in foreground ridge regions. Their approach yielded a Rank-1 identification accuracy of about 2% on NIST
SD-27, with a MDR of 14.10% and FDR of 26.13%. Recently, Cao et al. [6] used a combination of coarse and fine
structure ridge dictionary to learn a sparse representation of ridge-like patterns. Rank-1 identification accuracy of
61.24% was reported on NIST SD-27 and 70.16% on WVU database.

In this research, we propose a feature selection and learning based classification approach for segmenting finger-
print foreground from background. As shown in Figure 4, the interleaving ridge-valley patterns and the background
are much clearer and distinct in live-scan fingerprints than in latent fingerprints. Therefore, any single feature or a
category of features is unlikely to yield proper segmentation results across all kinds of latent fingerprints lifted from
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Table 1: Review of existing latent fingerprint segmentation techniques.
Paper Methodology Database Results Other metrics
Karimi &
Kuo [7], 2008

Variation in ridge fre-
quency and gradient

2 images from NIST SD-27 -NA- -NA-

Short et
al. [8], 2011

Cross-correlation
strength

NIST SD-27
Equal Error Rate of
33.8%

-NA-

Choi et al. [9],
2012

Orientation and fre-
quency tensor

NIST SD-27 and WVU with
extended gallery of 31997
images

Rank-1 accuracy of
16.28% on NIST SD-27
and 35.19% on WVU DB

Missed Detection Rate,
False Detection Rate

Zhang et
al [5], 2013

Adaptive directional to-
tal variational model

NIST SD-27 with extended
gallery of 27258 images

Rank-1 accuracy of less
than 3%

Missed Detection Rate,
False Detection Rate,
Feature extraction

Cao et al. [6],
2014

A coarse and fine struc-
tured ridge dictionary

NIST SD-27 and WVU
database with extended
gallery of 31997 images

Rank-1 accuracy of
61.24% on NIST SD-27
and 70.16% on WVU DB

-NA-

(b) Overlapped latent fingerprints(a) Structured noise

Speckle
Line

Arch
Stain

Character

Figure 2: Sample fingerprint images from NIST SD-27 showcasing two specific challenges in latent fingerprint segmentation. (a) presence of
structured noise in latent fingerprint background that often resembles ridge like patterns, and (b) overlapped fingerprints result in overlapped ridge
information making it difficult to determine the ridge flow of either of the fingerprints.

different surfaces. Also, to accommodate the variations in the ridge patterns and to make generalized conclusions,
the segmentation algorithm needs to select useful features and to learn the difference between background and fore-
ground regions from these features. Inspired from these observations, the proposed approach extracts a composite set
of features to represent latent fingerprint ridge patterns, performs feature selection, and classification for improved
accuracy. The key research contributions of this research are:

• Latent fingerprint segmentation is modeled as a learning based two-class classification problem with foreground
and background being the two classes. To the best of our knowledge, no classification based segmentation ap-
proach has been proposed for latent fingerprints. Though in live-scan fingerprints, there are classification based
segmentation approaches [11, 12, 13, 14], the nature of latent fingerprints (with poor ridge features, varying
background, overlapping foreground-background information) cause difficulty in applying existing algorithms
on these images. The problem is further exacerbated with the availability of small sample size latent fingerprints
databases where classes have high intra-class variations. Traditional classifiers such as Support Vector Machine
(SVM) and Neural Network on such databases may not yield good classification results. Therefore, Random
Decision Forest (RDF) classifier, which is an ensemble of multiple decision trees, is utilized to classify the
extracted features into the two classes.

• We propose image saliency as a key feature for latent fingerprint ROI detection. To the best of our knowledge,
saliency has not been used for fingerprint segmentation in literature. It is observed that salient regions of an
image contain the foreground ridge information. However, for some instances, the background has very distinct,
salient objects other than fingerprints. Therefore, along with saliency based features we combine image intensity
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Figure 3: Sample latent fingerprints from the NIST SD-27 fingerprint database [2] showing segmentation results. (a) Original latent fingerprint im-
ages, (b) manually segmented output with a bounding box around the fingerprint region, (c) manually segmented output with exact boundary around
the fingerprint region, (d) manually segmented output with only useful ridge information rejecting all the smudgy and noisy (non-informative) re-
gions, and (e) segmented output from NFSEG module of NBIS [10].

based features and fingerprint specific features (gradient based, ridge based, and quality based) to obtain a more
robust representation of the fingerprint ridge patterns. We grouped many of the existing features into five
categories to perform a more system study on the foreground representation.

• A modified RELIEF formulation is proposed to perform feature selection and study optimal features for finger-
print segmentation which are finally used for classification.

• The performance of the proposed algorithm is evaluated using two different databases: (1) NIST SD-27 database
[2] and (2) IIIT-D Combined Latent Fingerprint (CLF) database, which is a combination of IIIT-D latent fin-
gerprint database [15] and IIIT-D SLF database [16]. The segmentation performance is evaluated in terms of
multiple metrics: (1) Spectral Image Validation and Verification (SIVV) based metric for evaluating the effect
of segmentation, (2) segmentation accuracy (SA) which captures the amount of useful information retained
after segmentation, and (3) matching accuracy (MA) which captures the contribution of segmentation process
in improving the latent fingerprint matching performance.

2. Proposed Segmentation Algorithm

Latent fingerprint segmentation is formulated as a binary classification problem where every local region is clas-
sified as either foreground or background. As illustrated in Figure 5, the proposed segmentation algorithm consists of
local block tessellation, feature extraction, and feature selection followed by RDF based binary classification.

2.1. Feature Extraction

Determining whether a local block contains fingerprint patterns requires extracting patterns that are very specific
to fingerprints (e.g. ridge patterns). A significant amount of research has undergone in describing ridge patterns
or segmenting inked and live-scan fingerprints [11, 12, 13, 14]. The features used for distinguishing fingerprint
foreground and background can be classified into five categories namely:

1. Saliency-based features: General saliency based features can be used to define the most salient regions in a
latent fingerprint image.

2. Image intensity-based features: Features such as intensity mean, variance, and ridge cluster degree can be
grouped into image intensity based features.
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Figure 4: Sample latent fingerprints illustrating the distinct nature of foreground ridge patterns and background. (a) inked fingerprints, (b) live-scan
fingerprints, and (c) latent fingerprints.

3. Gradient-based features: Features such as ridge orientation, variance along and normal to the ridge orientation
flow, and symmetric orientation response can be categorized as gradient based features.

4. Ridge-based features: Features such as inter-ridge distance, ridge frequency, and ridge angular bandwidth be-
long to ridge based features.

5. Quality-based features: Features such as ridge energy and ridge continuity map measure the quality of local
ridge blocks.

Let I be the input latent fingerprint image and I(i, j) denote the intensity at pixel coordinates (i, j). The image is
tessellated into local blocks of size w × w and five categories of features (mentioned above) are extracted from every
local block.

2.1.1. Saliency-based features
In an image, a salient region is defined as the region which is noticed first by a human eye [17]. In general, salient

regions are the most informative regions in an image and in the case of fingerprint, it is generally the foreground that
we notice first. Therefore, saliency-based features are applied to segment foreground from background. Here, two
such features are used, orientation and intensity of the intermediate neighborhood, that help in generating the saliency
map of a fingerprint image. As studied by Harol et al. [18], a saliency map gives higher values in the most salient
regions i.e. the fingerprint region along with some prominent background regions. Thus the intermediate features,
intensity and orientation (f1 − f2), should give a similar higher response in the foreground as shown in Figure 6. The
saliency features are computed as follows:

(i) Salient Intensity (f1): This feature is related to the saliency of a pixel, which is computed as the dissimilarity of
the given pixel with respect to its w × w neighborhood (in terms of image intensity). The dissimilarity measure
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Figure 5: Illustrating the steps involved in the proposed RDF based latent fingerprint segmentation algorithm. A composite set of features is
extracted from every local block and a random decision forest based binary classifier is used to classify the foreground regions from background.

is weighted by a Gaussian function,

f1 =

w
2∑

i=−w
2

w
2∑

j=−w
2

∣∣∣∣log I(x, y)

I(x+ i, y + j)

∣∣∣∣ · exp(− i2 + j2

2σ2

)
(1)

where, (x, y) is the center pixel of the local block and σ is a free variable which is assigned the value 0.5. Higher
value of dissimilarity in the local block represents that the region is more salient.

(ii) Salient Orientation (f2): This feature is computed by the summation of the Gabor filter responses along two
orientations: 0 degrees and 90 degrees. The orientation feature is calculated as follows:

f2 = abs(F •G(0)) + abs(F •G(90)) (2)

where, F is the Fourier transform output of the local block. G(0) and G(90) are the Gabor filters along zero
degrees and 90 degrees, respectively and < • > denotes 2D convolution.

Though saliency extraction algorithm [18] is designed for natural images, we observe that the approach provides
useful saliency maps in fingerprints as well, that can be used for segmentation. It is to be noted that saliency of all the
pixels are computed and then block-wise features are extracted.

(a) (b) (c)

Figure 6: (a) A sample image from the NIST SD-27 database with corresponding saliency-based (b) intensity feature (f1), and (c) orientation
feature (f2).
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2.1.2. Image intensity-based features
In a latent fingerprint image, the variation in intensity values is usually definite along the ridges and valleys when

compared to noisy background regions. Further, as shown in Figure 7, the properties of image intensity in a local
region of the foreground is different from the image intensity of the background. These properties are extracted using
three different intensity-based features.

(i) Difference of means (f3) computes the difference between the local intensity mean and the global intensity
mean. As a result of varying intensities in the background and foreground, the global intensity mean would be
closer to average grayscale value. For a local foreground fingerprint region, due to the interleaved ridge-valley
structures, the mean intensity value would be closer to average grayscale value of the image than compared to a
background region. Therefore, ideally the difference of means should be lower in the foreground as compared
to background.

f3 =

 1

w2

w∑
i=1

w∑
j=1

I(i, j)

− Imean (3)

where Imean is the mean intensity of the complete image.

(ii) Variance (f4) calculates the intensity variance in aw×w image block. Since the variance in an interleaved ridge-
valley structure would be higher, high variance is expected in a fingerprint region as compared to background.

f4 =
1

w2

w∑
i=1

w∑
j=1

I(i, j)− 1

w2

w∑
i=1

w∑
j=1

I(i, j)

2

(4)

(iii) Ridge cluster value (f5) indicates the clustering between the ridge pixels. This feature combines the properties
of both mean and variance to capture the ridge-valley structure in a fingerprint foreground region. It can be
calculated as follows [19]:

f5 =

w∑
i=1

w∑
j=1

v1(i, j)× v2(i, j) (5)

where

v1(i, j) =

{
1 if I(i, j) < Imean

0 otherwise,
(6)

v2(i, j) =

{
1 if s(i, j) <

(
n2

2 + 1
)

0 otherwise.
(7)

(a) (b)

Figure 7: Sample local blocks from the NIST SD-27 database with (a) foreground ridge blocks and (b) noisy background blocks. Varying image
intensity patterns can be observed between the foreground and the background blocks.
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(a) (b)

Figure 8: Sample local square blocks from the NIST SD-27 database with (a) dominant orthogonal orientation observed in a foreground ridge
block, (b) no dominant direction found in a noisy background block.

s(i, j) =

x=i+n
2∑

x=i−n
2

y=j+n
2∑

y=j−n
2

v1(x, y) (8)

Here, Imean is the global mean intensity and the number of pixels s, in the neighborhood n × n that have
intensity lower than Imean (typically valley regions) is measured. s tends to be larger in uniform background
regions than in ridge-valley like regions. Feature f5 measures the number of pixels in a local block w×w whose
s value is below a specific threshold. Thus f5 maybe a robust measure even in regions with broken or noisy
ridges.

2.1.3. Gradient-based features
The gradient of an image is used to capture the directional change in pixel intensities along a direction. This

change in directional flow will be more regular in a fingerprint region as compared to background where the noise
gives a non-directional change in the flow [20]. Gradient is also being used to estimate the orientation of ridges in local
regions as shown in Figure 8. For a latent fingerprint image I , let [Ix, Iy] be the gradient along x and y directions,
respectively. The orientation at location (i, j) is calculated as:

O(i, j) =



π/4 c1 = 0, c2 < 0

3π/4 c1 = 0, c2 ≥ 0

θI(i, j) + π/2 c1 > 0

θI(i, j) c1 < 0, c2 ≤ 0

θI(i, j) + π c1 < 0, c2 > 0

(9)

θI(i, j) =
1

2
tan−1

(
c2
c1

)
(10)

where, c1 and c2 are defined as follows:

c1 =

w∑
i=1

w∑
j=1

(
I2x(i, j)− I2y (i, j)

)
(11)

c2 =

w∑
i=1

w∑
j=1

2 · Ix(i, j) · Iy(i, j) (12)
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The gradient properties are formulated using six different features that are explained below.

(i) Ridge orientation (f6) is computed by smoothing the orientation over the block using a Gaussian smoothing
kernel [21].

f6 =
1

w2

w∑
i=1

w∑
j=1

O′(i, j) (13)

O′(i, j) =
1

2
tan−1

(
sin(2O(i, j)) ∗G(i, j)
cos(2O(i, j)) ∗G(i, j)

)
(14)

where, G is the Gaussian smoothing kernel of size 3× 3 and O(i, j) is defined in Equation 9.

(ii) Sum of squared gradient (f7) represents the sum of squares of the gradient values of a local block. The
interleaving ridge-valley pattern provides a change in flow that is higher as compared to the noisy background.

f7 =
√
c21 + c22 (15)

(iii) Sum of norm of squared gradient vector (f8) is computed as:

f8 =

w∑
i=1

w∑
j=1

√√√√(
I2x(i, j)− I2y (i, j)

)2
+

(2 · Ix(i, j) · Iy(i, j))2
(16)

(iv) Variance of projected axis parallel to orientation (f9) is calculated by computing the ridge variation in the
direction parallel to the estimated local block orientation. A projection window of size B ×H , which is smaller
than the block size and whose center overlaps with center of the local block (k, l) is used to compute f9:

f9 =

B/2∑
l=−B/2

Pv[l]− B/2∑
k=−B/2

Pv[k]/B

2

(17)

where,

Pv[k] =
1

H

H/2∑
h=−H/2

I(i− h · sin(O(i, j)) + k · cos(O(i, j)),

j + h · cos(O(i, j)) + k · sin(O(i, j)))

(18)

(v) Variance of projected axis orthogonal to orientation (f10) is calculated by computing ridge variation in the
direction normal to the estimated local block orientation. Similar to f9, a projection window of size B × H
perpendicular to the estimated orientation of ridges is considered and the features are computed as follows:

f10 =

B/2∑
l=−B/2

Ph[l]− B/2∑
k=−B/2

Ph[k]/B

2

(19)

where,

Ph[k] =
1

H

H/2∑
h=−H/2

I(i+ h · cos(O(i, j)) + k · sin(O(i, j)),

j + h · sin(O(i, j))− k · cos(O(i, j)))

(20)
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Figure 9: Sample images from the NIST SD-27 database showing noise in latent fingerprint images. The yellow dotted lines are the actual
fingerprint regions while the red full lines are ridge like noisy regions in the background.

As suggested by Zhu et al. [14], a projection window of size 12 × 9 has been used for calculating both f9 and
f10. In foreground ridge-like regions, f9 exhibits very low variance whereas f10 exhibits high variance. In
background regions, f9 and f10 remain almost constant without much variation.

(vi) Mean of symmetry and texture patterns (f11 − f15): Let the complex representation of an image be denoted
as z = Ix+ iIy . As shown by Choi et al. [9], the nth order symmetric decomposition of the orientation response
of an image block can be computed using:

[f11, f12, f13, f14, f15] = {s0, s1, s−1, s2, s−2} (21)

sn =
< z, hn >

< abs(z), abs(hn) >
(22)

hn =

{
(x+ iy)n •G if n ≥ 0

(x+ iy)|n| •G otherwise
(23)

where, G is the Gaussian filter with σ = 8 and < • > denotes 2D convolution. The orientation response
of an image block is decomposed into five symmetric orders providing features f11 − f15 for n = 0,±1,±2
respectively. The peak response for s0 is obtained in foreground ridge-like regions whereas s1, s−1, s2, and s−2
give peak response in the background regions [22].

2.1.4. Ridge-based features
As shown in Figure 9, a latent fingerprint may contain many ridge like noisy patterns belonging to other fingers in

the background. To differentiate the actual fingerprint from such noisy patterns, the properties of ridges are extracted
to effectively test the presence of ridge patterns [23]. The four different features that have been utilized in this research
to encode ridge information are:

(i) Average inter-ridge distance (f16): Ridge peaks in the local block are computed using the gradient ap-
proach [12]. The mean of absolute difference between any two consecutive peaks is denoted as f16 and is
computed as follows:

f16 =

∑n
k=1 ak
n− 1

(24)

where, n is the number of peaks in the ridges and ak is the distance between two consecutive peak values. As
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the number of ridges is higher in a fingerprint region, the inter-ridge distance here would be less as compared to
background.

(ii) Variance of peak heights in ridges (f17): It estimates the variations in ridge pressure that can be observed in a
local block of a latent fingerprint. It can be computed as follows:

f17 =

∑n
k=1(PRk − PRmean)

n− 1
(25)

where, n is the number of peaks in the ridges, PRk is the value of the peak ridge height for the kth ridge,
and PRmean is the mean of the peak ridge heights across all the blocks. A higher response is expected in a
fingerprint region as compared to a non-fingerprint region.

(iii) Ridge frequency (f18) is calculated by applying Fourier transform to every local block, commonly known as
Short Time Fourier Transform (STFT) [21]. The magnitude spectrum of frequency response is multiplied with
a set of directional filters with varying frequencies. The frequency of the filter at which the maximum response
is obtained, is considered to be the ridge frequency of the local block.

f18 = argmaxl

(
w∑

u=1

w∑
v=1

|F (u, v)| ∗Wl(u, v)

)
(26)

where, F (u, v) is the Fourier transform output of the local image block and Wl(u, v) is the lth directional filter.
Since a ridge-valley structure can be interpreted as a sinusoidal structure, the frequency response is higher in a
structured fingerprint region as compared to a noisy and unstructured background region.

(iv) Angular bandwidth (f19): Similar to f18, STFT is applied and peak response is calculated for every block.
The bandwidth of directional filter along the local estimated orientation that provides the peak response is the
angular bandwidth of ridges for the local block.

2.1.5. Quality-based features
Assessing the quality information in a local fingerprint region is very useful for segmentation. The quality of ridge

patterns acts as a measure of confidence of the features extracted in the local region. Foreground regions should have
a higher quality information compared to the noisy background regions. The quality features are extracted as follows:

(i) Ridge energy (f20): The STFT response of a local fingerprint block is subjected to a band-pass filter allowing
only the specified ridge frequencies to pass [24]. The ridge energy is computed as follows:

f20 =
1

w2

(
w∑

u=1

w∑
v=1

(|F (u, v)| •Wl′(u, v))
2

)
(27)

where,Wl′(u, v) is the l′ directional filter giving the highest response. The ridge energy provides the “ridgeness”
of the local region and is expected to be higher in a fingerprint region.

(ii) Ridge energy after clustering (f21): The Fourier response of a local block is initially clustered into two regions
using k-means clustering and smoothed using a Gaussian filter [25]. Then, similar to f20, energy in a local block
is calculated.

(iii) Ridge continuity map (f22): Every local block is modeled with two 2D sine waves, S1 and S2, corresponding
to the top two local amplitude maxima of ridge intensity [26]. An indicator function is created to check if the
waves in consecutive blocks (in a 8-neighborhood condition) are continuous.

Ic(S1,S2) =

{
1 if S1,S2 are continuous
0 otherwise

(28)
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The ridge continuity map is then calculated as

f22 =
∑
S′
i∈N

max{Ic(S1,S ′1), Ic(S1,S ′2)} (29)

where 1 ≤ N ≤ 8 and S ′i are the blocks belonging to the neighborhood N . This ridge continuity measurement
gives a higher response in a good quality fingerprint region.

(iv) Ridge clarity map (f23): Ridge clarity map can be calculated by multiplying the peak magnitude value of every
local block, a1, with the corresponding ridge continuity map value. The response of ridge clarity map is high
in a good quality fingerprint region but is robust against background patterns that look similar to ridge-valley
patterns.

f23 = a1.f22 (30)

Thus, a composite set of 23 features {f1, f2, . . . , f23} is utilized for differentiating the foreground ridge patterns from
a (noisy) background. A summary of all the category-wise features is provided in Table 2. It is our hypothesis that
image saliency potentially detects the latent print region in the image along with few other salient regions. Thus,
when saliency features are combined with fingerprint specific features, the false positive regions could be minimized
resulting in only the required ROI.

Table 2: Summary of features used to represent the foreground ridge features.
Saliency Image inten-

sity
Gradient Ridge Quality

f1
f2

Intensity
Orientation

f3

f4
f5

Difference of
mean
Variance
Ridge cluster
value

f6
f7
f8
f9

f10

f11
f15

Ridge orientation
Sum of squared gradient
Sum of norm of squared gradient
Variance of projected axis parallel
to orientation
Variance of projected axis orthog-
onal to orientation
Mean of symmetry and texture pat-
terns

f16

f17

f18
f19

Average inter-ridge
distance
Variance of peak
heights in ridges
Ridge frequency
Angular bandwidth

f20
f21

f22
f23

Ridge energy
Ridge energy after
clustering
Ridge continuity map
Ridge clarity map

2.2. Feature Selection
The proposed algorithm utilizes an aggregation of 23 features. However, not all of them are equally distinctive and

can differentiate between foreground and background efficiently. Therefore, in the proposed algorithm, we perform
feature selection to select highly discriminative features so that the classification algorithm provides improved (and
meaningful) output. The effectiveness of the extracted features is evaluated individually for segmentation. Choosing
a subset of relevant features for better performing the task at hand is a challenging research problem [27], [28]. In a
binary classification setting, RELIEF [29] is a noise-tolerant, linear time feature selection algorithm that gives good
results in the presence of higher training instances. The main advantage of RELIEF feature selection is its simplicity
and it does not depend on any heuristics or assumptions. Let W be the weight vector calculating the relevance of each
feature i. The standard RELIEF feature selection method is given as follows:

Wi =Wi − (Xi −NHi)
2 + (Xi −NMi)

2 (31)

where, Xi refers to the ith training instance, NHi is the “near-hit” instance of i denoting the nearest neighbor of
Xi that belong to the same class of Xi, while NMi is the “near-miss” instance denoting the nearest neighbor of Xi

belonging to its opposite class. Here, the nearest neighbor is calculated using Euclidean distance measure. It can
be understood that the relevance of the weight value reduces if the near-hit of a particular point is at farther distance
compared to its near-miss neighbour.

As studied by Robnik-Šikonja and Kononenko [30], RELIEF formulation can be optimized and modified by doing
the following:
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1. Use `1-norm to find the neighbours of Xi instead of using Euclidean distance

2. Calculate the absolute difference between the points, instead of squared difference

3. Choose k-nearest neighbours of an instance Xi instead of the single nearest neighbour.

The modified formulation of RELIEF feature selection used in this experiment is as follows:

Wi =Wi −
k∑

p=1

|Xi −NH(p)
i |+

k∑
q=1

|Xi −NM (q)
i | (32)

where, |.| represents the absolute difference between the features, NH is the near-hit vector denoting the k-nearest
neighbours of X that belong to the same class of X , while NM is the near-miss vector denoting the k-nearest
neighbours of X belonging to its opposite class. In our experiments, k = 20 is empirically observed to be optimal.
A threshold is empirically applied on the weight vector and all the features contributing more than this threshold are
considered in the optimal set of features for segmenting latent fingerprints.

2.3. Classification using RDF
A non-linear classification algorithm should potentially produce a sophisticated classification boundary between

{background, foreground} using the extracted feature. In this approach, every local block in a latent fingerprint
is classified into foreground and background using Random Decision Forest [31]. RDF is a non-linear ensemble
classifier consisting of multiple decision trees. It has been shown in literature that RDF yields good classification
results for high dimensional data [32], [33]. NIST uses RDF as the classifier in their well-received latent print
quality assessment algorithm NFIQ-2 [34]. The repetitive random sub-sampling strategy employed by RDF helps in
providing robust and quicker results for overlapping features. Let N be the total number of data points, M be the
number of predictor variables (features), and C be the total number of classes in a given data. A forest containing T
trees is trained as follows:

1. For a ratio r (0.5 < r ≤ 1), several bootstrap aggregates, each of size r.N , are created with replacement from
the data.

2. Every decision tree, t, in the forest is trained with a single bootstrap of the data, thus creating an ensemble of
classifiers.

3. At every node in the decision tree, a random feature sample, m (typically m =
√
M ) is used to take the split

decision based on an objective function.

4. Class labels c (c ∈ {1, . . . , C}) are assigned to leaf nodes depending on the label associated with the corre-
sponding training sample. Collision resolution techniques can be used if a particular leaf node receives multiple
class labels through multiple paths.

An input test sample is classified using the trained classifier as follows:

1. The candidate set of features extracted from local blocks of a latent fingerprint are provided as input to the RDF.

2. Every individual decision tree, t, predicts a class label, oti, through repeated sub-sampling of features at every
node.

3. The final predicted class label, p, is obtained from the ensemble of classifiers using a majority voting technique.

p = argmaxcj∈C


T∑

i=1

(oti == cj)

T

 for j={1,2,. . . ,C}. (33)

In the RDF implementation, for classifying C = 2 classes, T = 1000 independent decision trees are created with a
bootstrap ratio of r = 0.66. At every node in a decision tree, m = 5 features are randomly sampled from M = 23
features.
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2.4. Representing Segmented Latent Prints

The output of a segmentation algorithm can take multiple forms as shown in Figure 3. It is important to define a
standard representation scheme for segmentation of latent fingerprints. In this research, we represent segmentation as
a single n-degree polygonal boundary of the region of interest. The size of the output image is kept same as the input,
with all the background information blacked out. Even if the background contains other partial fingerprints (ridge
patterns), they are still treated as background and thus removed. To achieve such a standard representation, as shown
in Figure 10, the following post processing steps are performed for the masks obtained from the classifier output:

(a) (b)

(c) (d)

Figure 10: An example showing the post-processing performed on the classification output to arrive at the final segmentation output. (a) original
input latent fingerprint, (b) classifier output of segmentation, (c) final segmentation boundary obtained after post-processing, and (d) an elliptical
window fitted over the segmented region.

• The predicted classifier output contains blocks predicted as foreground or background, as shown in Figure 10
(b). Two iterations of morphological erosion are applied using a square structuring element of size same as the
local block size. This helps in removing the false positives, that is, the background blocks that are classified as
foreground.

• The largest connected component region in the image is then found using the standard run-length encoding
technique [35]. Only the largest connected region is retained while the remaining blocks are regarded as back-
ground.

• A convex hull is fitted over the largest connected region, which gives the polygonal mask for the segmented
region. The entire region within this boundary is filled as foreground to obtain the processed segmented output
of the latent fingerprint, as shown in Figure 10 (c).

The processed segmented latent fingerprint acts as a better input for an AFIS system. It is to be noted that in special
applications where the background ridge-like regions are required as well, the post processing stage can be skipped
and the output of the classifier can be taken as such.
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3. Evaluation Metrics for Latent Fingerprint Segmentation

The efficacy of a fingerprint segmentation algorithm is generally evaluated using matching accuracy. However,
matching performance does not completely capture the performance of the segmentation algorithm as it includes
the performance of other stages such as feature extraction as well. In cases where the ground truth segmentation is
available, we propose to use segmentation accuracy (SA) to determine the effectiveness of a segmentation algorithm.
Segmentation accuracy is represented in terms of the foreground segmentation accuracy (FSA) and background seg-
mentation accuracy (BSA).

As ground truth of segmentation is not always available in practical situations, there is a need for a metric to
evaluate the segmentation algorithm without ground truth. A recent NIST report [3] and the work by Guan et al. [36]
have proposed a new metric for evaluating the effect of preprocessing on latent fingerprints based on Spectral Image
Validation and Verification (SIVV) [37]. SIVV based True-Positive Rate (SIVV-TPR) metric finds the number of
correct peaks detected in the 1-D normalized polar transform of the power spectrum of the latent print. A peak does
not randomly occur in the frequency spectrum. As proposed in [36], a peak constraint metric is included to search
for the peaks in a specific bandwidth in the frequency spectrum, to minimize the detection of false positive peaks.
Thus, this metric could potentially evaluate the performance of the preprocessing stage, without performing the entire
matching procedure. The major limitations of this metric are:

• Shape of ROI: A rectangular ROI around the latent print region has to be manually chosen by an expert. A
tighter boundary estimate, extracted automatically, will provide a better segmentation of latent fingerprints.

• Shape of Blackman window: A circular Blackman window filter is applied prior to spectral analysis. Typically,
a latent fingerprint is elliptical in shape and thus a circular filter will result in loss of information.

To address these limitations, we have proposed the following modifications to the SIVV metric: (i) a polygonal
ROI is used instead of a rectangular ROI to represent the segmented latent print, and (ii) an elliptical Blackman
window is used for filtering instead of a circular filter. Thus, the metrics used to measure the performance of latent
fingerprint segmentation are:

1. SIVV based True-Postive Rate (SIVV-TPR) metric [3] is defined as:

SIV V − TPR =
Number of correct peaks detected
Total number of peaks detected

(34)

2. Segmentation accuracy is the ability of a classifier to correctly classify image blocks into foreground and back-
ground. It is defined as:

SA =
CCB

TB
(35)

where, CCB is the number of correctly classified blocks and TB is the total number of blocks. FSA can be
calculated as,

FSA =
CCFB

TFB
(36)

where, CCFB is the number of correctly classified foreground blocks and TFB is the total number of fore-
ground blocks in the ground truth image. Similarly, background segmentation accuracies can be calculated as,

BSA =
CCBB

TBB
(37)

where, CCBB is the number of correctly classified background blocks and TBB is the total number of back-
ground blocks in the ground truth images.

3. Matching accuracy is the fraction of latent images that are correctly identified at a given rank k, when matched
with the corresponding gallery of live-scan images.
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4. Experimental Results

The performance of the proposed segmentation algorithm is evaluated on three publicly available latent fingerprint
databases. The algorithm is also analyzed to determine the optimal set of features that would best discriminate the
ridge regions from the remaining background. The databases, evaluation metrics, and experimental protocol are
described below along with the results.

4.1. Datasets
The results are shown on an inked fingerprint database and three publicly available latent fingerprint databases:

• NIST SD-4 database [38] is an inked fingerprint database consisting of 2000 rolled fingerprints pairs having
very high quality ridge information with very minimum background variation.

• NIST SD-27 database [2] consists of 258 latent fingerprint images grouped into three quality labels: Good, Bad,
and Ugly. It has mated rolled fingerprints for every latent print and also contains manually annotated minutiae
for latent fingerprints.

• IIIT-D Latent Fingerprint database [15] has 744 latent impressions from 11 subjects (all 10 fingers) with mated
live-scan fingerprints.

• IIIT-D Simultaneous Latent Fingerprint (SLF) database [16] has 1080 latent impressions from 30 subjects (all
10 fingers) with mated exemplar prints.

Since both the IIIT-D databases have been collected under similar environments, they are combined to form the IIIT-D
Combined Latent Fingerprint (CLF) database. After combining, it consists of 1824 latent images from 41 subjects
with multiple impressions of each finger. In these two sets of latent fingerprint databases, NIST SD-27 has real
forensic fingerprints with high variation in quality whereas IIIT-D CLF database has large number of fingerprints
collected in simulated lab environments.

Table 3: Experimental protocol for the NIST SD-4, NIST SD-27, and IIIT-D CLF databases. Inked fingerprints from 2000 classes of the NIST
SD-4 database are added to extend the gallery.

Database Training Dataset Testing Dataset Gallery Dataset Image Size Block Size
NIST SD-4 1000 1000 - 832× 768 32× 32
NIST SD-27 129 129 258 + 2000 800× 768 32× 32
IIIT-D CLF 544 1280 820 + 2000 256× 400 16× 16

4.2. Experimental Protocol
The experimental protocol is shown in Table 3. Since the NIST SD-27 database contains only 258 samples, 50%

training and 50% testing protocol is followed. For the IIIT-D CLF database, a more challenging protocol of using
one-third images for training and the remaining for testing is adopted. NIST SD-4 also uses a 50-50% train-test
protocol. Due to the variations in image resolution in the databases, inked prints from NIST SD-4 and latent prints
from the NIST SD-27 are divided into blocks of size 32 × 32 while the images from the IIIT-D CLF database are
divided into 16 × 16 blocks. The ground truth for segmentation is manually annotated for all the latent prints from
both the databases. A n−point contour is marked tangential to the foreground ridge region thus obtaining a binary
mask1. The binary mask is then tessellated into square blocks and ground truth label for each block is assigned.
In 2012, Ulery et al. [39] have suggested that since latent examiners use their subjectivity and experience in latent
fingerprint analysis, the results tend to vary among human experts and may not be always reproducible. However, it
is our assumption that manually annotated segmentation results should not vary significantly across examiners and
therefore the performance analysis of the proposed algorithm also should not vary much with the variations in ground
truth. To remove any training bias, three times random cross validation is performed on both the databases. The
segmentation experiments are performed under the following scenarios:

1The manually annotated segmented binary masks will be made publicly available for researchers through the following link: http://iab-
rubric.org/resources.html
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Figure 11: Illustrating the segmentation result of the proposed algorithm using two sample images from NIST SD-27 by using (a) only saliency
features (f1, f2), (b) all other features except saliency (f3 − f23), and (c) all features (f1, f23).

1. Results of all the features (f1 − f23) are shown using the proposed RDF based classification algorithm.

2. Results of only the saliency features (f1 − f2) are shown using the proposed RDF based classification scheme.

3. Results of the selected optimal features (varying size for each dataset) are shown using the proposed RDF based
classification scheme.

4. The effectiveness of RDF is demonstrated by comparing the performance of all the features (f1 − f23) with
two other classifiers in literature - neural network and SVM. The neural network consists of a three hidden
layer architecture with {20, 10, 5} nodes each and a single output node with sigmoid activation function. SVM
(libSVM implementation in MATLAB [40]) with a RBF kernel function (c = 8, g = 2) is found optimal.

Table 4: RELIEF algorithm based feature analysis on NIST SD-4, NIST SD-27, and IIIT-D CLF databases. The most and least contributing
features for segmentation on each database are also obtained.

Database Best 3 features Worst 3 features Optimal features
NIST SD-4 {f1, f14, f15} {f22, f2, f21} {f1, f14, f15, f12, f13}5
NIST SD-27 {f1, f6, f19} {f4, f2, f10} {f1, f6, f19, f5, f18, f22}6
IIIT-D CLF {f4, f5, f1} {f3, f19, f6} {f4, f5, f1, f9, f10, f8, f17, f16, f7, f23, f22,

f20, f14, f12, f15, f13, f21, f18, f2, f11}20
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Table 5: Segmentation accuracy (SA), FSA and BSA (in %) of the proposed and existing segmentation algorithms on the NIST SD-4, NIST
SD-27, and IIIT-D combined latent fingerprint databases.

Database Metric All Features All Features All Features Saliency Features Optimal features
+ SVM + NN + RDF + RDF + RDF

NIST SD-4
SA 91.84± 0.2 95.10± 0.7 96.11± 0.3 78.25± 0.2 91.90± 0.0

FSA 92.54± 0.3 98.94± 0.6 95.76± 0.2 79.90± 0.7 92.49± 0.0
BSA 91.37± 0.2 92.15± 0.6 96.35± 0.2 77.14± 0.5 91.50± 0.0

NIST SD-27
SA 66.24± 0.4 76.64± 0.2 73.76± 0.2 61.00± 0.1 66.35± 0.1

FSA 78.45± 0.1 77.68± 0.1 83.41± 0.1 73.04± 0.1 85.11± 0.1
BSA 63.18± 0.5 76.39± 0.2 71.34± 0.2 57.98± 0.1 61.63± 0.2

IIIT-D CLF
SA 89.33± 0.6 93.47± 0.2 93.57± 0.2 60.34± 0.6 93.47± 0.1

FSA 91.59± 0.7 93.01± 0.1 93.23± 0.2 56.26± 0.5 93.01± 0.1
BSA 87.41± 0.4 93.84± 0.1 93.84± 0.3 63.73± 0.7 93.84± 0.3

4.3. Importance of Saliency

Feature selection is performed separately on NIST SD-4, NIST SD-27, and IIIT-D CLF databases and the features
contributing to better classification are tabulated in Table 4. The following important observations can be made based
on the feature analysis:

• In all three databases, saliency (f1) is one of the key features contributing towards segmentation. This aspect
is relatively unexplored in the literature of latent fingerprints. If saliency features could be combined with
fingerprint based features, a good representation of latent print foreground region can be obtained, as visually
demonstrated in Figure 11.

• Apart from saliency, other features contributing towards ridge representation (best 3 features) are data depen-
dent. This, as expected, explains the variation in ridge clarity in the databases used in this experiment.

• In inked fingerprints (for example images from the NIST SD-4 database), the texture pattern related features
are more appropriate for segmentation while ridge continuity and energy based quality features contribute the
least.

• In the most popular latent fingerprint database NIST SD-27, it is observed that saliency features and fingerprint
specific features contribute more towards segmentation while in the IIIT-D CLF database, saliency features and
image intensity based features contribute more for segmentation. Thus, across databases, saliency based features
are found to primarily contribute toward segmentation along with other features that are database specific.

• For a single latent fingerprint from the NIST SD-27 database, the average feature extraction time on a Windows-
7 desktop system with Intel i7 processor, 2.86GHz CPU, and 8GB RAM is 15.95ms while for the IIIT-D CLF
database it is 10.13ms. The computation time for extracting only the optimal features on the same desktop
system is 8.07ms for NIST SD-27 database and 8.38ms for IIIT-D CLF database.

4.4. Segmentation Performance

The objective of segmentation is to extract all the foreground regions while discarding the noisy background re-
gions. The results of the proposed segmentation algorithm are shown in Table 5 and Table 6. As segmentation is the
first step in the feature extraction and matching pipeline, the ideal situation is to have high foreground segmentation
accuracy (FSA), with not very low background segmentation accuracy (BSA), suggesting that the informative fore-
ground region is minimally lost while allowing some background (noisy) regions. The segmentation accuracy along
with FSA and BSA, when compared with the ground truth manual segmentation can be considered as a good estimate
of the performance of a segmentation algorithm. When the ground truth of segmentation is not available, SIVV-TPR
acts as a robust “as-is” metric to evaluate the performance of latent segmentation without the need for performing
matching. Key observations from the segmentation results are as follows:
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Table 6: The SIVV-TPR improvement on the three databases, before and after segmentation.
Algorithm NIST SD-4 NIST SD-27 IIIT-D CLF
Unsegmented 0.9195± 0.007 0.3468± 0.04 0.4378± 0.066
Ground truth 0.9463± 0.005 0.5366± 0.033 0.5330± 0.014
All features + SVM 0.9267± 0.006 0.4726± 0.069 0.5092± 0.063
All features + Neural Network 0.9295± 0.009 0.4738± 0.047 0.5157± 0.045
All features + RDF 0.9325± 0.005 0.5168± 0.059 0.5512± 0.029
Saliency features + RDF 0.9330± 0.008 0.4757± 0.036 0.5354± 0.027
Optimal features + RDF 0.9410± 0.006 0.5274± 0.034 0.555± 0.024

• Table 5 shows high segmentation accuracy of about 96% on inked fingerprints from NIST SD-4 dataset. Also,
the accuracy with using only the saliency features is about 78% while using the optimal features is as high as
92%. These results validate the goodness of the proposed algorithm and also the selection of optimal features.

• We analyze the performance of individual category of features on the NIST SD-27 database and observe that
saliency features provide the highest foreground segmentation accuracy of 73.4% whereas the FSA of other
four features is less than 30%.

• From Table 5, it is observed that for latent prints in NIST SD-27 database, the proposed RDF based algorithm
(with all features) yields the best FSA of 83.41%. Also, in the IIIT-D CLF database it is observed that the
proposed algorithm yields significantly higher segmentation accuracy of 93.23%. This, in general, highlights
the successful adaptive nature of the proposed segmentation algorithm for different qualities of prints.

• In both the NIST SD-27 and IIIT-D CLF databases, using only optimal features yield similar segmentation per-
formance as the complete feature set. This shows that the optimal feature set is a comprehensive representation
having foreground/background distinguishing capability comparable to the entire feature set. It is interesting to
note that depending on the database characteristics, optimal feature sets are different for each database but the
salient features are present for all three databases. From the No free lunch theorem, it is well understood that the
same set of features may not yield best performance across all databases. However, from the implementation
perspective, there are two things to note: use of all the features yield the best accuracy and requires 15 ms
per test image whereas optimal features yield similar accuracy in 7 ms. Therefore, if the training database is
available for feature selection, then depending on the database characteristics, the optimal feature set can be
selected and used. If the training database is not available, then all 23 features can be used for classification.

• From the results of NIST SD-27, it can be observed that using only saliency features (f1, f2) provides a FSA
of about 73%, while addition of fingerprint specific features improves the FSA to about 83 − 85%. Similar
improvements can be observed in IIIT-D CLF and NIST-4 databases, as well. This observation is also visually
demonstrated using sample images from NIST SD-27 in Figure 11.

• The FSA of all the algorithms is comparatively higher for the IIIT-D CLF database than the NIST SD-27
database. This can be attributed to the fact that the NIST database has real world images with significant
amount of background information, whereas the IIIT-D CLF database is prepared in simulated lab environment
with very little background noise such as text and lines.

• From Table 6, it can be clearly observed in all three databases, that ground truth segmented images show an
improved SIVV-TPR rate compared to unsegmented images. This validates the fidelity of the proposed SIVV-
TPR metric and also highlights the necessity of segmentation in latent prints.

• The SIVV-TPR metric shows that in all the datasets, using optimal features with RDF classification and using
all features with RDF classification provides segmentation that is comparable to the ground truth segmentation.
Thus, automatic segmentation of latent prints using the proposed algorithm provides as good segmentation as
ground truth, for both kind of fingerprints (inked or different qualities of latent prints).
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Table 7: Segmentation accuracy (SA), foreground segmentation accuracy (FSA), and background segmentation accuracy (BSA) (in %) of the
proposed and existing feature selection algorithms on the NIST SD-4, NIST SD-27, and IIIT-D combined latent fingerprint databases.

Database Metric MRMR JMI DISR RELIEF Modified RELIEF

NIST SD-4 FSA 89.18± 0.0 89.13± 0.0 89.16± 0.0 88.93± 0.0 92.49± 0.0
BSA 82.27± 0.0 82.12± 0.0 82.37± 0.0 82.51± 0.0 91.50± 0.0

NIST SD-27 FSA 39.45± 0.0 45.33± 0.0 45.33± 0.0 43.87± 0.0 85.11± 0.1
BSA 95.19± 0.0 93.76± 0.0 93.76± 0.0 94.71± 0.0 61.63± 0.2

IIIT-D CLF FSA 96.98± 0.0 96.98± 0.0 96.97± 0.0 96.28± 0.0 93.01± 0.1
BSA 85.27± 0.0 85.27± 0.0 84.37± 0.0 83.14± 0.0 93.84± 0.3

4.5. Comparison with Existing Feature Selection Algorithms
The modified RELIEF algorithm is compared with some popular feature selection algorithms [41] available in

literature: (i) MRMR: Max-Relevance Min-Redundancy algorithm, (ii) JMI: Joint Mutual Information algorithm, (iii)
DISR: Double Input Symmetrical Relevance algorithm, and (iv) RELIEF algorithm. These algorithms are individually
used to select the optimal features for each of the databases. Next, an RDF classifier is trained using the optimal
features selected using various feature selection algorithms.

The performance of the feature selection algorithms is compared in terms of foreground and background seg-
mentation accuracies and is shown in Table 7. Of all the feature selection algorithms compared in Table 7, it can be
observed that the proposed modified RELIEF algorithm provides a good trade-off between the overall segmentation
accuracy and foreground segmentation accuracy. Further analysis into the optimal features selected by different algo-
rithms reveal that saliency features are assigned significantly high weight in modified RELIEF. In all other algorithms,
either saliency does not occur in the list of optimal features or is assigned lower weight. The advantage of the modi-
fied RELIEF feature selection algorithm is that it works better in binary classification setting with continuous features.
Hence, it can be deduced that modified RELIEF algorithm is the most suitable feature selection algorithm.

4.6. Comparison with Existing Latent Print Segmentation Algorithm
The proposed segmentation algorithm is compared with existing segmentation algorithm proposed by Zhang et

al. [5]. In order to compare the results and follow the experimental protocol discussed in Section 4.2, we obtained
the binary masks for all the images in NIST SD-27 database from the authors of [5] and split it according to three
cross validation sets. Figure 12 shows the comparison of the two algorithms in terms of segmentation accuracy on the
NIST SD-27 dataset. As compared to Zhang et al. [5], the proposed algorithm gives similar background segmentation
accuracy but it yields an improvement of about 18% in the overall segmentation accuracy due to high foreground
accuracy.

4.7. Matching Performance
The final objective of segmenting latent fingerprints from the background is to improve the matching perfor-

mance. Therefore, the performance of the proposed segmentation algorithm is also evaluated in terms of fingerprint
matching accuracy after segmentation on both the latent fingerprint databases2. For the NIST SD-27 database, man-
ually annotated minutiae (available along with the database) are used while minutiae for the IIIT-D CLF database
are automatically extracted using VeriFinger SDK. For segmented images, only the subset minutiae lying within the
segmented mask are considered for matching.

Matching latent fingerprints is a challenging research problem and there is no standard open source latent fin-
gerprint matching SDK or commercial system freely (or low cost) available in public domain. It is observed from
the literature that local Minutiae Cylinder Code (MCC) [42, 43] description for the minutiae provides state-of-the-art
results [44] on latent print matching. Therefore, latent fingerprint matching results are shown using the MCC descrip-
tors. For both the databases, images of 2000 subjects from the NIST SD-4 database [38] are appended to extend the
gallery and three times random split based cross validation is performed. The performance is reported in terms of

2The proposed algorithm is compared with the manual ground truth of segmentation.
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Figure 12: Comparing the performance of the proposed segmentation algorithm with the algorithm recently proposed by Zhang et al. [5], on the
NIST SD-27 dataset.

Table 8: Rank-50 identification accuracy (in %) of the proposed segmentation algorithms using MCC descriptor. Manually marked minutiae are
used for NIST SD-27 while VeriFinger SDK is used to extract minutiae from IIIT-D CLF database.

Algorithm NIST SD-27 IIIT-D CLF
Unsegmented 55.9± 2.7 26.9± 2.7
Ground truth 83.1± 7.3 34.2± 3.6
All features + RDF 80.0± 6.3 33.4± 3.0
Saliency features + RDF 66.9± 6.5 26.6± 0.5
Optimal features + RDF 78.7± 6.4 29.6± 3.9

the rank-50 identification accuracy and the results are reported in Table 8 and Figures 13 and 14. Some key results
obtained are as follows:

• Using ground truth segmentation, on the NIST SD-27, rank-50 identification accuracy of 83% is observed,
which is significantly greater than the accuracy obtained with the unsegmented images (56%). It can be observed
that both the variants of the proposed algorithm: using all features and using only optimal features, performs
comparable to the ground truth segmentation with almost 80% rank-50 matching accuracy. On the NIST SD-27
database, the matching performance is not reduced much by using only the optimal set of features. Wilcoxon’s
rank-sum test between the results obtained from all the features and the optimal features, accepts the null
hypothesis at 5% significance, claiming there is not much statistical difference between the results obtained.

• On the IIIT-D CLF database, a similar trend can be observed, where the matching performance of the proposed
segmented images is almost as good as the ground truth segmented images. The performance is low due to the
poor feature extraction by VeriFinger, which is fine-tuned for processing tenprints.

• The number of minutiae preserved by each algorithm after segmentation is provided in Table 9. It can be
observed that, in both the databases, the percentage of minutiae preserved by the segmentation algorithm is
proportional to its corresponding matching performance. A higher number of minutiae is found in the IIIT-D
CLF database as they are automatically extracted using a ten-print matcher, while in NIST SD-27 manually
annotated minutiae are used.
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Table 9: Average number of minutiae extracted in the fingerprint images after segmentation.
Algorithm NIST SD-27 IIIT-D CLF
Ground truth 19.2 31.9
All features + RDF 19.2 33.3
Saliency features + RDF 15.5 31.1
Optimal features + RDF 18.7 33.3
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Figure 13: CMC curves showing the average matching performance of unsegmented and segmented images on the NIST SD-27 database.
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Figure 14: CMC curves showing the average matching performance of unsegmented and segmented images on the IIIT-D CLF database.

4.8. Performance Evaluation using Latent Fingerprint Identification System with Very Large Gallery

We also compute the effectiveness of the proposed segmentation algorithm using a popular latent fingerprint
identification system used by law enforcement agencies3. The system has over 2 million pre-enrolled identities in the
database and is modular in nature. Experiments are performed on the IIITD CLF database. NIST databases are not
used as they may have been used to train the system apriori. First, the gallery images for IIITD CLF are enrolled (after

3The license agreement does not allow us to name the commercial system in any kind of comparison.
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the experiments, these enrollments are deleted from the system) and then 1280 probe images are used for evaluation.
Two sets of experiments are performed: (1) using the default setting of the latent fingerprint system which uses inbuilt
segmentation algorithm and (ii) when segmented outputs obtained from the proposed algorithm are given as input for
matching. Rank-50 accuracies obtained for both the experiments are 71.4% and 72.3% respectively. This shows that
the proposed segmentation algorithms improves the identification performance of a latent fingerprint system on a very
large gallery database.

5. Conclusion

Latent fingerprints collected as a forensic evidence are affected by background noise, limited content, and varying
quality. As the first step in the recognition pipeline, latent fingerprint segmentation plays an important role. In this
research, we proposed a novel latent print segmentation algorithm that extracts saliency, image, gradient, ridge, and
quality features from local patches of the image. These features determine the characteristics of both foreground
ridge and background noise. An optimal set of features are selected using modified RELIEF based feature selection
algorithm and a Random Decision Forest classifier is used to learn foreground and background regions. Further, a
n-degree polynomial representation of the segmented region is found to be the most optimal representation of the
segmented results. The performance of the proposed algorithm is evaluated on the basis of three metrics: SIVV-TPR,
segmentation accuracy (along with FSA and BSA), and rank-k identification accuracy. The results show that the
proposed segmentation algorithm yields high segmentation performance on the NIST SD-4 inked print database and
NIST SD-27 and IIIT-D CLF latent databases, showing that the algorithm is able to segment the regions of interest
from the background. Using the automatically segmented images, we have observed improved matching performance,
which further supports the effectiveness of the segmentation algorithm.
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