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ABSTRACT

Subclass discriminant analysis is found to be applicable under var-
ious scenarios. However, it is computationally expensive to update
the between-class and within-class scatter matrices in batch mode.
This research presents an incremental subclass discriminant analy-
sis algorithm to update SDA in incremental manner with increasing
number of samples per class. The effectiveness of the proposed al-
gorithm is demonstrated using face recognition in terms of identi-
fication accuracy and training time. Experiments are performed on
the AR face database and compared with other subspace based in-
cremental and batch learning algorithms. The results illustrate that,
compared to SDA, incremental SDA yields significant reduction in
time along with comparable accuracy.

Index Terms— Incremental Learning, SDA, Subclass, Face
Recognition

1. INTRODUCTION

Linear Discriminant Analysis (LDA) models the variability in intra-
class and inter-class distributions to improve the classification per-
formance. However, it assumes that underlying data follows normal
distribution which may not always be the case. As an extension to
LDA, Zhu and Martinez [1] proposed Subclass Discriminant Anal-
ysis (SDA). They showed that when the underlying data from the
same class conforms to multiple normal distributions, it is useful to
consider each of them as a subclass which helps in improving the
classification accuracy. Further, in SDA, it is observed that the clas-
sification time is linearly proportional to the number of subclasses
and the number of features. Therefore, the property of reduced time
complexity for classification makes it more applicable to real time
scenarios. However, SDA, similar to other discriminant functions,
is trained in batch mode, which may be time consuming. In other
words, if a new gallery image is to be added, it is necessary to re-
compute the between-class and within-class scatter matrices. This
results in a monolithic architecture and makes it computationally ex-
pensive to update the discriminant vectors using only the new sam-
ples being added. Research has been done to formulate incremental
LDA (ILDA) [2], [3], [4]. However, to the best of our knowledge no
formulation exists for incremental SDA (ISDA).

The main contribution of this research is developing an incre-
mental formulation of SDA to incorporate the information obtained
from updated samples per class. The effectiveness of the proposed
algorithm is evaluated for face recognition application and identifi-
cation accuracy as well as training time are used as the performance
metrics. Section 2 describes the formulation of SDA followed by
the proposed approach for incremental SDA in Section 3. Section 4
presents the experiments performed, results achieved and the analy-
sis. Section 5 includes the conclusion and future directions.

Fig. 1. Sample images from the AR face database [5] illustrating the
variation in face images of the same person.

2. SUBCLASS DISCRIMINANT ANALYSIS

Discriminant analysis (DA) techniques follow a fundamental crite-
rion called Fisher-Rao’s criterion [6],

J(v) =
|vTAv|
|vTBv| (1)

where A represents the between-class variability and B represents
the within-class variability. The goal is to find the projection di-
rection v which differentiates between the classes optimally. The
projection direction which leads to minimum possible within-class
variance and maximum possible between-class variance is the most
discriminative direction vopt.

vopt = argmin
v
J(v) = argmin

v

|vTSBv|
|vTSWv| (2)

Different DA techniques modify the definitions of A and/or B.
For example, LDA uses between-class and within-class scatter ma-
trix as A and B, respectively. On the other hand, SDA defines A
as,

SB =

c−1∑
i=1

Hi∑
j=1

c∑
k=i+1

Hk∑
l=1

pijpkl(µij − µkl)(µij − µkl)
T (3)

where c is the number of classes and Hi is the number of subclasses
in ith class. µij is the mean of the jth subclass of ith class, and pij
is the prior probability of jth subclass of ith class. The techniques
to divide a class into subclasses and to find the value of Hi are dis-
cussed by Zhu and Martinez in [1]. The matrix B is formulated as
the within-class scatter matrix and defined as



SW =
1

n

c∑
i=1

ni∑
j=1

(xij − µi)(xij − µi)
T (4)

where ni is the number of samples in ith class and n =
∑c

i=1 ni.
On a different note, according to Fukunaga [7] it should be taken
into account that in Eq. 2, without loss of generality, J(·) can take
the form of

J(v) =
|vTSBv|

|vT(SB + SW )v| =
|vTSBv|
|vTSTv| (5)

3. INCREMENTAL SUBCLASS DISCRIMINANT
ANALYSIS

It is important to understand how incremental training is different
than including new samples in the gallery (i.e. template update). It
is not difficult to visualize the cases where initial training may not
cover all possible variabilities in the data. Therefore, the additional
samples may change the intraclass and interclass variabilities. Due
to this, it might not be sufficient to simply include these additional
samples in the gallery and increase the number of seen samples with-
out any learning. It is required that the underlying classifier learns
these added variabilities, which can be incorporated only when clas-
sifiers decision boundary is modified using the newly added samples.

Over the years, many different approaches have been proposed
for incremental LDA [2], [3] and they vary in terms of approaches to
update the within-class and between-class scatter matrices. In case
of SDA, between-sub-class scatter matrix SB and within-sub-class
scatter matrix SW have to be recomputed in incremental manner, to
learn new samples. In this research, the sufficient spanning sets [2]
approach is followed to develop the ISDA formulation. Sufficient
spanning set is a set of basis vectors that span the space of most data
variations.

Let d1 be the number of data samples (contained in initial train-
ing set) from which the first covariance matrix C1 is created, and
d2 be the number of data samples (contained in incremental train-
ing set) from which the second covariance matrix C2 is created. If
the new covariance matrix Cm of the merged dataset (initial train-
ing set + incremental training set) is obtained using all the d1 + d2
samples, then the time complexity of computing Cm turns out to
be O(N2(d1 + d2)), where N is the number of features. Hall et
al. [8] proposed a way to merge two covariance matrices as an al-
ternative to computing new covariance matrix. It focuses on finding
an eigenspace spanned by (possibly less number of) basis vectors in
which the representation of the merged dataset is possible with suffi-
ciently good approximation. This set of basis vectors of eigenspace
(eigenvectors) is called the sufficient spanning set. If Ci is repre-
sented using eigenmodels {µi, Ni, Evi,Λi} (i ∈ {1, 2}), where
µi is the mean of the ith dataset, Ni is the number of samples in
the ith dataset, Evi is the set of (selected first few) eigenvectors of
Ci, and Λi is the matrix containing eigenvalues corresponding to
the eigenvectors in Evi, then the merged eigenmodel obtained using
sufficient spanning set will be {µm, Nm, Evm,Λm} which can be
found using Eqs. 6 to 9.

Nm = (N1 +N2) (6)
µm = (N1µ1 +N2µ2)/(Nm) (7)

Cm =
N1

Nm
C1 +

N2

Nm
C2

+
N1N2

N2
m

(µ1 − µ2)(µ1 − µ2)T

Φ = QRDecomposition([Ev1, Ev2, (µ1 − µ2)])

R = EigenV ectors(ΦTCmΦ)

Λm = EigenV alues(ΦTCmΦ) (8)
Evm = ΦR (9)

It is interesting to note here that Φ is the sufficient spanning
set of eigenvectors which are the basis of eigen decomposition of
the modified covariance matrix Cm. Using this technique of merg-
ing two covariance matrices, Kim et al. [2] formulated incremen-
tal LDA i.e. after calculating eigenmodels of between-class scatter
matrices, merge them using the sufficient spanning set of matrix
[SB,1,SB,2, µ2 − µ1], where SB,i (i ∈ {1, 2}) is the between-
class scatter matrix of the ith dataset. In the similar manner, merged
total scatter matrix is calculated using the sufficient spanning set of
matrix [ST,1,ST,2, µ2 − µ1], where ST,i (i ∈ {1, 2}) is the total
scatter matrix of the ith dataset. Here the definition of SB,i is as
follows.

SB,i =

c∑
k=1

nk(mk − µ)(mk − µ)T (10)

where nk is the number of samples in the kth class, mk is the mean
of samples belonging to kth class, µ is the mean of data samples,
and c is number of classes.

To formulate incremental SDA algorithm, we propose to define
between-class scatter matrix SB,i of the ith dataset in the same way
as it is defined by SDA in Eq. 3. This helps in incorporating inter-
subclass variations. However, the subclass labels are not available
for the incremental batch thus making it challenging to compute the
between-subclass scatter matrix. We use an unsupervised clustering
technique to find the sub-class of the new sample (a sample from the
incremental training set). Here, the unsupervised clustering is more
pertinent due to the fact that ground truth of sub-class labels are not
known, only the ground truths of class labels are known.

In this research, we propose to use nearest neighbor (NN) [9]
clustering technique to find the sub-class labels of the sample. Once
the sub-class labels are assigned to the samples, they can now be
used to compute the scatter matrix SB,2. Similarly, total scatter ma-
trix ST,2 for the new batch of training samples can also be computed.
Using the mathematical formulation explained in Eqs. 6-9 eigen-
model {µm, Nm, EVB,m,∆B,m, nm,j , αm,j |j = 1, 2, . . . , c} of
incremented between-subclass scatter matrix SB,m and the eigen-
model {µm, Nm, EVT,m,ΛT,m} of incremented total scatter matrix
ST,m can be calculated. ∆B,m and ΛT,m are the matrices contain-
ing eigenvalues of the corresponding eigenvectors. nm,j and αm,j

are number of samples and the matrix containing coefficients of jth

class. The procedure for finding the discriminative components U
from the given eigenmodels of SB,m and ST,m is as followed [2].

U = ZΩRD where (11)

Z = ST,mΛ
− 1

2
T,m and

Ω = QRDecomposition(ZTSB,m) and
RD = EigenV ectors(ΩTZTSB,m∆B,mST

B,mZΩ) (12)
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(a) Batch I (Initial)
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(b) Batch II (Update)
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(c) Batch III (Convergence)

Fig. 2. CMC plots of the proposed ISDA and performance comparison with PCA, CCIPCA, LDA, ILDA, SDA. The results are computed
for a) training with batch I (initial set), b) incremental training with batch II, and c) incremental training with batch III. Note that in batch I,
performance of SDA is computed using [1] and performance of ISDA is computed using the proposed approach.

PCA CCIPCA LDA ILDA SDA ISDA
Initial batch (batch I) 69.6 18 15.2 11.4 6167.7 6712

Batch II 83.3 22.3 19.5 13.5 10610 22.2
Batch III 99.8 26.3 20.2 25.4 17494 24.6

Table 1. Incremental time taken (in seconds) by each of the approaches, for initial training (Batch I) and the incremental trainings (Batch II
and III)

4. EXPERIMENTS AND RESULTS

To evaluate the performance of the proposed approach, the exper-
iments are performed on the AR face database [5] and results are
compared with PCA [10], CCIPCA [11], LDA [10], ILDA [2], and
SDA [1]. The database consists of more than 4,000 color face im-
ages of 126 subjects. In the context of ISDA, we consider subjects as
classes amongst which the classification is to be done. The database
consists of frontal face images with challenges such as illumination,
expression and occlusion (scarves and glasses). In the experiments,
we have used images of 119 1 classes and 26 images per class, which
resulted in the overall database of size 3094.

Faces are detected using the AdaBoost face detector available
in OpenCV, converted to grayscale, and resized to 29 × 21 pixels.
These grayscale pixel intensity values are used as the features for
classification. The database is divided into 50% training and 50%
testing. 13 (randomly selected) images of each individual are se-
lected for training while the remaining 13 are used for testing. To
evaluate the performance of incremental learning, the training set is
further divided into three splits. Batch I consists of 1071 images
(9 images per subject × 119 subjects) whereas batch II and batch
III contain 238 images (2 images per subject × 119 subjects) each.
The incremental approach is initially trained with batch I and tested
with the whole testing set. In the next step, incremental training is
performed with batch II and batch III successively. For each incre-
mental training, the performance is evaluated on the overall testing
set. It should be noted that in this case study, no new classes are
being included during incremental training; only the number of im-

1Out of 126 subjects, face detection algorithm failed to detect few faces
for seven subject and therefore, the experiments were performed with 119
subjects only.

ages per class are being updated. To compare the performance, non-
incremental algorithms i.e. PCA, LDA and SDA are also evaluated
by training with

• batch I only

• combined batch I and batch II

• combined batch I, batch II and batch III.

The performance of all the algorithms is compared on the overall
testing set in terms of both training time and identification accuracy.
The results reported in Fig. 2 are achieved using the protocol de-
scribed above with five times random cross validation. Also, PCA
experiments are performed with top 100 principle components. Key
analysis and observations are as follows.

(a)

(b)

Fig. 4. Face images (a) correctly classified by SDA but misclassified
by ISDA and (b) correctly classified by ISDA but misclassified by
SDA.
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Fig. 3. Rank 5 accuracy of incremental and non-incremental algorithms with five cross validation trials. The error bars show the standard
deviation for every algorithm.

• Accuracy: The results in Fig. 2 show that the proposed ISDA
achieves identification accuracy which is comparable to that
of SDA. The error bars in Fig. 3 show that the standard devi-
ation across different trials is also very small.

• Time: Table 1 shows that the overall turn-around-time (train-
ing time + testing time ) of ISDA in each batch increment is
significantly less than that of SDA. It can be viewed as though
a little amount of sacrifice in identification accuracy is made
in order to achieve a huge gain in time complexity.

• Relevance: Table 2 describes the co-occurrence of correct
classifications (3) and/or misclassifications (7) between SDA
and ISDA. It turns out that for only 87+50

1547
× 100% = 8.85%

of the times, the decisions taken by SDA and ISDA differ.
Table 2 shows the confusion matrix for batch III at rank 5.

Confusion SDA
matrix @ Rank 5 3 7

ISDA 3 1091 50
7 87 319

Table 2. Confusion matrix for comparing the performance of SDA
and ISDA. 3 and 7 represent the correctly classified and misclas-
sified samples respectively. The numbers in every cell represent the
co-occurrence of decisions (correct/wrong) taken by SDA and ISDA.
For example, 33 block shows that for 1091 samples, both SDA and
ISDA gave correct decisions at rank 5.

• Batchwise incremental training: It is interesting to observe
that with the successive batches of incremental training, dif-
ference between accuracy of ISDA and SDA is reduced. This
suggests that with more batches of incremental training, the
behavior of ISDA is closer to SDA. Fig. 2 and Table 2, col-
lectively, also points the possibility that the projection vectors
calculated using the proposed incremental approach tend to
converge to projection vectors achieved in SDA.

5. CONCLUSION

This research presents incremental subclass discriminant analysis
approach using sufficient spanning sets. The proposed ISDA algo-
rithm is evaluated in context to face recognition application. The
results on the AR face database show that incremental SDA is over
two times faster than SDA with almost similar rank-5 identification

accuracy. Though the results are very promising in face recognition,
verifying the generalizability of ISDA to other pattern classification
problems still needs to be explored.
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