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Abstract

Unsupervised feature extraction is gaining a lot of research attention following its success to represent any kind of
noisy data. Owing to the presence of a lot of training parameters, these feature learning models are prone to overfitting.
Different regularization methods have been explored in the literature to avoid overfitting in deep learning models. In
this research, we consider autoencoder as the feature learning architecture and propose ¢ 1-norm based regularization to
improve its learning capacity, called as Group Sparse AutoEncoder (GSAE). ¢5 1-norm is based on the postulate that the
features from the same class will have a common sparsity pattern in the feature space. We present the learning algorithm
for group sparse encoding using majorization-minimization approach. The performance of the proposed algorithm is also
studied on three baseline image datasets: MNIST, CIFAR-10, and SVHN. Further, using GSAE, we propose a novel deep
learning based image descriptor for minutia detection from latent fingerprints. Latent fingerprints contain only a partial
finger region, very noisy ridge patterns, and depending on the surface it is deposited, contain significant background
noise. We formulate the problem of minutiae extraction as a two-class classification problem and learn the descriptor
using the novel formulation of GSAE. Experimental results on two publicly available latent fingerprint datasets show
that the proposed algorithm yields state-of-the-art results in automated minutia extraction.
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1. Introduction and almost every domain where abundant data is available,
o ) these approaches are providing state-of-the-art results.
Feature representation is an integral component of any One of the popular deep learning algorithms is the au-

object recognition task. A meaningful and representative  {qencoder which is a multi layer network that learns a

feature can help in obtaining higher recognition/classification 1,4 _linear mapping function between data and its feature

accuracies. However, there is no universal feature extrac- space. Structurally, an autoencoder is similar to a feed-

tion algorithm which works best for all types of applica-  forward neural network; it consists of an input layer, a set
tions (i.e., no free lunch theorem applies on features as of hidden layers, and an output layer which attempts to re-
well). Therefore, researchers have proposed several fea- construct the input layer data. It has been widely used for
ture representation algorithms. Broadly, existing algo- feature extraction and is unsupervised in nature, as it does
rithms can be classified into two categories: hand-crafted 1ot require labels for learning the features. Such networks
features and learnt features. The majority of the litera- are known to be universal approximators of any continuous

ture has focused on hand-crafted features such as Gabor  fynction, with limited assumptions on the activation func-
features, local binary pattern and Scale invariant feature tion [4], [5], [6]. As shown in Figure 1, the encoding and

transform. In the last one decade, learning based represen- decoding layers are just inverse of each other, making the
tation algorithms have gained widespread attention [1], [2].  jetwork symmetrical about the feature (innermost) layer.
These algorithms utilize a large amount of training data to Bengio et al. [7] proposed a greedy layer-by-layer training
learn discriminatory feature representations that can tol- approach to learn a multiple hidden layer stacked autoen-

erate noise and variations in data distribution. Popular coder. An autoencoder architecture has two kinds of pa-
examples of such algorithms include dictionary learning  pameters: nodes and weighted connections. Depending on
and deep learning (autoencoder, deep belief network, and {16 number of nodes in each layer and also by enforcing
convolutional neural network) [3]. Further, advancements sparsity in learning the weights, different classes of map-
in computing technology and GPU technology has insti-  ping functions can be learnt by the autoencoder. However,
gated research in learning based representation approaches as the number of nodes in the hidden layers increases, the
number of weight parameters to be learnt exponentially

Email address: {anushs, mayank, rsingh, increases, causing two important challenges (i) requiring
angshul}@iiitd.ac.in (Anush Sankaran, Mayank Vatsa, Richa large amount of data to train the network and (ii) the net-
Singh, Angshul Majumdar) work parameters tend to overfit to the given training data.
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Several regularization methods have been adopted to pre-
vent overfitting in an autoencoder network, as shown in
Figure 1. Generally, the overfitting resolution techniques
employed with network-based-architectures aim to achieve
one or both of these goals.

e avoid peaking of weights by adding penalty or nor-
malizing the weights; for example fs-norm [8], max-
norm [9], Contractive AutoEncoder [10] and

e introducing sparsity to the learned weights to avoid
learning “noisy” patterns; for example ¢1-norm [8],
KL-divergence [11], and maxout [12].

In several statistical regularization techniques, overfit-
ting can be prevented by methods such as dropout [9]
and dropconnect [13] approaches. In dropout, nodes are
dropped (output set to 0) randomly with a probability p
during the training phase and in dropconnect, the con-
nections are dropped (weight set to 0) at random with
a probability p. Often one or many of these regulariz-
ers are used together complementing their properties to
achieve better learning; for example f5+¢; towards the
end of training, Dropout+¥#5, and Dropout+max-norm. In
a recent work, the dropall [14] framework proposes a com-
bination of dropout and dropconnect, where the nodes, as
well as the connections, are dropped. Hong et al. [15] have
proposed a ¢1-norm based sparsity preserving feature rep-
resentation algorithm at multiple stages to integrate mul-
tiview information. Further, Hong et al. [16] have adopted
a l3 regularization mechanism for handling variational
noise in data. The /5 ; is approximated as a lp-norm of
every column in the low-rank representation (LRR) of the
original matrix.

It is well known in the machine learning community
that supervised feature extraction usually leads to bet-
ter classification [17]. For instance, incorporating Fisher
criterion for determining projections in subspace methods
reduces the intra-class variability and increases the inter-
class variability, thereby increasing discrimination capa-
bilities. Motivated by this observation, in this research,
group sparse autoencoder is proposed which is the super-
vised version of autoencoders. The primary contributions
of this research are as follows:

e Propose a group sparse autoencoder (GSAE) and de-
rive a solution using majorization-minimization ap-
proach [18],

e Evaluate the performance of GSAE on baseline ob-

ject classification datasets such as MNIST [19], CIFAR-

10 [20], and SVHN [21],

e Utilize GSAE as a novel image descriptor for local
latent fingerprint patches that can better distinguish
the presence or absence of minutia, and

e Perform extensive testing and analysis of the pro-
posed minutiae extractor on two public latent finger-

print databases, namely NIST SD-27 [22] and MOLF
[23].

The remaining paper is organized as follows: Section 2 ex-
plains the proposed group sparse autoencoder algorithm
and the solution for the optimization function is derived.
Section 3 discusses the performance of the proposed algo-
rithm on baseline object classification datasets including
MNIST, CIFAR-10, and SVHN. Finally, Section 4 presents
the proposed approach for minutiae extraction from latent
fingerprints, the fingerprint databases used, and the results
obtained.

2. GSAE: Group Sparse AutoEncoders

Autoencoders are generally unsupervised in nature and
leverage the availability of large unlabeled data for fea-
ture representation. However, if a large amount of la-
belled data is available, the standard formulation of au-
toencoder needs to be updated to incorporate the labeled
information. Sang et al. [24] recently proposed a super-
vised loss function in which they optimize the squared loss
and the classification loss, simultaneously. Gao et al. [25]
proposed a supervised deep autoencoder for face recogni-
tion by reducing the loss between a probe image and its
corresponding gallery image. In this research, we propose
a novel approach for modeling stacked sparse autoencoder
that preserves group sparsity. The learning is performed
such that the features of a single class will have the same
sparsity signature. In other words, the non-zero values in
the features occur at the same positions for a class. This
is achieved by incorporating ¢5 ;-norm regularization [26],
[27], [28].

The description of the proposed algorithm starts with
the explanation of an autoencoder. Let X be the input
data, where

X = .,{fcﬂl...xc’nc} (1)

Xc=class C

{1'171 .. .l‘lml}, ..

Xi=class 1

Here, C' is the number of classes, {n1,no,...,nc} are the
number of data points in each of the C classes, and the
data is organized such that all the data columns belonging
to class 1 appear first, followed by data columns of class
2, and so on till data columns of class C. To learn a single
layer generative autoencoder model, the loss function J is
defined as:

JW) = argmin [|X ~ UgWX)3+ AROV)] (@)

where, ¢ is a non-linear activation function such as sigmoid
function, W and U are the encoding and decoding weights,
respectively. Higher order representation can be learnt by
stacking multiple layers together and training them in a
greedy layer wise fashion. R(W) can be any regularization
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Figure 1: An overview of different kinds of regularization techniques used in the literature for an autoencoder based architecture. Note that
the number of nodes in each hidden later is varying and may be dense or sparse depending on the application, data characteristics, and

architecture.

function, controlled by the parameter A, to avoid over-
fitting by introducing some additional constraints while
learning the weight matrix. Some popular regularization
functions are

e LASSO or the #;-norm enforces sparse learning of
weights,

e Euclidean or the /3-norm adds higher penalty to the
peak weights, thereby enforcing diffused learning of
weights, and

e Elastic net or (¢1 + ¢3)-norm adds both the norms in
the optimization function.

In the proposed group-sparse autoencoder framework,
we introduce a ¢3 ;-norm based regularization as follows:

C
JW) = axg min]| [ X —Uo(WX) 3423 W Xellz] (3)

c=1

where, || ®[l21 =3, ||Z77]]2 is the sum of fy-norms of
the rows (indicated by j). The inner ¢-norm promotes a
dense (non-zero) solution within the selected rows, how-
ever the outer ¢1-norm (sum) enforces sparsity in selecting
the rows. In this proposed formulation, the regularizer en-
forces group sparsity within each class by adding the con-
straint that the features from the same group/class should
have the similar sparsity signature. Note that, ¢(e) is only
a clipping function applied term-by-term. Therefore, the
second term of ¢ ;-norm can be applied to both ¢(WX)
or just WX as both promote row-sparsity. This makes the
optimization supervised as the information regarding the

class labels is utilized during training. However, we are
not enforcing any discriminative property to the features
as we are not enforcing features from different groups to
have different sparsity signatures.

2.1. Solution using Majorization-Minimization

The objective function in equation 3 is a non-convex
optimization problem that can be solved using alternating
minimization. At any k" iteration, the solution for the
non-convex problem can be split into two steps as follows:

Step 1: U = argmin |X = Up(Wi—1)X)|[3

C

Step 2: W = argmin || X — Ugy¢(WX) 15 +AD W Xell21

c=1
(4)
Step 1 is a linear least squares regression problem hav-
ing a closed form solution. Step 2 is challenging; hence, we
adopt the Majorization-Minimization (MM) [18] algorithm
to solve it. In this approach, let J(W) be the function to
be minimized. For the initial point wg, a smooth function
Go(W) is constructed through wy which has a higher value
than J(W) for all values of w apart from wy, at which the
values are the same. This is the Majorization step where
a smooth function Go(W) is constructed which is easy to
minimize. Iteratively at each step, G(W) is minimized
to obtain the next iteration zpy;. It can be understood
that the solution at every iteration gets closer to the ac-
tual solution. For mathematical convenience, Step 2 can
be rewritten as,

C
am@nHX—%WMN?MZN%Ml (5)



where, Z, = WX, and Z is obtained by stacking the
Z.’s in column. In this optimization problem, only the
least square regression term has to be majorized and the
penalty term is not affected. During the minimization
step, the surrogate majorizer function, Gi(Z) of the ac-
tual loss function J(W) is chosen as follows,

Gi(2) =I| X = Uwo(2) |13 HZHZIIN

A Z) )" (al — U(k)U(k))(¢( ) = &(Z) k)
(6)

Here, a is the maximum eigenvalue of the matrix U (Tk)U (k)

+(0(2) -

and I is the identity matrix. By simplifying Gr(Z), we
obtain,

Gi(2) = XTX — 2X"Ud(Z) + 6(2) Ul Unyd(2)
T (6(2) — 8(2) )" (oI ~ Uy U)(9(2) — $(Z) )

C
+AD11Zell2a
c=1

(7)
= Gr(2) = XX + ¢(2) (4 (al — UjyUqw))9(Z)
—2[X Uy +0(Z )(k (al — U(k U(k))] #(Z)
+ap(Z +>\Z\|Z||21

(8)
Let B = ¢(Z){y) + sUly(XT = Uwyd(2)}y,). equation 8
can be written as
c

N+AD N Zellza + €

c=1
(9)
Using the identity,

Gi(Z) = a(=2BT¢(Z) + 6(2)" ¢(Z

where, £ consists of constant terms.

| B—¢(2) 3= B"B—2BT¢(2)+¢(Z)T ¢(Z), equation 9
can be rewritten as
A c
Gu(Z) = a (n B—o(2) [3+2 3 1 Zello | —aBTB+&
a c=1

(10)
Removing the constant terms and re-writing in terms of
W, the optimization function can be written as,

ZH (WX.) ||2,1>
(11)

All the matrices are written in terms of transpose, as the
activation function is computed element-wise. Blumen-
sath [29] has shown that it is possible to replace the above
non-linear problem, into a simple linear problem using one
step of gradient descent, as follows:

| 2,1> (12)

c
A
: P—WT 2 .
arg min <II B +a;|

. T_
argmvén<||3 SV X)T | +

where, P = WT oV || BT —¢p(WX)T |3 , o is the

Wik

step size for gradient descent and can be found using Lip-
schitz bound. Summation can be removed by redefining
equation 12 as follows,

. A
angagin (11 P~ W7 B 451V la ) (13)

where, V is defined as the block row concatenation of X!’s.
Taking the derivative of equation 13 and setting it to zero,
we obtain,

A

2P —2w? + EVTDVWT =0 (14)

where, D = diag([VWT|~1)
(I + Q)\VTDV> wh=p (15)
a

Using matrix inversion lemma,

A - !
I+ >=vTpv — 1V (Zp-tyyTy) v
2a )\
2a -1
— wl=p_vy7T (Apl + VTV> VP
(16)
If T = (22D~ + VTV)"' VP, then equation 16 be-

comes WT = P — VTT. The solution for T is as follows,

2
(;D_l T VTV> wT —vp

2 —1
== T = <;D1 + OI) (CT(k_l) + V(P - VTT(k_l)))
(17)

is obtained by adding ¢TI’ on both sides of equation and
subtracting with VIVW7. ¢ is the maximum eigenvalue
of VTV The complete algorithm is summarized as follows:

Initialize: W, V
For every iteration:

Step 1: Uy = argminU | X — U(;S(WX) 12
Step 2: B=¢(Z )(k) + 2 U( )( U(k)¢(Z)%;g))
Step3: P= W(k) —oV || BT —p(WX)T |3
Wik
Step4: T = (2D +CI)"" (Ty1y + V(P = VT4 1))
Step5: W=P' —TTV

Another popular approach for solving the non-convex opti-
mization problem is Alternating Direction Method of Mul-
tipliers (ADMM) [30]. However, this approach introduces
a lot of hyper-parameters, that require fine-tuning. It can
be understood that the proposed approach utilizes only
the regularization constant \ as the parameter. The re-
maining parameters such as a, ¢, and ¢ can be computed
and fixed.



Table 1: Overview of the standard image data sets used in the ex-

periments.
Dataset Image size | Train set | Test set
MNIST 28 x 28 gray 60, 000 10,000
CIFAR-10 | 32 x 32 color 60, 000 10,000
SVHN 32 x 32 color | 604,388 26,032

2.2. Classification

In this research, we have used 2v Support Vector Ma-
chine (2v-SVM) [31] with radial basis function kernel for
classification. 2v-SVM is a “cost-sensitive” version of SVM
that penalizes the training errors of one class more than
the other by assigning class specific weights to both the
classes. This explicit penalty minimizes the false nega-
tives while restricting the false positives below a certain
significance level. Hence, in the case of imbalanced class
data or different cost of error, different importance can
be given to the two types of errors, making sure that the
majority class is not creating a bias. Further, in case of
c-class classification problems, ¢ different binary classifiers
are created using the “one-vs-all” approach to train bi-
nary 2v-SVMs. The primal form of 2v-SVM optimization
function [31] is given as

1 0 11—~
min §||w||2—yp+gz¢i+TZd)i (18)

w,b,9,
wop = iel_

such that, (i) y;(k(w,z;)+b) > p—1b;, (ii) ¢; > 0, and (iii)
p > 0. Here, w is the decision boundary, x are the support
vectors, y are the corresponding class labels, k(w, ;) is the
kernel function, v; are the slack variables, v € {0,1} is a
parameter controlling the trade-off between false positives
and false negatives, and ¢ = {1,2,...,n} for n support

vectors.

3. Experimental Results on Standard Image Datasets

To showcase the effectiveness and compare with exist-
ing (similar) approaches, we demonstrate the results on
three standard databases namely, MNIST [19], CIFAR-
10 [20], and SVHN [21].

3.1. Standard Image Datasets

The properties of the datasets are summarized in Ta-
ble 1 and a short description of the standard image datasets
are provided below:

e MNIST: It is a handwritten digit classification prob-
lem from gray-scale images of size 28 x 28. The
dataset has ten classes of digits varying from {0—9},
with 6000 images per class. As per the defined pro-
tocol, 5000 images per class are used for training
while the remaining 1000 of them are used for test-
ing, making it a total of 50,000 images for training
and 10,000 for testing.

e CIFAR-10: It is a labelled subset of the 80 million
tiny images dataset [32]. It contains colored images
corresponding to ten different object classes, and the
size of the images are 32 x 32. The ten classes are air-
plane, automobile, bird, cat, deer, dog, frog, horse,
ship, and truck. 6000 images are available per class,
with 50,000 images for training and 10,000 images
for testing. The dataset is split into five training sets
and one testing set, each containing 10,000 images.
The testing set consists of exactly 1000 images from
each class.

e SVHN: It is a real world image dataset consisting of
house numbers (digits, similar to MNIST) obtained
from Google Street View images. The dataset con-
sists of 10 classes with digits from (0 to 9). Each
image is RGB and of size 32 x 32 centered around
a single character. There are 73,257 training im-
ages, 26,032 testing images, and an additional set of
531,131 images is used for training.

All the standard protocols provided with the databases are
followed for evaluation, thus making the results compara-
ble with the literature.

3.2. Experimental Setup

In the experimental setup, each of the hidden layers is
pre-trained in a greedy layer-wise fashion, and the over-
all network is further fine-tuned using the training set’.
The other hyper-parameters of our model are as follows,
constant learning rate = 0.01, regularization parameter =
0.45, initial momentum = 0.5, final momentum = 0.95,
and KL-divergence (KLD) sparsity constant = 0.05. The
effectiveness of the proposed algorithm is demonstrated
with the following regularizers:

1. KLD: In the standard architecture of autoencoder,
only KL-divergence based regularization is used dur-
ing both pre-training and fine-tuning.

2. GSAE: This utilizes only the proposed /3 ; norm to
introduce group-sparsity into the training loss func-
tion. In this architecture, £3;-norm based supervi-
sion is used during both greedy layer-wise pre-training,
as well as, the overall architecture fine-tuning.

3. KLD + GSAE: This architecture shows that the
proposed {5 1-norm can be used to complement other
existing regularization methods. In this method,
greedy layer-wise pre-training is performed using KL-
divergence based sparsity regularizer (without class
labels). ¢31-norm based supervision is performed
only during fine-tuning. This hybrid architecture
suggests that the existing pre-trained architectures
can be fine-tuned using the proposed regularizer to
obtain an improvement in performance.

IThe network design choices are inspired from the elaborate re-
search from Hinton and Salakhutdinov [33].



Table 2: The performance of the proposed algorithm using different regularizers on the standard image data sets. The architecture of the

autoencoder used for each dataset is also provided.

| Dataset | Architecture | Performance Metric | KLD | GSAE | KLD + GSAE |
MNIST [784 500 500] Error Rate (%) 1.71 1.19 1.10
CIFAR-10 | [3072 2000 2000 Accuracy (%) 74.3 76.8 77.4
SVHN 1024 1000 1500 Accuracy (%) 89.9 92.1 92.4

(a) Standard autoencoder

(b) GSAE

Figure 2: Visualization of the features learnt in the first hidden layer of the autoencoder on MNIST dataset with (a) standard autoencoder
using only KL-divergence based sparsity, (b) proposed GSAE learning algorithm.

3.3. Evaluation Metrics

The three standard image datasets use different metrics
to evaluate and report the performance of algorithms. On
MNIST dataset, error rate (%) is used which measures
the percentage of misclassifications. For instance, an error
rate of 0.68 means 68 images out of 10,000 images are
misclassified. For the CIFAR-10 and SVHN datasets, the
accuracy (%) of correct classification is used as a metric
to evaluate the performance of algorithms.

3.4. Image Classification Performance

Table 2 shows the results of the proposed GSAE algo-
rithm on the three standard image datasets along with the
performance of some existing algorithms. On the MNIST
dataset, apart from the aforementioned experimental setup,
we compare our best reported result along with the best re-
ported results of variants of autoencoder proposed in the
literature. The autoencoder variants that are compared
are:

e Marginalized Denoising AutoEncoder (MDAE) [34],

Stacked AutoEncoder (SAE) [35],

Stacked Denoising AutoEncoder (SDAE) [35],

Contractive AutoEncoder (CAE) [10], and

Autoencoder Scoring [36].

The following are some key observations from the set
of experiments.

e In all three datasets, a similar trend can be observed
across the architectures and it can be found that
KLD + GSAE provides the best performance. This
confirms that the group sparsity constraint assists
in learning improved features for the classification
tasks.

e Figure 2 shows the obtained hidden layer visualiza-
tions of the autoencoder trained using KL-divergence
and the proposed GSAE algorithm. It can be vi-
sually observed that GSAE algorithm learns better
descriptive features that improve the classification
performance.

e On the MNIST dataset, Table 3 shows the compar-
ative performance of the proposed algorithm along
with existing variants of autoencoder, as reported in
the literature. It can be observed that the proposed
GSAE provides comparable performance with the
existing autoencoder variates. However, it is worth-
while noting that the autoencoder architectures across
these variates are different. For every autoencoder
variate, the architecture providing the best perfor-
mance is reported.

e In the proposed formulation (i.e. Equation 3), A
controls the dominance of {3 ; regularization dur-



Table 3: Summarizing the results of the proposed GSAE with best
reported results of different variants of autoencoder based algorithms
and the proposed algorithm, GSAE, on the MNIST dataset [19].

| Algorithm | Error Rate % |
MDAE [34] 1.29
SAE [35] 1.40
SDAE [35] 1.28
CAE [10] 1.14
Autoencoder Scoring [36] 1.27
Proposed 1.10

ing learning. In the literature, Vincent et. al. [35]
have shown that the regularization constant could
strongly influence the learnt features. Therefore,
we have performed experiments by varying A in the
range of 0 to 1 with a varying step sizes, i.e. A =
{(0.00001 : 0.00001 : 0.0001), (0.0001 : 0.0001 :
0.001), (0.001 : 0.001 : 0.01), (0.01 : 0.01 : 0.1),
(0.1:0.1:1)}. Asshown in Figure 3, on the MNIST
dataset, the lowest error rate is obtained with A =
0.08. Similarly, for other two databases, the best
performing results are obtained with A = 0.09 and
A = 0.08 respectively. With group sparsity, we ob-
serve that smaller values of A yields better results
compared to higher values and the optimal perfor-
mance is obtained for the values in the range of 0.05
- 0.1.

e The aim of any supervised classifier is to learn a
function that maps a learnt feature representation
to a set of appropriate classes. In machine learn-
ing paradigm, Wolpert [37] formulated the “No free
lunch” theorem stating that, under noise-free envi-
ronment there is no prior for the distinction in su-
pervised learning algorithms based on training-set
error. According to the understanding of this the-
orem, it is very challenging to hypothesize that a
particular supervised classifier is going to perform
better than other classifiers, without performing ex-
perimental evaluation. Hence, in comparison with
2v-SVM, we evaluate the performance of other pop-
ular classifiers, the softmax classifier, multilayer neu-
ral network (with 2 hidden layers), and classic SVM
classifier. On the MNIST dataset, the proposed al-
gorithm with 2v-SVM classifier provides the lowest
error rate of 1.10 which is at least 0.75% better than
other three classifiers.

3.5. Comparison with State-of-the-art Algorithms

It is to be noted that state-of-the-art performance for
the datasets used in this research are: (i) MNIST is 0.21%,
obtained using ConvNet architecture and dropconnect reg-
ularization [13], (ii) CIFAR-10 is 91.78%, obtained using

25

Error (%)

Figure 3: Effect of A on the MNIST database. For each of the five
intervals, lowest error is reported.

a strictly ConvNet architecture [38], and (iii) SVHN is
98.3%, obtained by improving pooling layers in ConvNet
architecture [39]. We would like to mention that the main
motivation is to show that adding group sparse regular-
izer can improve the performance of stacked autoencoder
based feature representation. The results presented in this
section showcase that ¢ ; norm, solved via majorization-
minimization approach, helps in improving the classifier
performance.

4. Latent Fingerprint Minutia Extraction with GSAE

Latent fingerprint recognition is one of the important
forensic and law enforcement applications that can benefit
from the advances in machine learning. FBIs Next Gen-
eration Identification program requires “lights-out mode
in latent fingerprint identification where no (or very lim-
ited) human intervention is allowed. In designing such a
system, there are four major steps involved: (1) latent
fingerprint segmentation from complex /noisy background,
(2) enhancement of region of interest, (3) feature extrac-
tion including level-1 (e.g. singular points) and level-2
(e.g. minutia) features, and (4) matching against a gallery
database and return top-k probable matches (typically k
= 50).

In this section, we show a case study of automatic la-
tent fingerprint feature extraction using the proposed deep
learning approach. The main idea is to use group sparse
constraint in autoencoders so as to better distinguish be-
tween the minutia and non-minutia patches from latent
fingerprints. Though minutia extraction from inked and
live-scan fingerprints are well-addressed problems [40], ex-
tracting minutia from latent fingerprint images is still an
open research problem [41]. Due to the challenging nature
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Figure 4: (a) High quality fingerprint patches illustrating the differ-
ence in the ridge structure between minutia and non-minutia patches,
(b) Local patches from latent fingerprints illustrating the lack of well
defined structures and noisy ridge patterns.

of the problem, not many algorithms exist for automated
latent fingerprint minutia extraction. In some of the earlier
research, existing tenprint matchers are utilized to extract
minutia information from latent fingerprints [42], [43], [44].
However, with the poor performance of these algorithms,
researchers have realized the need for latent specific minu-
tia extractor which can handle poor quality information
in a more robust way. Paulino et al. [43], [45] proposed a
Minutiae Cylinder Code (MCC) [46] based descriptor for
manually annotated minutia features. Recently, Sankaran
et al. [47] proposed one of the first automated algorithms
for latent fingerprint minutiae extraction using deep learn-
ing. They used an unsupervised feature learning algorithm
using Stacked Denoising Sparse AutoEncoder (SDAE) [35]
to learn latent fingerprint local patch description. They
formulated minutia extraction as a binary classification
problem, with every local patch classified as a minutia or
a non-minutia containing patch.

It can be observed from Figure 4(a) that the local re-
gion around a minutia has a different ridge structure than
a non-minutia patch. However, as shown in Figure 4(b),
latent fingerprint minutia patches lack a definite struc-
ture, making it challenging to learn meaningful informa-
tion. Due to the non-uniform and uncertain variations in
latent fingerprints, it has been challenging for researchers
to define a model for extracting minutiae. Human engi-
neered features such as gradient information and frequency
based information, provide limited performance due to the

presence of background noise. Therefore, in this research,
we design an automated minutiae extraction algorithm us-
ing the proposed GSAE for latent fingerprint. Figure 5
illustrates the three main stages of the formulation.

1. Pre-training: In the first stage, lots of high qual-
ity fingerprint image patches are used to pre-train a
group sparse autoencoder by preserving group spar-
sity, as follows,

J(W) =argmin[[|X — Up(WX)|[3
w.u (19)
+ )‘(”WthmH?,l + ||Wthnm||2,1)]

where, Xpngm and Xpgnm represent the high quality
fingerprint minutia and non-minutia patches. The
regularization term ensures that the group sparsity is
preserved within the minutia and non-minutia patches.

2. Supervised Fine-tuning: In the second stage, labeled
latent fingerprint image patches are used to fine-tune
the GSAE. Further, a binary classifier (2v-SVM) is
trained using the extracted patches to differentiate
between minutia patches and non-minutia patches.

3. Testing: In the third stage, the learnt feature de-
scriptor and the trained classifier are tested. An
unknown latent fingerprint is divided into overlap-
ping patches, feature descriptor for each patch is ex-
tracted using the proposed fine-tuned GSAE algo-
rithm and then classified using the trained 2v-SVM
classifier.

5. Experimental Results of GSAE for Fingerprint
Minutia Extraction

We next describe the fingerprint datasets used for eval-
uation and the experimental results obtained.

5.1. Fingerprint Datasets

Similar to autoencoder, GSAE also requires a large
database for learning a robust feature representation. Since
the collection of latent fingerprints is a time consuming
and challenging task, there are only a few latent finger-
print datasets available in the public domain. Therefore,
we first prepare the heterogeneous fingerprint database
by combining four publicly available live-scan fingerprint
databases and use it as the pre-training data set. The four
databases are: NIST SD-14 v2 [48], CASIA-FingerprintV5
[49], MCYT [50], and FingerPass [51]. The description
and properties of these datasets are summarized in Ta-
ble 4. To make the feature learning supervised, minutiae
are extracted from all the fingerprints using an open source
minutia extractor mindtct of the NIST Biometric Imaging
Software (NBIS) [52]. An image patch of size 64 x 64 (w =
64) is extracted with minutia at the center, thereby creat-
ing 10, 088, 218 number of minutia patches extracted from
all the images. To compute the results on the datasets,
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Figure 5: Block diagram to explain the various stages in the proposed algorithm. I: Pre-training stage where the group sparse deep autoencoder
is learnt from labelled high quality fingerprints, II: Fine-tuning stage where the feature learner and classifier are trained with labelled latent
fingerprints, and III: Testing stage in which local patches from unknown latent fingerprint are classified as minutia and non-minutia patches.

a stacked group sparse autoencoder is designed with the
network layer sizes as {4096, 3000, 2000, 1000, 500}. With
a mini-batch size of 10,000 image patches, we pre-trained
each layer for 40,000 epochs and then performed 10,000
epochs for fine-tuning. From every fingerprint, the same
number of non-minutia patches and minutia patches are
extracted to ensure same number of samples from both the
classes. The proposed algorithm is trained with raw image
intensities of these image patches (vector size 1 x 4096) as
input. For evaluation, the following two publicly available
latent fingerprint databases are selected. A summary of
the latent fingerprint datasets is shown in Table 5.

e NIST SD-27 latent dataset [22]: The database
has 258 latent fingerprints, pre-classified as good,
bad, and ugly, based on their biometric quality along
with minutiae points, manually annotated by foren-
sic experts. Since the minutia patches of high qual-
ity latent fingerprints (as a part of heterogeneous
database) are different from field quality latent fin-
gerprints, 50% randomly chosen images from the NIST
SD-27 database are used to fine-tune the GSAE model
learned using the heterogeneous fingerprints. The
remaining 50% images (129 fingerprints) are used
for testing the classification performance. For fine-
tuning the proposed GSAE and classification model,
the same number of minutia and non-minutia patches
of size 64 x 64 are extracted from each training image.
Three times random cross-validation is performed to
remove any training bias.

e MOLF dataset [23]: It consists of 4,400 latent
fingerprints from 100 different subjects (all 10 fin-
gers). All the latent fingerprints are lifted using
black powder from a tile background. The man-
ually annotated minutiae are also available along
with this database. Since the pre-defined protocol
of MOLF does not provide any training subset, the
best trained model obtained from the NIST SD-27
database is used for performance evaluation and the
entire MOLF dataset. The test set comprises 422, 000
minutia and non-minutia patches.

5.2. Latent Fingerprint Minutia Extraction Performance

The primary objective of this algorithm in fingerprint
recognition is correctly extracting minutiae from latent fin-
gerprint images. Therefore, the performance metric used
in all these experiments is Correct Classification Accu-
racy (CCA), which denotes the ratio of correctly classi-
fied patches with the total number of patches. The over-
all accuracy is further split into class-specific classification
accuracy: Minutia Detection Accuracy (MDA) and Non-
Minutia Detection Accuracy (NMDA). In terms of MDA
and NMDA, although both the accuracies should be high,
it is important to detect all the minutia patches accurately
along with minimizing the occurrence of spurious minutia
patches.

No. of correctly classified minutia patches

MDA = % 100

(20)

Total no. of minutia patches



Table 4: Summarizing the composition and characteristics of the heterogeneous fingerprint database. This heterogeneous database is used as

the pre-training dataset for the proposed deep learning approach.

’ Database \ Capture Type \ No. of Images \ No. of Minutiae ‘
NIST SD-14 v2 [48] Card print 54,000 8,188, 221
CASIA-FingerprintV5 [49] | Optical 20,000 515,641
MCYT [50] Optical, capacitive 24,000 571,713
FingerPass [51] Optical, capacitive 34,560 812,643
Total 132,560 10,088,218

Table 5: Summarizing the characteristics of the latent fingerprint databases used in this research, including the number of train patches and

test patches used in each of the three cross validation experiments.

] Database \ No. of Images | No. of Train Patches | No. of Test Patches
258 9757 65,274
Fold 1 5,503 65,274
NIST SD-27 [22] Fold 2 5,439 65,274
Fold 3 5,441 65,274
MOLF [23] 4,400 - 422,400

NMDA — No. of correctly classified non-minutia patches

Total no. of non-minutia patches
(21)

The performance of the proposed approach is evaluated
on two different datasets, NIST SD-27 and MOLF, under
four different experimental scenarios:

e using VeriFinger, a popular commercial tool for fin-
gerprints,

e using the proposed architecture with only KLD,

e using the proposed architecture with only GSAE,
and

e using the proposed architecture with KLD + GSAE.

We also compared the results with current state-of-the-
art algorithm proposed by Sankaran et al. [47]. The results
on NIST SD-27 and MOLF are summarized in Table 6
respectively.

As shown in Table 6, on the NIST SD-27 database,
the correct patch classification accuracy of the proposed
algorithm is as high as 95% when using KLD + GSAE,
compared to VeriFinger providing around 90% accuracy.
The standard deviation of cross-validation experiments is
in the range of £0.2, denoting very small training bias.
However, the MDA of VeriFinger is around 20% showing
that it rejects a lot of genuine minutia patches. The ar-
chitecture of Sankaran et al. [47] yield the MDA of 65%.
In comparison to that, the proposed KLD + GSAE yields
an improvement of more than 30%.

While detecting non-minutia patches, we have observed
that the algorithm of Sankaran et al. [47] yields the low-
est accuracy of 41.21% followed by VeriFinger which yields

x 100
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Figure 6: Sample example latent fingerprints from NIST SD-27
database showing correct results of the proposed algorithm. Red
dots denote manually annotated minutiae and green patches repre-
sent the minutia patches predicted using the GSAE algorithm.

96.20%. This results shows that VeriFinger can efficiently
detect the background patches. The proposed GSAE algo-
rithm yields 100% NMDA on the same experimental pro-
tocol. Such a high accuracy can be attributed to 2v-SVM
classification, which supports in making the false positive
error almost zero. As shown in Figure 6 and Figure 7, on
the NIST SD-27 database, the minutia detection accuracy
is very high and very small number of spurious minutia
patches are extracted.

The second database used for performance evaluation
is the MOLF database. This is a very large database;
however, there is no defined training database. There-
fore, the results on the MOLF database are obtained by
training the model on the NIST SD-27 dataset and testing
the best learned model with the MOLF database. Since
Sankaran et al. yields lower accuracies on the NIST SD-27
database, on the MOLF database, we have only compared
with VeriFinger, KLD and GSAE. As shown in Table 6,



Table 6: Classification results (%) obtained on the NIST SD-27 and MOLF latent fingerprint datasets. CCA.: Correct Classification Accuracy,
MDA: Minutia Detection Accuracy, NMDA: Non-Minutia Detection Accuracy.

’ Database \ Algorithm \ Classifier \ CCA \ MDA \ NMDA ‘
VeriFinger VeriFinger 90.33 20.41 96.80
Sankaran et. al. [47] Softmax 46.80 65.18 41.21
NIST SD-27 [22] | KLD 2v-SVM 91.90 91.90 100
GSAE 2v-SVM 94.48 94.48 100
KLD + GSAE 2v-SVM 95.37 95.37 100
VeriFinger VeriFinger 78.52 21.33 92.92
KLD 2v-SVM 59.25 84.17 52.97
NIST MOLF 23] g g 55-SVM | 9014 | 90.44 | 90.07
KLD + GSAE 2v-SVM 90.74 90.63 90.37

Figure 7: Sample latent fingerprints from NIST SD-27 database
showing some incorrect predictions obtained using the proposed al-
gorithm. Red dots represent the annotated minutiae, green patches
represent the correct minutiae patches predicted using the GSAE al-
gorithm and blue patches show the incorrect ones (false positive). It
can be observed that no genuine minutiae is rejected by the proposed
algorithm.

the proposed architecture yields classification accuracies of
over 90% with the standard deviation in the range of +0.15
compared to VeriFinger which provides around 78.5% ac-
curacy. Comparing with different regularizations reveals
that KLD + GSAE provides the best results on both the
datasets and the performance of GSAE is better than the
traditional KLD regularization. On 3349 images out of
the total 4400 images present in the MOLF database, Ver-
iFinger failed to extract any minutia. This shows that
VeriFinger yields poor results in extracting genuine minu-
tiae whereas using only KLD regularization extracts lots of
spurious minutiae - the non-minutiae detection accuracy
is only 52.97%.

The results on both the databases show that the per-
formance of the proposed minutiae extraction algorithm is
better than the existing algorithms. It is our assertion that
the performance of the proposed algorithm on the MOLF
database is not as good as on the NIST SD-27 because (i)
the number of testing data points on the MOLF database
is very large compared to the NIST SD-27 dataset and
(ii) there are significant variations in the characteristics of
the two databases. Using the model trained with NIST
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SD-27 also contributes to lower accuracies on the MOLF
database.

We further evaluate the efficacy of the proposed GSAE
based minutiae extraction approach using a popular la-
tent fingerprint identification system?. The identification
system is modular in nature which provides the flexibil-
ity of keeping the entire pipeline constant while chang-
ing only one component. This facilitates evaluating the
performance of the proposed approach with minutiae ex-
tracted from other approaches as well. The system has
over 2 million pre-enrolled identities in the database that
can be used as the large gallery in the experiments. Since
the NIST SD27 database may have been used to train
the system, we have performed matching experiments only
with the MOLF database. Gallery images from the MOLF
database are enrolled® and probe images are used for test-
ing. From a probe fingerprint image, first the minutiae
points are extracted using the proposed algorithm by first
finding the minutiae patches and then taking its center
as the minutia point. The minutiae template/feature is
given to latent fingerprint matching system which com-
pares against the large gallery (which also includes gallery
from the MOLF) and output the top matches. We also
compare the performance with the inbuilt approach of la-
tent fingerprint system in which minutiae are extracted
by the system itself and matched against the gallery. We
obtain rank-50 accuracies for both these experiments. For
the proposed approach, rank-50 accuracy is 69.83% whereas
the inbuilt feature extraction approach in latent fingerprint
system yields 69.21%. Though this seems slight improve-
ment by the proposed algorithm, this is still noteworthy
because of the large scale matching (using more than 2
million gallery identities) with over 4,000 probe latent fin-
gerprint images. This experiment demonstrates that the
proposed algorithm is highly promising for automatic la-
tent fingerprint feature extraction.

2The license agreement does not allow us to name the commercial
system in any comparisons.

3After the experiments, these enrollments are deleted from the
system.



6. Conclusion

This paper presents a novel supervised regularization
method for autoenocders using ¢ ;-norm which utilizes
class labels to learn supervised features for the specific
task at hand. The optimization function is solved us-
ing a majorization-minimization approach and classifica-
tion is performed using 2v-SVM. The effectiveness of the
proposed GSAE based representation learning approach is
evaluated on three standard databases: MNIST, CIFAR-
10, and SVHN. Further, using GSAE, an automatic latent
fingerprint minutia extraction algorithm is formulated as
a binary classification algorithm. The minutiae extraction
algorithm is evaluated on two publicly available latent fin-
gerprint databases, NIST SD27 and MOLF. The results
show that the proposed algorithm improves the perfor-
mance of automated latent fingerprint feature extraction.
It is our assertion that the effectiveness of GSAE can be
further utilized to improve the classification performance
with challenging and noisy databases.
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