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Face recognition systems, trained in controlled envirammeften ¥ || Vaz* J W | L g | L ™ |
fail to efficiently match low resolution images with high oéistion 7272 A%xA8 3232 2424 16x16
images. In this research,ca-transfer learningramework is pro- i ] Bl S

posed in which knowledge learnt in controlled high resoluten- 2 'S
vironment is transferred for matching low resolution pratmages H':ﬂ‘ - £

with high resolution gallery. The proposed framework sessly 72x72 48x48

32x32 24x24
combinestransfer learningand co-training to perform knowledge (&)
transfer by updating classifier’s decision boundary with tesolu- EAaE AEJdAEBEBAE S
tion probe instances. Experiments are performed on the CMlti-M [ [ £ [ i [ : [ +
PIE and SCface database with gallery images of Bz& 72 and ;J - L; | '5;1 d S;'ZJ -S; d

size of probe images varying frod® x 48 to 16 x 16. The results ©)
show that, in terms of rank-identification accuracy, the proposed

algorithm outperforms existing approaches by at 165&t Fig. 1. Images at different resolutions from the (a) CMU Multi-
PIE, (b) SCface database, and (c) comparing images enhasicep

Index Terms— Low resolution face recognition, Transfer learn- super-resolution techniques [1], [2].

ing, Co-training, SVM

1. INTRODUCTION Another related challenge pertains to training in congall
environment with high resolution (HR) images and testingim
With advancements in technology, surveillance camerastem@ a  controlled environment with low resolution (LR) images. €Th
profound presence and are widely used for security and lfove@  conditions in which a system is trained are referred to ascgou
ment applications. These cameras are primarily designédwe a  domain where the availability of large training data helpes $ystem
wide coverage from a fixed location and may yield very low feso to efficiently learn the task. The conditions in which theteys
lution face images. The need to identify individuals fronclslow  operates are referred to as target domain. In the sourceidloma
resolution images has emerged as a new covariate in facgmieco high resolution probe images are matched with high reswoiuti
tion. It involves matching low resolution probe images @ied  gallery whereas in the target domain, low resolution probages
from surveillance cameras) with high resolution gallerages cap-  are matched with high resolution gallery. To address thidlehge,
tured during enroliment, as shown in Fig. 1(a) and (b). THiedi  knowledge learned in the source domain is transferred timiper
ence in information content between high resolution andrieso-  efficient matching in the target domain. Zhao and Hoi [6] jursgxd
lution images degrades the performance of existing facegrétion  a framework for online transfer learning, where labeledntray
algorithms. instances in the target domain are available incrementafigw-
One approach to match cross resolution images, i.e. low resever, their approach requires labeled instances for thergised
olution probe with high resolution gallery, is to downsampiigh  learning task and obtaining labeled instances may be eikgens
resolution images to the level of low resolution images befo time consuming, and requires human effort. In this researoh
matching. However, information useful for face recogmitsuch  training [7] is utilized to facilitate transfer learning thiunlabeled
as texture, edges, and other high frequency informatiorois-c  probe instances. The main contribution of this research ¢s-a
promised while downsampling the images. Another widelyduse transfer learning framework that integrates transfer leisg with
approach is to enhance the low resolution face images usjgrs  co-training to efficiently match low resolution (LR) probé&hwhigh
resolution techniques [1], [2] and then match with high heson resolution (HR) gallery images
images. Super-resolution techniques are intended fonstaating
a high resolution view from low resolution image(s) and aot n
optimized for face recognition applications. Though thare few 2. CO-TRANSFER LEARNING FRAMEWORK
techniques that incorporate face recognition with supsoiution o
[3], they remain susceptible to environmental variationd mtro- ~ Consider a scenario where there is large labeled data piegzatio
duce distortions as shown in Fig. 1(c). Recently, few apgiiea are  high resolution images but only a few labeled instances wfrkes-
proposed to map features from images with different regmigtinto olution i are available from the target domain. The sourcenaia
a unified space to minimize the difference between low-re&mi classifier is well trained on large labeled data; howevertainget do-
and high-resolution images [4], [5]. main classifier is trained only on a few labeled examplescéthe
classifier in target domain has not seen adequate data draining,
*Research is supported through IBM PhD Fellowship. it has to learn the decision boundary from unlabeled proseirtes




in the target domain. For this task, both the classifiers anebined
in an ensemble to subsequently transfer the knowledge founrcs
to target domain classifier. Further, two ensembles trabmesepa-
rate views (here, it represents two feature extractors)igeqseudo
labels to probe instances in the target domain. Within easkre-
ble, decision boundary of the target domain classifier carpated
in online manner with pseudo-labeled instances obtainedgltest-

ing.
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Fig. 2. Block diagram for the co-transfer learning framework.

As shown in Fig. 2, source domain classif'@ﬁ wherej = 1,2
represents the views (features), is trained using suffiéiénlabeled
data denoted by$={(uf, z1), (U5, 22), ..., (U3, z,)}. Everyi"
instancey; has two viewsx; 1, z; 2} for the labelz; € {1, +1};

wherew?,, ; andw/}, ; are the updated weightg; is defined as:

gi(s) = exp{—nl(yi, 1)}, (4)

n = 0.5, I(y,9) = (y — §)* is the square loss functiom, is the
predicted label, ang is the pseudo label provided by co-training
(explained later).

a= Genuine threshold
("’1}\ b= Impostor threshold

Fig. 3. lllustrates the confidence of prediction.

The transfer learning approach requires labeled instandée
target domain. Obtaining labeled training instances idfecdit and
expensive task, however, large number of unlabeled instance
available as probe. Therefore, in this research, unlalmieie in-
stances are leveraged to transfer the knowledge learnbd sBotrce
domain. Co-training, proposed by Blum [7], is used to previd
pseudo labels to unlabeled probe instances available seéajlein
the target domain. It assumes the availability of two enderfumc-
tions E; and E; trained on separate views where each ensemble

herex; 1 andx; » represent the input vector obtained from two sep-function has sufficient (better than random) accuracy. & ensem-

arate views. Target domain classifia{?}() is initially trained on a

few labeled training instances in the target domain repiteseas

DT={(uf, z1), (U3, 22), ..., (UL, z,n)}. Here,n andm are number

of training instances in the source and target domains césply.

ble confidently predicts genuine label for an instance wihiéeother
ensemble predicts impostor label with low confidence, théngar-
ticular instance is used as a re-training sample for therskensem-
ble or vice-versa. In this research, confidence of prediclis an

A set of r unlabeled probe instances in the target domain is repreinstance on thg" view, denoted byv;, is measured as the distance
sented aDE={(U'T), (U'3), ..., (W) }. Next, an ensemble predic- from the decision boundary as shown in Fig 3. A genuine truielsh

tion function, denoted ag';, is constructed for each viewt; is a

weighted combination of source domain classif€f,, and target
domain classifierC’], with w5 andw] as the two weights. For the

i*" unlabeled probe instance in th&" view, ensemble functio;

predicts the labelE;(z;,;) — vyi,;. In an ensemble, knowledge is

transferred by updating the decision boundary of targetaiomias-

sifier O]-T using only the new incremental data as proposed in [8]
For the:t" instance in the target domairi;, class label is predicted

by the ensemble as given in Eq. 1.

yig =wiy CF (W) +wl; CF (') 1)

is computed as the distance of the farthest impostor paatigterro-
neously classified as genuine. For predicting an instanbe tmon-
fident enough to lie in genuine class, the distance from tlesida

hyperplane should be greater than the corresponding tice&h;).

Similar procedure is repeated for impostors as well. In than-
ner, unlabeled probe instances are transformed into pdabeted
training data and the decision boundary of target domaissdiar
is updated in online manner [8]. The proposedtransfer learning
framework is summarized in Algorithm 1.

The proposed algorithm is particularly useful in recogmgi

cross-resolution face images. In this research, the pegpos-
transfer learningframework is applied on support vector machine

wherew;’ ; andw;; are the weights for the source and target domain(SVM) classifiers. Further, two feature extractors, 1) Lideaase

classifiers at th¢” instance. Initiallyw; andw] are set td).5 such
that each classifier contributes equally within an ensemBladu-
ally, the two weights are adjusted to emphasize the corttoibvérom
the updated target domain classifier in an ensemble. As peajloy
Zhao and Hoi [6], the two weights are updated dynamicallyhass
in Egs. 2 and 3.
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Quantization (LPQ) [9], and 2) Scale Invariant Feature $fam
(SIFT) [10] are used to represent two separate views of faeges
across different resolutions. These feature extract@sresilient

to scale changes and can be effectively used for matching fac
images with varying resolutions. Face image is tesseliatechon-
overlapping facial regions, features are extracted, aaddistance

is computed for each facial region usigg distance. For a gallery-
probe pair, the distances between local facial regions ectorxized
and provided as input to the ensemble. SVMs in each ensemile a
trained using the approach proposed by Phillips [11] andfitied
performance is computed by combining responses from bah th
ensembles.



Algorithm 1 Co-transfer learning framework

Input: Initial labeled training dataD? in the source domain, a

few labeled instance®? in the target domain. Unlabeled probe

instancesD} (available sequentially).

Iterate: j= 1to 2 (number of views)

Process: Train classifiersCy and C7 on j' view of Df and
DT respectively to construct ensembi. Compute confidence
thresholdsP; for each view.

for + = 1 to r (number of probe instancedd

Predict labels:E;(zi,;) — yi,5; o represents confidence of

prediction
if a1 > P & as < P then
UpdateC7 with pseudo-labeled instande; 2, y:,1} & re-
computews andw? .
end if.
if o1 < Py & ag > P> then
UpdateC{ with pseudo-labeled instande:; 1, y: 2} & re-
computew; andw? .
end if.
end for.
end iterate.
Output: Updated classifier§]” and weightsw;, w; .

3. EXPERIMENTAL EVALUATION

To evaluate the efficacy of the proposed framework, a joardfer-
and-test strategy is used which allows the data used in namtdgd-
tation to be concurrently used for performance evaluatfeurther,
two databases, (1) CMU Multi-PfEand (2) SCfaceare used for
performance evaluation. For experiments on the CMU MUli-P
database, images pertaining3® individuals with frontal pose and
neutral expression are selected. Classifiers in the sooroaid are
trained on high resolution images of0 subjects and classifiers in
the target domain are trained on low resolution probe and reg-
olution gallery images of0 (from the 100) subjects. Performance
is evaluated on images of the remainiz@jy individuals with four
different resolutions of probe images, as shown in Fig. .1@r
each subject, one high resolution image is kept in the gated

one low resolution image is used as probe. Images at a particu

resolution are obtained by downsampling the original insagethe
required resolution (varying fromi2 x 72 to 16 x 16) using bi-
cubic interpolation. The second database is the SCfacbatsahat
comprises images correspondingl® individuals captured in un-
controlled indoor environment using five video surveillamameras
placed at three different distances. For experiments ors@face
database, classifiers in the source domain are trained dnrégy

olution images corresponding f® subjects and classifiers in the

target domain are trained on low resolution probe and higblue
tion gallery images corresponding26 (from the50) subjects. The
performance is evaluated on images correspondigg todividuals
with three resolutions of probe images corresponding teetltif-
ferent distances, as shown in Fig. 1(b). For each subjeethayh
resolution image is kept in gallery and five images corredpanto
five different cameras are used as probe. In all experimesss;

lution of gallery is set tar2 x 72. The experiments resemble real

world scenario where ample high resolution images areaailin
the source domain. However, only a few low resolution probé a
the corresponding high resolution gallery images are alvksl for

Lhttp://www.multipie.org/
2http://www.scface.org/

Table 1. Rankd accuracy of different algorithms.

DatZtr)c;Zi resAOI';gg[‘hm 48x48 | 32x32 | 24x24 | 16x16
CMU Ensemblel| 79.4% | 69.1% | 61.8% | 56.7%
Multi-PIE, | Ensemble2| 76.3% | 55.2% | 59.4% | 52.1%
Gallery Fusion 86.1% | 79.4% | 70.3% | 66.2%
(72x72) Proposed | 92.3% | 84.1% | 77.4% | 72.4%
Ensemblel| 63.2% | 58.1% | 52.6% NA
SCface, Ensemble2| 60.4% | 57.8% | 49.1% NA
Gallery Fusion 74.4% | 67.4% | 60.2% NA
(72x72) Proposed | 79.4% | 72.8% | 66.4% NA

training in the target domain. Performance is reported Wittimes
repeated random sub-sampling for non-overlapping trgit@sting
partitions.

The performance of the proposed approach is compared with fu
sion of two ensembles trained on the initial data when no kedge
is transferred (referred to dsision’). It allows to analyze the perfor-
mance gain due to transfer of knowledge. The performancisds a
compared with three super-resolution techniques. Swgsatution-
1 is the standard bi-cubic interpolation [2], super-resotu2 ® is
a regression based technique proposed by Kim and Kwon [1g , an
super-resolution-3 is a sparse representation based approach pro-
posed by Yangt al. [2].°

Figs. 4(a) and (b) show the rarkidentification performance
of the proposed approach with probe images of differentiuéisos
on the CMU Multi-PIE and SCface databases respectivelyleTab
compares the rank-accuracy of the proposed approach with the ac-
curacy of individual ensembles as well as their fusion wititeans-
fer learning. The results show that there is an improvemgabout
5 — 7% with transfer of knowledge from high resolution to low res-
olution domain. CMC curves in Fig. 4(c) show that the propbse
approach also outperforms all three super-resolutionnigaes by
at least11%. Super-resolution is performed with a magnification
factor of three to match probe images of skZex 24 with 72 x 72
gallery images, as shown in Fig. 1(c). LPQ and SIFT features a
extracted from enhanced images and the performance is ¢echpu
using sum-rule fusion of LPQ and SIFT match scores. Fig. 5(a)
shows some examples where transferring the knowledge fooncs
to target domain classifier helped to correctly recognize feso-
lution probe images (correctly identified in rahk). Examples in
Fig. 5(b) show some of the cases where the proposed appreach p
formed poorly. The poor performance can be attributed tdabe
that some of the pseudo labels assigned to unlabeled prstaaaes
may be incorrect leading toegative transfer However, the effect
of negative-transfecan be minimized by intelligently selecting the
confidence threshold for the prediction. High thresholdigalimply
conservative transfer while smaller values of the thregthead to
aggressive transfer. In the proposed framework, updatigsibn
boundary of the target domain classifier within an ensemitbeva
to capture the knowledge transferred from high resolutiomain.
Initially, equal weights were assigned to both the clagsifiean en-
semble; however with transfer of knowledge, weights fossifeers
in the target domain become more prominent. For examplegiare
iments with the CMU Multi-PIE databas€y andCZ were updated

Shttp://www.mpi-inf.mpg.de/ kkim/.

“http://www.ifp.illinois.edu/ jyang29/.

SFor experiments with super-resolution techniques, codetrained dic-
tionary and parameters are used as provided in the onlineingmtation.
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Fig. 4. Rankd accuracy at different probe resolution for the (a) CMU M{RLE database, (b) SCface database, and (¢) comparison with
super-resolution technigues for matching LR images«24) with HR images (72 72) from the CMU Multi-PIE.

onb5, 184 and4, 210 pseudo labeled probe instances respectively. ldating the weights assigned to each classifier also faetitgradual

is observed tha6.43% of the total pseudo labels were correct. The shift of knowledge from the source to the target domain di@ssin
weights for classifiers in each ensemble also saturatefan.18, addition, co-training is used to provide pseudo labels taheled
w¥=0.82, w5=0.23, andw? =0.77 at the end of co-transfer. In ex- probe instances to seamlessly improve the performance viey-le
periments with the SCface databasd, andC3 were updated on aging the knowledge learnt in the source domain. The prapose
7,346 and5, 268 pseudo labeled probe instances respectively. It isco-transfer learning framework provides significant inyenments
observed tha94.43 % of the total pseudo labels were correct. Thein performance as compared to other algorithms.

weights for classifiers in each ensemble also saturateyal).21,
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