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ABSTRACT

Face recognition systems, trained in controlled environment, often
fail to efficiently match low resolution images with high resolution
images. In this research, aco-transfer learningframework is pro-
posed in which knowledge learnt in controlled high resolution en-
vironment is transferred for matching low resolution probeimages
with high resolution gallery. The proposed framework seamlessly
combinestransfer learningand co-training to perform knowledge
transfer by updating classifier’s decision boundary with low resolu-
tion probe instances. Experiments are performed on the CMU Multi-
PIE and SCface database with gallery images of size72 × 72 and
size of probe images varying from48 × 48 to 16 × 16. The results
show that, in terms of rank-1 identification accuracy, the proposed
algorithm outperforms existing approaches by at least5%.

Index Terms— Low resolution face recognition, Transfer learn-
ing, Co-training, SVM

1. INTRODUCTION

With advancements in technology, surveillance cameras nowhave a
profound presence and are widely used for security and law enforce-
ment applications. These cameras are primarily designed tohave a
wide coverage from a fixed location and may yield very low reso-
lution face images. The need to identify individuals from such low
resolution images has emerged as a new covariate in face recogni-
tion. It involves matching low resolution probe images (obtained
from surveillance cameras) with high resolution gallery images cap-
tured during enrollment, as shown in Fig. 1(a) and (b). The differ-
ence in information content between high resolution and lowreso-
lution images degrades the performance of existing face recognition
algorithms.

One approach to match cross resolution images, i.e. low res-
olution probe with high resolution gallery, is to downsample high
resolution images to the level of low resolution images before
matching. However, information useful for face recognition such
as texture, edges, and other high frequency information is com-
promised while downsampling the images. Another widely used
approach is to enhance the low resolution face images using super-
resolution techniques [1], [2] and then match with high resolution
images. Super-resolution techniques are intended for reconstructing
a high resolution view from low resolution image(s) and are not
optimized for face recognition applications. Though thereare few
techniques that incorporate face recognition with super-resolution
[3], they remain susceptible to environmental variations and intro-
duce distortions as shown in Fig. 1(c). Recently, few approaches are
proposed to map features from images with different resolutions into
a unified space to minimize the difference between low-resolution
and high-resolution images [4], [5].
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Fig. 1. Images at different resolutions from the (a) CMU Multi-
PIE, (b) SCface database, and (c) comparing images enhancedusing
super-resolution techniques [1], [2].

Another related challenge pertains to training in controlled
environment with high resolution (HR) images and testing inun-
controlled environment with low resolution (LR) images. The
conditions in which a system is trained are referred to as source
domain where the availability of large training data helps the system
to efficiently learn the task. The conditions in which the system
operates are referred to as target domain. In the source domain,
high resolution probe images are matched with high resolution
gallery whereas in the target domain, low resolution probe images
are matched with high resolution gallery. To address this challenge,
knowledge learned in the source domain is transferred to perform
efficient matching in the target domain. Zhao and Hoi [6] proposed
a framework for online transfer learning, where labeled training
instances in the target domain are available incrementally. How-
ever, their approach requires labeled instances for the supervised
learning task and obtaining labeled instances may be expensive,
time consuming, and requires human effort. In this research, co-
training [7] is utilized to facilitate transfer learning with unlabeled
probe instances. The main contribution of this research is aco-
transfer learning framework that integrates transfer learning with
co-training to efficiently match low resolution (LR) probe with high
resolution (HR) gallery images.

2. CO-TRANSFER LEARNING FRAMEWORK

Consider a scenario where there is large labeled data pertaining to
high resolution images but only a few labeled instances of low res-
olution i are available from the target domain. The source domain
classifier is well trained on large labeled data; however, the target do-
main classifier is trained only on a few labeled examples. Since the
classifier in target domain has not seen adequate data duringtraining,
it has to learn the decision boundary from unlabeled probe instances



in the target domain. For this task, both the classifiers are combined
in an ensemble to subsequently transfer the knowledge from source
to target domain classifier. Further, two ensembles trainedon sepa-
rate views (here, it represents two feature extractors) provide pseudo
labels to probe instances in the target domain. Within each ensem-
ble, decision boundary of the target domain classifier can beupdated
in online manner with pseudo-labeled instances obtained during test-
ing.

Fig. 2. Block diagram for the co-transfer learning framework.

As shown in Fig. 2, source domain classifier,CS
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j ) is initially trained on a
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DT

L={(uT
1 , z1), (u

T
2 , z2), ..., (u

T
m, zm)}. Here,n andm are number

of training instances in the source and target domains respectively.
A set of r unlabeled probe instances in the target domain is repre-
sented asDT
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r )}. Next, an ensemble predic-

tion function, denoted asEj , is constructed for each view.Ej is a
weighted combination of source domain classifier,CS

j , and target
domain classifier,CT

j , with wS
j andwT

j as the two weights. For the
ith unlabeled probe instance in thejth view, ensemble functionEj

predicts the label,Ej(xi,j) → yi,j . In an ensemble, knowledge is
transferred by updating the decision boundary of target domain clas-
sifier CT

j using only the new incremental data as proposed in [8].
For theith instance in the target domainu′

i, class label is predicted
by the ensemble as given in Eq. 1.
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classifiers at theith instance. Initially,wS
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that each classifier contributes equally within an ensemble. Gradu-
ally, the two weights are adjusted to emphasize the contribution from
the updated target domain classifier in an ensemble. As proposed by
Zhao and Hoi [6], the two weights are updated dynamically as shown
in Eqs. 2 and 3.
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wherewS
i+1,j andwT

i+1,j are the updated weights,gi is defined as:

gi(s) = exp{−η l(yi, ŷi)}, (4)

η = 0.5, l(y, ŷ) = (y − ŷ)2 is the square loss function,y is the
predicted label, and̂y is the pseudo label provided by co-training
(explained later).

Fig. 3. Illustrates the confidence of prediction.

The transfer learning approach requires labeled instancesin the
target domain. Obtaining labeled training instances is a difficult and
expensive task, however, large number of unlabeled instances are
available as probe. Therefore, in this research, unlabeledprobe in-
stances are leveraged to transfer the knowledge learned in the source
domain. Co-training, proposed by Blum [7], is used to provide
pseudo labels to unlabeled probe instances available sequentially in
the target domain. It assumes the availability of two ensemble func-
tions E1 andE2 trained on separate views where each ensemble
function has sufficient (better than random) accuracy. If one ensem-
ble confidently predicts genuine label for an instance whilethe other
ensemble predicts impostor label with low confidence, then this par-
ticular instance is used as a re-training sample for the second ensem-
ble or vice-versa. In this research, confidence of prediction for an
instance on thejth view, denoted byαj , is measured as the distance
from the decision boundary as shown in Fig 3. A genuine threshold
is computed as the distance of the farthest impostor point that is erro-
neously classified as genuine. For predicting an instance tobe con-
fident enough to lie in genuine class, the distance from the decision
hyperplane should be greater than the corresponding threshold (Pj ).
Similar procedure is repeated for impostors as well. In thisman-
ner, unlabeled probe instances are transformed into pseudolabeled
training data and the decision boundary of target domain classifier
is updated in online manner [8]. The proposedco-transfer learning
framework is summarized in Algorithm 1.

The proposed algorithm is particularly useful in recognizing
cross-resolution face images. In this research, the proposed co-
transfer learningframework is applied on support vector machine
(SVM) classifiers. Further, two feature extractors, 1) Local Phase
Quantization (LPQ) [9], and 2) Scale Invariant Feature Transform
(SIFT) [10] are used to represent two separate views of face images
across different resolutions. These feature extractors are resilient
to scale changes and can be effectively used for matching face
images with varying resolutions. Face image is tessellatedinto non-
overlapping facial regions, features are extracted, and the distance
is computed for each facial region usingχ2 distance. For a gallery-
probe pair, the distances between local facial regions are vectorized
and provided as input to the ensemble. SVMs in each ensemble are
trained using the approach proposed by Phillips [11] and thefinal
performance is computed by combining responses from both the
ensembles.



Algorithm 1 Co-transfer learning framework

Input: Initial labeled training dataDS
L in the source domain, a

few labeled instancesDT
L in the target domain. Unlabeled probe

instancesDT
U (available sequentially).

Iterate: j= 1 to 2 (number of views)
Process: Train classifiersCS

j andCT
j on jth view of DS

L and
DT

L respectively to construct ensembleEj . Compute confidence
thresholdsPj for each view.
for i = 1 to r (number of probe instances)do

Predict labels:Ej(xi,j) → yi,j ; αj represents confidence of
prediction
if α1 > P1 & α2 < P2 then

UpdateCT
2 with pseudo-labeled instance{xi,2, yi,1} & re-

computewS
2 andwT

2 .
end if.
if α1 < P1 & α2 > P2 then

UpdateCT
1 with pseudo-labeled instance{xi,1, yi,2} & re-

computewS
1 andwT

1 .
end if.

end for.
end iterate.
Output: Updated classifiersCT

j and weightswS
j , wT

j .

3. EXPERIMENTAL EVALUATION

To evaluate the efficacy of the proposed framework, a joint transfer-
and-test strategy is used which allows the data used in modeladap-
tation to be concurrently used for performance evaluation.Further,
two databases, (1) CMU Multi-PIE1 and (2) SCface2 are used for
performance evaluation. For experiments on the CMU Multi-PIE
database, images pertaining to337 individuals with frontal pose and
neutral expression are selected. Classifiers in the source domain are
trained on high resolution images of100 subjects and classifiers in
the target domain are trained on low resolution probe and high res-
olution gallery images of40 (from the100) subjects. Performance
is evaluated on images of the remaining237 individuals with four
different resolutions of probe images, as shown in Fig. 1(a). For
each subject, one high resolution image is kept in the gallery and
one low resolution image is used as probe. Images at a particular
resolution are obtained by downsampling the original images to the
required resolution (varying from72 × 72 to 16 × 16) using bi-
cubic interpolation. The second database is the SCface database that
comprises images corresponding to130 individuals captured in un-
controlled indoor environment using five video surveillance cameras
placed at three different distances. For experiments on theSCface
database, classifiers in the source domain are trained on high res-
olution images corresponding to50 subjects and classifiers in the
target domain are trained on low resolution probe and high resolu-
tion gallery images corresponding to20 (from the50) subjects. The
performance is evaluated on images corresponding to80 individuals
with three resolutions of probe images corresponding to three dif-
ferent distances, as shown in Fig. 1(b). For each subject, one high
resolution image is kept in gallery and five images corresponding to
five different cameras are used as probe. In all experiments,reso-
lution of gallery is set to72 × 72. The experiments resemble real
world scenario where ample high resolution images are available in
the source domain. However, only a few low resolution probe and
the corresponding high resolution gallery images are available for

1http://www.multipie.org/
2http://www.scface.org/

Table 1. Rank-1 accuracy of different algorithms.

Probe resolution 48×48 32×32 24×24 16×16Database Algorithm
CMU Ensemble1 79.4% 69.1% 61.8% 56.7%
Multi-PIE, Ensemble2 76.3% 55.2% 59.4% 52.1%
Gallery Fusion 86.1% 79.4% 70.3% 66.2%
(72×72) Proposed 92.3% 84.1% 77.4% 72.4%

SCface,
Ensemble1 63.2% 58.1% 52.6% NA

Gallery
Ensemble2 60.4% 57.8% 49.1% NA

(72×72)
Fusion 74.4% 67.4% 60.2% NA

Proposed 79.4% 72.8% 66.4% NA

training in the target domain. Performance is reported with10 times
repeated random sub-sampling for non-overlapping training-testing
partitions.

The performance of the proposed approach is compared with fu-
sion of two ensembles trained on the initial data when no knowledge
is transferred (referred to as‘fusion’). It allows to analyze the perfor-
mance gain due to transfer of knowledge. The performance is also
compared with three super-resolution techniques. Super-resolution-
1 is the standard bi-cubic interpolation [2], super-resolution-2 3 is
a regression based technique proposed by Kim and Kwon [1] , and
super-resolution-34 is a sparse representation based approach pro-
posed by Yanget al. [2].5

Figs. 4(a) and (b) show the rank-1 identification performance
of the proposed approach with probe images of different resolutions
on the CMU Multi-PIE and SCface databases respectively. Table 1
compares the rank-1 accuracy of the proposed approach with the ac-
curacy of individual ensembles as well as their fusion without trans-
fer learning. The results show that there is an improvement of about
5− 7% with transfer of knowledge from high resolution to low res-
olution domain. CMC curves in Fig. 4(c) show that the proposed
approach also outperforms all three super-resolution techniques by
at least11%. Super-resolution is performed with a magnification
factor of three to match probe images of size24× 24 with 72 × 72
gallery images, as shown in Fig. 1(c). LPQ and SIFT features are
extracted from enhanced images and the performance is computed
using sum-rule fusion of LPQ and SIFT match scores. Fig. 5(a)
shows some examples where transferring the knowledge from source
to target domain classifier helped to correctly recognize low reso-
lution probe images (correctly identified in rank-10). Examples in
Fig. 5(b) show some of the cases where the proposed approach per-
formed poorly. The poor performance can be attributed to thefact
that some of the pseudo labels assigned to unlabeled probe instances
may be incorrect leading tonegative transfer. However, the effect
of negative-transfercan be minimized by intelligently selecting the
confidence threshold for the prediction. High threshold values imply
conservative transfer while smaller values of the threshold lead to
aggressive transfer. In the proposed framework, updating decision
boundary of the target domain classifier within an ensemble allows
to capture the knowledge transferred from high resolution domain.
Initially, equal weights were assigned to both the classifiers in an en-
semble; however with transfer of knowledge, weights for classifiers
in the target domain become more prominent. For example, in exper-
iments with the CMU Multi-PIE database,CT

1 andCT
2 were updated

3http://www.mpi-inf.mpg.de/ kkim/.
4http://www.ifp.illinois.edu/ jyang29/.
5For experiments with super-resolution techniques, code, pre-trained dic-

tionary and parameters are used as provided in the online implementation.



Fig. 4. Rank-1 accuracy at different probe resolution for the (a) CMU Multi-PIE database, (b) SCface database, and (c) comparison with
super-resolution techniques for matching LR images (24×24) with HR images (72×72) from the CMU Multi-PIE.

on5, 184 and4, 210 pseudo labeled probe instances respectively. It
is observed that96.43% of the total pseudo labels were correct. The
weights for classifiers in each ensemble also saturate atwS

1 =0.18,
wT

1 =0.82, wS
2 =0.23, andwT

2 =0.77 at the end of co-transfer. In ex-
periments with the SCface database,CT

1 andCT
2 were updated on

7, 346 and5, 268 pseudo labeled probe instances respectively. It is
observed that94.43 % of the total pseudo labels were correct. The
weights for classifiers in each ensemble also saturate atwS

1 =0.21,
wT

1 =0.79, wS
2 =0.27, andwT

2 =0.73. These numbers correspond to
the experiments with probe size 24×24 and gallery size 72×72. The
experimental results suggest that the proposed approach efficiently
matches cross-resolution face images by leveraging knowledge from
the source domain. It also validates our assertion that co-training en-
ables updating the decision boundary of the target domain classifiers
with unlabeled probe instances as and when they arrive.

Fig. 5. Illustrating sample cases when the proposed approach (a)
correctly recognizes, (b) fails to recognize. All examplesare with
probe size 24×24 and gallery size 72×72.

4. CONCLUSION

This paper presents a co-transfer learning framework in which
knowledge from high resolution domain is transferred to perform
efficient face matching in low resolution domain. An ensemble is
constructed from weighted combination of classifiers in thesource
and target domains. In an ensemble, decision boundary of theclas-
sifier in the target domain is updated to accommodate knowledge
transferred from the classifier in the source domain. Moreover, up-

dating the weights assigned to each classifier also facilitates gradual
shift of knowledge from the source to the target domain classifier. In
addition, co-training is used to provide pseudo labels to unlabeled
probe instances to seamlessly improve the performance by lever-
aging the knowledge learnt in the source domain. The proposed
co-transfer learning framework provides significant improvements
in performance as compared to other algorithms.
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