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Abstract—Mosaicing entails the consolidation of information
represented by multiple images through the application of a reg-
istration and blending procedure. We describe a face mosaicing
scheme that generates a composite face image during enrollment
based on the evidence provided by frontal and semiprofile face
images of an individual. Face mosaicing obviates the need to store
multiple face templates representing multiple poses of a user’s
face image. In the proposed scheme, the side profile images are
aligned with the frontal image using a hierarchical registration
algorithm that exploits neighborhood properties to determine the
transformation relating the two images. Multiresolution splining is
then used to blend the side profiles with the frontal image, thereby
generating a composite face image of the user. A texture-based
face recognition technique that is a slightly modified version of the
C2 algorithm proposed by Serre et al. is used to compare a probe
face image with the gallery face mosaic. Experiments conducted on
three different databases indicate that face mosaicing, as described
in this paper, offers significant benefits by accounting for the pose
variations that are commonly observed in face images.

Index Terms—Face mosaicing, face recognition, multiresolution
splines, mutual information.

I. INTRODUCTION

THE PROBLEM of 2-D face recognition continues to pose
challenges even after several years of research in this

field [1]. State-of-the-art algorithms exhibit various degrees of
sensitivity to changes in illumination, pose, facial expressions,
accessories, etc. Designing pose-invariant algorithms is partic-
ularly very challenging, as discussed in the Face Recognition
Vendor Test 2002 report [2]. Several methods have been sug-
gested to address the issue of pose variations including the use
of active appearance models [3], morphable models [4], 3-D
facial imaging [5], multiple templates [6], and multiclassifier
fusion [7], [8]. In this paper, we propose an image fusion
scheme to generate the 2-D face mosaic of an individual during
enrollment that can be successfully used to match various poses
of a person’s face during authentication. Mosaicing uses the
frontal and side-profile face images (2-D) of a user to generate
an extended 2-D image. The goal is to adequately characterize
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an individual’s face in 2-D plane, without attempting to com-
pute the 3-D structure of the face. This avoids the complexity of
generating 3-D structure information from multiple registered
2-D images. Mosaicing also obviates the need to store multi-
ple templates of a user during enrollment, thereby optimizing
storage demands and processing time.

The potential of mosaicing facial images has not received
extensive attention in the literature. Table I summarizes the face
mosaicing techniques proposed by researchers. Yang et al. [11]
propose an algorithm to create panoramic face mosaics. Their
acquisition system consists of five cameras that simultaneously
obtain five different views of a subject’s face. In order to
determine the corresponding points in multiple face views, the
authors place ten colored markers on the face. Based on these
control points, their algorithm uses a series of fast linear trans-
formations on component images to generate a face mosaic.
Finally, a local smoothing process is carried out to smooth the
mosaiced image. Two different schemes are used to represent
the panoramic image: 1) one in the spatial domain and 2) the
other in the frequency domain. The frequency representation
and spatial representation are observed to result in an iden-
tification accuracy of 97.46% and an accuracy of 93.21%,
respectively, on a database of 12 individuals.

Liu and Chen [12] describe a face mosaicing technique
that uses a statistical model to represent the mosaic. Given
a sequence of face images captured under an orthographic
camera model, each frame is unwrapped onto a certain por-
tion of the surface of a sphere via a spherical projection.
A minimization procedure using the Levenberg–Marquardt
algorithm is employed to optimize the distance between an un-
wrapped image and the sphere. The statistical representational
model consists of a mean image and a number of eigenimages.
The novelty of this technique is given as follows: 1) the use
of spherical projection, as opposed to cylindrical projection,
which works better when there is head motion in both the
horizontal and vertical directions, and 2) the computation of
a representational model using both the mean image and the
eigenimages rather than a single template image. Although the
authors state that this method can be used for face recognition,
no experimental results have been presented in this paper. In
[13], the authors propose another algorithm in which the human
head is approximated with a 3-D ellipsoidal model. The face,
at a certain pose, is viewed as a 2-D projection of this 3-D
ellipsoid. All 2-D face images of a subject are projected onto
this ellipsoid via geometrical mapping to form a texture map
that is represented by an array of local patches. Matching is
accomplished by adopting a probabilistic model to compute
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TABLE I
COMPARISON OF THREE EXISTING FACE MOSAICING SCHEMES

the distance of patches from an input face image. The authors
report an identification accuracy of 90% on the CMU Pose,
Illumination, and Expression (PIE) database [14].

Face mosaicing has also been used in nonbiometric appli-
cations such as facial animation and rendering [16], and 3-D
face image generation [17]. However, these algorithms generate
the face mosaic using complex models that do not necessarily
preserve the biometric features of the face.

The concept of mosaicing may be viewed as an exercise in
information fusion. When multiple images of a subject’s face
are available at the time of enrollment, a common approach
is to treat these images (also known as gallery images) as
independent entities; thus, when a probe (query) image is pre-
sented to the system, it is compared against each gallery image
independently, and the resulting set of scores consolidated to
generate a single score (e.g., via the sum rule) indicating the
proximity of the probe image with the subject in the database.
This is fusion at the match-score level. However, in the case of
mosaicing, multiple images of a subject’s face are fused into a
single entity in the image domain itself. Hence, this could be
viewed as fusion at the raw-data (i.e., image) level.

The remainder of this paper is organized as follows. The
proposed face mosaicing algorithm is described in Section II.
In Section III, we present a face recognition algorithm for
matching mosaiced faces. The proposed face recognition
algorithm is a modification of the C2-feature-based face
recognition algorithm [18], [19]. Section IV discusses the
database used to validate the performance of the proposed
face mosaicing and recognition algorithm. Experimental results
are presented in Section V, and conclusions are presented in
Section VI.

II. PROPOSED FACE MOSAICING ALGORITHM

This section describes the face mosaicing algorithm used
to consolidate the evidence presented by multiple pose im-
ages of the same face. It is assumed, therefore, that, at the
time of enrollment, multiple poses of an individual’s face
are available. The face is segmented (localized) from each
image using the gradient vector flow technique (see [20] for
details). A pair of face images, typically representing the
frontal and profile views of an individual, are mosaiced af-
ter aligning them using a hierarchical registration algorithm.
Registered images are mosaiced using the multiresolution
splines algorithm based on Gaussian and Laplacian pyra-
mids [21]. Multiresolution splines also perform blending as
an integral part of mosaicing, thereby offering some inherent
advantages.

A. Hierarchical Registration Model

Before mosaicing, it is necessary to transform the images
obtained during enrollment into a common image domain.
The process of finding the transform that aligns one image
to another is called image registration. As described earlier
in Section I, existing face mosaicing algorithms use some
form of affine transformation for registration. However, these
algorithms do not consider the nonlinear deformation that is
present in the images. In this section, we propose a hierarchical
registration algorithm in which we first perform approximate
registration using an affine transformation model [22]. The
affine transformed images are then finely registered using a
mutual-information-based registration algorithm [23], [24], re-
sulting in more exact alignment between the images.
1) Affine Transformation Model: Let I1 = I(x, y, t1) and

I2 = I(x, y, t2) be the two images to be mosaiced. Here, I1
is the source image, and I2 is the target image, i.e., I1 has to
be suitably transformed in order to align it with I2. The pixel
coordinates are represented using x and y spanning the domain
of the image. The relationship of the pixels and their intensities
between the two images can be modeled as

I(x, y, t1) =
I(a1x + a2y + a3, a4x + a5y + a6, t2) − a7

a8
(1)

where a1, a2, a4, and a5 are the affine parameters summarizing
the rotation, scaling, and shear; a3 and a6 are the translation
parameters; and a7 and a8 are the parameters that embody
changes in brightness and contrast, respectively. The following
error function is minimized in order to estimate these
parameters:

Error(a)=
∑
x,y

[
I(x, y, t1)

− I(a1x+a2y+a3, a4x+a5y+a6,t2)−a7)
a8

]2

(2)

where a = (a1, a2, . . . , a8)T . Approximating this error
function using the first-order truncated Taylor series expansion
gives [22]

Error(a)=
∑
x,y

[
It(x, y, t)−

(a1x+a2y+a3 − x)Ix(x, y, t)
a8

+
(a4x+a5y+a6−y)Iy(x, y, t)−a7

a8

]2

(3)
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where Ix(·), Iy(·), and It(·) are the spatial and temporal
derivatives of I(·). This error function can be minimized by
differentiating with respect to a, i.e., dError(a)/da = 0. The
solution of (3) is

a =

[∑
x,y

ATA

]−1 [∑
x,y

Ab

]
(4)

where A = (xIx, yIx, xIy, yIy, Ix, Iy,−I,−1)T , and
b = It − I + xIx + yIy. The output of this minimization
problem gives the eight optimal parameters. Using these
parameters, the source face image I1 is transformed to obtain
the registered face image IR. In this manner, the affine model
performs a coarse registration of the two images. However,
local regions such as the eyes and mouth still need to be finely
aligned in order to remove the degeneracies that are present in
the transformed image.
2) Mutual-Information-Based Transformation Model: In

two coarsely registered face images, the neighborhood of the
corresponding regions may not be rigorously identical. This
is due to differences in the geometry and local deformations
that are present in the constituent images. Subpixel shifting
can also occur, leading to differences in the two images. Thus,
a fine alignment is necessary to account for these nonlinear
deformations.

Let I2 be the target face image and IR be the face image,
which is coarsely registered with respect to I2 using the affine
transformation that is described in Section II-A1. For fine
registration, we transform IR such that the mutual information
between I2 and IR is maximized [24]. Mutual-information-
based image registration is widely used in medical imaging [24]
and other related applications. Mutual information between two
face images M(I2, IR) can be represented as

M(I2, IR) = H(I2) + H(IR) −H(I2, IR) (5)

where H(·) is the entropy of the image. Here, maximiz-
ing the mutual information involves maximizing the en-
tropy, i.e., H(I2) and H(IR), and minimizing the joint
entropy H(I2, IR). Two images are considered to be optimally
registered when the mutual information between them is max-
imum. Mutual-information-based registration is however sen-
sitive to changes that occur in the distributions, as a result
of differences in overlap region. So, we use the weighted
normalized mutual information for face images, which can be
written as

M̂(I2, IR, c) = c

(
H(I2) + H(IR)

H(I2, IR)

)
(6)

where c (0 < c ≤ 1) is a weighting parameter that controls the
amount of localization in the similarity measure. This method
is a modification over the one proposed by Hill et al. [23].
The modified function that is represented by (6) is used for the
fine registration of I2 and IR. The transformation parameters
computed from the affine transformation model a are used

Fig. 1. Image registration using the proposed hierarchical registration algo-
rithm. Frontal and profile images are first placed at the center of a 256 × 256
image space. (a) Input profile image. (b) Input frontal image. (c) Profile image
registered with respect to the target frontal image.

Fig. 2. Masks generated from two profile images.

as the initial transformation parameters, along with c = 0.01.
Thus, a total of nine parameters are used as the initial trans-
formation parameters for this model. A set of mutual infor-
mation values between I2 and IR is computed by varying the
parameters with a small step size (≈0.01) in both the positive
and negative directions. Parameters are varied in the range of
[−a/5,a/5]. The mutual information is computed for all pos-
sible combinations of the parameters, and the transformation
parameters corresponding to the maximum mutual information
are selected for fine registration. To account for the nonlinearity
that is present in face images, the mutual-information-based
registration is performed in blocks with a size of 8 × 8. The
coarsely registered profile image IR is transformed using these
parameters to obtain the final registered image. Fig. 1 shows
a profile image I1 transformed with respect to the frontal
image I2.

B. Mask Generation

Once a pair of images are registered, the next step involves
blending the two images into a single entity. This entails the
development of a spatial mask indicating the pixelwise contri-
bution of the individual images to the final mosaiced image.
Since the facial structure is different for every individual,
a dynamic runtime mask generation algorithm is used. The
mask is computed using the local phase correlation between
the two images. The two images are first tessellated into
blocks of size 8 × 8. Next, the phase correlation between
corresponding blocks from the two face images is computed.
When a correlation peak is observed, the block is labeled as
a match; otherwise, it is labeled as a nonmatch. This results
in a cluster of match/nonmatch blocks. The boundary of
the matched region is selected as the boundary of the mask.
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Fig. 3. Levels in the Gaussian pyramid expanded to the original size to see the effects of the low-pass filter. (a) Level 0, (b) level 1, (c) level 2, and (d) level 3.

The mask values on one side of the boundary is set to “0,”
while the other side is set to “1” (e.g., “1” may correspond
to the frontal face image and “0” to the profile face image).
If there are any isolated blocks with the label match, they are
reassigned the label nonmatch and do not contribute to the
mask boundary. Generally, the correlation peak is found in a
thin vertical region containing the eye (left eye for left profile
image and right eye for right profile image). Fig. 2 shows the
sample masks that are generated for a left and right profile face
image with respect to an arbitrary frontal image. This mask is
used during the blending process as will be seen in the next
section.

C. Stitching and Blending

For blending the two images into a single mosaic, we use
multiresolution splines [21]. Image splining (i.e., blending) can
be performed based on a simple spline-weighting function1

straddling the boundary of the two images, but the quality of
the stitched image depends on the step size (or window) that
is chosen. A large step size may lead to blurring, whereas a
small step size may result in discontinuities at the boundary.
To overcome this problem, Burt and Adelson [21] used mul-
tiresolution splines to determine different step sizes for the
various frequency components constituting the boundary. The
crux of this technique involves computing a Gaussian pyramid
of subimages, followed by a Laplacian pyramid, based on the
two images to be mosaiced; the pyramid structure is used
to estimate the spline weighting function that relies on the
frequency-domain information of the image.

A sequence of low-pass-filtered images is obtained by iter-
atively convolving each of the constituent images with a 2-D
Gaussian filter kernel. The resolution and sample density of
the image between successive iterations (levels) is reduced, and
therefore, the Gaussian kernel operates on a reduced version
of the original image in every iteration. The resultant images
G0, G1, . . . , GN may be viewed as a “pyramid,” with G0 hav-
ing the highest resolution (lowermost level) and GN having the
lowest resolution (uppermost level) (see Fig. 3). Let w(m,n)
represent the Gaussian kernel with dimensions of 5 × 5 and a
reduction factor of 4. The reduce operation can be written as

Reduce (I(i, j)) =
5∑

m=1

5∑
n=1

w(m,n)I(2j + m, 2j + n). (7)

1The term splining is used to refer to a transition function that indicates the
weighting of pixels that are associated with the two images at the boundary (see
[21] for details).

Fig. 4. Laplacian pyramid of a profile image from level 0 to level 6.

Fig. 5. Laplacian pyramid of a frontal image from level 0 to level 6.

A Gaussian pyramid Gl is defined as

G0 = I (8)

Gl = Reduce[Gl−1], 0 < l < N. (9)

As shown in Fig. 3, the effect of convolution is to blur the
image, thereby reducing the filter band limit by an octave
between levels while reducing the sample density by the same
factor. The Gaussian pyramid has the effect of a low-pass filter
to soften the edges of the mask.

The multiresolution spline, as described in [21], requires
bandpass images, as opposed to low-pass images. Bandpass
images are computed by interpolating (resizing) the image
at each level of the Gaussian pyramid and then subtracting
it from the next lowest level. This results in a sequence of
bandpass images that may be viewed as a Laplacian pyra-
mid (L0, L1, . . . , LN ), as shown in Figs. 4 and 5. The term
Laplacian is used since the Laplacian operator resembles the
difference of Gaussian-like functions. These bandpass images
are a result of convolving the difference of two Gaussians
with the original image. The steps used to construct this pyra-
mid can also be used to exactly recover the original image.
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Fig. 6. Laplacian pyramid of the mosaiced image from level 0 to level 6.

The process described previously may be summarized as fol-
lows:

Ll = Gl − Expand[Gl+1], 0 ≤ l < N. (10)

Here, the Expand[·] operator interpolates a low-resolution
image to the next highest level and can be written as

Gl,k(i, j) = 4
2∑

m=−2

2∑
n=−2

w(m,n)Gl,k−1

(
i−m

2
,
j − n

2

)
.

(11)

Note that Gl,k in (11) denotes “expanding” Gl k number of
times. Various features of the face are segregated by scale in
different levels of the pyramid. Hence, as shown in Figs. 4–6,
the textural features of face are preserved over multiple levels
of the pyramid. Let L1 and L2 represent the Laplacian pyramids
of the two images that are being splined (i.e., blended). Let GR
be the pyramid associated with the Gaussian-weighted mask
discussed in Section II-B. The multiresolution spline LS is then
computed as

LSl(i, j) = GRl(i, j)L1l
(i, j) + (1 −GRl(i, j))L2l

(i, j)
(12)

where l is the level of the pyramid. The splined images at vari-
ous levels are expanded and summed together to obtain the final
face mosaic, as shown in Fig. 7. Gradient-vector-flow-based
active contour model is used to extract the face boundary of
the mosaiced face.

III. FACE RECOGNITION USING MODIFIED

C2 FEATURES

Several different texture-based face recognition algorithms
have been proposed in the literature [25], [26]. However, most
of the current texture-based face recognition algorithms fail
to explicitly account for important spatial statistics between
texture elements. Spatial statistics are important when ana-
lyzing facial textures that have similar texture frequency but
differ in the distribution of texture elements. Face recognition
algorithms should also handle small distortions and preserve the
local feature geometry. In [18], a generic model-based feature
extraction algorithm, which extracts visual features from an ob-
ject using the fundamentals of a biological visual system, is pro-
posed. The model is a feedforward hierarchy consisting of four
layers of computational units: simple S units and complex C

units. The simple S units combine their inputs with Gaussian-
like tuning to increase object selectivity. The complex C units
pool their inputs through a maximum operation to achieve scale
and shift invariance. The feature extractor is a Gabor filter bank
consisting of 16 different filters and four different orientations,
resulting in 64 different maps when applied to a circular image
patch. Each filter is parameterized based on its scale, width, and
frequency. The 64 maps are arranged in eight bands (see [18]
for details about the filter bank). The C2 algorithm operates as
follows.

• The input face image is subjected to the Gabor filter bank
described previously, resulting in 64 maps arranged in
eight bands. These maps constitute the S1 feature set.

• The C1 feature set is obtained by computing the maxi-
mum response over all scales in each band for all four
orientations. A large pool of patches Pi=1,...,K is extracted
at random positions from all the training images. These
patches are extracted for all four orientations, and the radii
of these patches vary from 4 to 16.

• For each feature set C1, the value Y is computed across all
the bands for all image patches X at all positions P using
the following equation:

Y = exp
(
−γ‖X − P‖2

)
(13)

where γ is the aspect ratio. These patches are set as the
prototypes or centers of S2 units. The S2 units behave as
radial basis function during recognition.

• The maximum over all positions and scales for each S2
map gives the C2 features, which are shift and scale
invariant.

Serre et al. [18] have demonstrated superior recognition
performance due to these features on different face and tex-
ture databases. For our purposes, we have modified this ba-
sic feature extraction algorithm to make it compatible with
a face mosaicing application. In the modified algorithm, the
filter bank is generated with 2-D log polar Gabor transforms.
The functional form of a 2-D log polar Gabor G can be
written as

Gr0,θ0(r, θ) = exp(−2π2σ2)

×
[
(ln(r) − ln(r0))

2 s2 + (ln(r) sin(θ − θ0))
]

(14)

and the position of the filter in the Fourier domain is defined by

r00 =
√

2, r0i = 2i ∗ r00, θ0i = i ∗ 2π
Nθ

(15)

where r00 is the smallest possible frequency, Nθ is the number
of filters on the unit circle, and at index E, σE and sE are
further defined as

σE =
1

ln(r0)π sin(π/Nθ)

√
ln 2
2

(16)

sE =
ln(r0)π sin(π/Nθ)

ln 2

√
ln 2
2

. (17)
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Fig. 7. (a)–(c) Frontal and profile input images. (d) Mosaiced face generated using (a)–(c). (e) Final mosaiced and cropped face image.

Fig. 8. Examples of images from the CMU PIE database.

Fig. 9. Images from the WVU multispectral face database. (a) Visible spectrum. (b) SWIR spectrum.

According to Field [27], log Gabor functions are able to
encode the images more efficiently compared to Gabor trans-
forms since a Gabor transform would overrepresent the low-
frequency components and underrepresent the high-frequency
components. In addition, log polar Gabor functions impart
rotation- and scale-invariant properties. In [18], 64 filters are
used in the filter bank in order to mimic the functional ability of
biological cells in the visual cortex. We modify this filter bank
to include the Gaussian low-pass information. The filter bank
therefore comprises of 16 filters at four orientations, along with
the eight centers that surround differences of Gaussian filters
and four low-pass Gaussian filters. So, the modified filter bank
consists of 76 filters, which are used to compute the final C2
features. The size of the C2 feature vector varies for different
face images. To efficiently match the mosaiced image with a
non-mosaiced image, we use a learning-based 2ν support vector

machine (SVM) classifier [28], [29]. The classifier is trained
with the features extracted from 148 mosaiced and 900 non-
mosaiced face images of 108 individuals. This trained classifier
is used to perform classification [30].

IV. DATABASE USED FOR EVALUATION

To validate the performance of the proposed face mosaicing
and recognition algorithms, we used two databases.

1) CMU PIE Face Database: The CMU PIE [14] face data-
base contains images from 68 individuals with variations
in pose, illumination, and expression. For mosaicing, we
use the images with variation in pose, i.e., the images
labeled as c27, c37, c22, c11, and c34 from both sessions.
Fig. 8 shows the two sets of images of an individual
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TABLE II
IDENTIFICATION ACCURACY OF MULTIPLE FACE RECOGNITION

ALGORITHMS ON THE THREE DATABASES

from the CMU PIE database. For each individual, the
set of face images with neutral expression is used as
the gallery image set. The images from the three other
sessions, which have minimum variation in lighting and
expression, are chosen as probe images.

2) WVU Multispectral Face Database: We assembled a
multispectral face database of 40 individuals. The data-
base contains face images in both the visible and short-
wave infrared (SWIR) light spectrum. For each spectral
channel, images are captured in two different sessions,
with seven images in each session. The seven images
correspond to one frontal image, three left profile images,
and three right profile images. Successive images are
separated by a pose angle of approximately 20◦. Fig. 9
shows examples of images from the database. Various
researchers have demonstrated the superior performance
of face recognition on SWIR images [31]–[35].

V. EXPERIMENTAL RESULTS

A. Performance Evaluation of Modified C2-Feature-Based
Face Recognition Algorithm

We first validate the performance of the proposed face
recognition algorithm described in Section III using the non-
mosaiced face images. The 2ν-SVM classifier [28], [29] is
trained using the C2 features extracted from the 620 labeled
non-mosaiced training face images of the CMU PIE (68 × 5)
and the WVU visible-light (40 × 7) databases. The classifier
learns the genuine and impostor features from these training
images prior to performing classification [18].

Recognition performance is evaluated separately for the two
visible-light face databases. For evaluating the performance on
the CMU PIE data set, all the training images are used as
gallery images, and face images from the other sessions are
used as probe images. Similarly, for the WVU visible-light face
database, the training images are used as the gallery images, and
the rest of the images are used as probe images to compute the
identification performance. The performance of the proposed
recognition algorithm is also compared with five existing face
recognition algorithms.

1) Principal component analysis (PCA) [36].
2) Fisher linear discriminant analysis (FLDA) [37].

Fig. 10. ROC indicating the performance of multiple face recognition al-
gorithms on the three databases. (a) CMU PIE, (b) WVU visible-light, and
(c) WVU SWIR face databases.
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TABLE III
PERFORMANCE OF FACE MOSAICING BASED ON DIFFERENT INPUT IMAGE SEQUENCES

3) Local feature analysis (LFA) [38] refers to a class of
algorithms that extract a set of geometrical features and
distances from facial images and use these features as the
basis for face representation and comparison. Hopfield
network is used to extract the output, which represents
uncorrelated local features.

4) 2-D log polar Gabor transform [39].
5) Original C2 features [18].

A similar experiment is conducted for evaluating the
performance on the SWIR database. For training the classi-
fier, 280 (= 40 × 7) labeled non-mosaiced images from the
WVU SWIR face database are used. These images are further
used as gallery images, and the remaining 280 SWIR images
are used as probe images. Identification accuracy for all the
recognition algorithms is shown in Table II, and the receiver
operating characteristic (ROC) plots are shown in Fig. 10. The
results indicate that the modified C2-based feature extraction
algorithm outperforms the other recognition algorithms for both
the visible-light and SWIR face databases. The images contain
variation in pose and expression, which leads to changes in the
number and position of the features that are present in indi-
vidual images. Therefore, several face recognition algorithms
that are appearance-based or feature-based do not perform well.
However, the texture-based recognition algorithm results in
better performance and exhibits tolerance to these variations.
Table II and the ROC plot in Fig. 10 show that the modified C2-
feature-based face recognition algorithm gives an improvement

of 1.3% on the CMU PIE database and about 0.7% on the WVU
multispectral database.

A mosaiced face image is expected to contain all the features
in a face, while the frontal and side profile images have only
a limited number of features. To match a mosaiced face with a
non-mosaiced face image, we need a recognition algorithm that
efficiently extracts the local features from the face and com-
pares them by assigning proper weights to the features while
appropriately accounting for missing features. To facilitate this,
we use a local representation based on the textural features
obtained using the modified C2 feature extraction algorithm
in order to evaluate the performance of the proposed face
mosaicing algorithm.

B. Performance Evaluation of the Face Mosaicing and
Recognition Algorithm

The CMU PIE training set contains 68 mosaiced and 340
non-mosaiced labeled images, the WVU visible-light training
set contains 40 mosaiced and 280 non-mosaiced labeled face
images, and the WVU SWIR training set contains 40 mosaiced
and 280 non-mosaiced labeled face images. The experimental
setup here is used to compute the matching performance on all
three databases separately.

• C2 features extracted from the mosaiced and non-
mosaiced training images are used to train the
2ν-SVM-based classifier.
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Fig. 11. Mosaiced images generated with the optimal input sequence. (a) CMU PIE face database [14]. (b) WVU visible-light face database. (c) WVU SWIR
face database.

• C2 features extracted from the mosaiced face images are
used as the gallery features.

• On all three databases, two sets of experiments are
conducted.

1) The first set of experiments is performed to compute
the optimal sequence and number of face images that
are used for mosaicing (Section V-B1).

2) In the second experiment, the performance of match
score fusion techniques [8] such as sum rule and
min/max rules is compared with mosaiced images
(image-level fusion) (Section V-B2).

1) Optimal Sequence for Face Mosaicing: The CMU PIE
database contains two left and two right profile face images
with successive images having a difference of approximately
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Fig. 12. Block diagram illustrating the difference between (a) image mosaic-
ing and (b) match score fusion.

22.5◦, while the WVU multispectral database contains three left
and three right profile face images with a difference of about
20◦ between successive images. To find the optimal sequence
and number of images for mosaicing, the frontal image of a
subject is mosaiced with various combinations of the profile
face images. In all sequences, an equal number of left and
right profile images is used, and the difference in pose between
successive profile images and the frontal image is approxi-
mately the same. This ensures that the extent of information on
both “sides” of the mosaiced face is the same. Thus, we have
four possible input sequences for the CMU PIE database [14]
and eight possible input sequences for the WVU multispectral
database.

Mosaiced face images are generated, with the training data
set representing all possible input sequences. The verification
and identification performance is evaluated by matching a mo-
saiced face image with all the probe non-mosaiced face images.
Verification accuracy is computed at 0.001% false accept rate.
Table III shows the results of this experiment. For the CMU PIE
database, the input sequence “c37–c27–c11” results in the best
verification and identification accuracy of 96.54% and 96.88%,
respectively. For both visible-light and SWIR images from the
WVU multispectral database, the input sequence “p4–p1–p5”
results in the best performance. This suggests that increasing
the number of input images for face mosaicing does not guar-

antee better performance. Experiments on all the databases
indicate that the best result is obtained when the mosaic is
generated using profile images having a difference of about 45◦

with the frontal image. Fig. 11 shows samples of mosaiced im-
ages that are generated using the optimal sequence for all three
databases.
2) Comparing Face Mosaicing With Match Score Fusion

Algorithms: We next compare the performance of fusion at
the image level (mosaicing) with a few fusion operators at the
match-score level (sum rule and min/max rules). Fig. 12 shows
the steps that are involved in generating the final match score
using these two methods. In the case of mosaicing, the gallery is
assumed to contain only those mosaiced images corresponding
to the optimal sequence obtained from the previous experiment.
However, in the case of score fusion, all training images are
used as gallery images. The experimental setup is summarized
below.

• Image fusion: The gallery contains mosaiced images cor-
responding to the optimal sequence from one session,
and the probe consists of the mosaiced and non-mosaiced
images from the rest of the sessions. Images are matched
using the proposed face recognition algorithm. Results of
this experiment for the three databases are shown in the
first row of Tables IV–VI.

• Score fusion: The gallery consists of all the non-mosaiced
images from one session. The probe images correspond
to all the non-mosaiced as well as mosaiced images (gen-
erated using the optimal input sequence) from the other
sessions. Results are shown in the second and third rows
of Tables IV–VI.

Tables IV–VI show the identification accuracies for all three
experiments on CMU PIE, WVU visible-light, and WVU
SWIR face databases, respectively. The results from the three
tables are summarized below.

• The modified C2-feature-based face recognition method
gives good performance for images having variations in
size and content, making it particularly useful for recog-
nizing mosaiced faces.

• A matching accuracy of 100% is obtained when both the
gallery and probe images are mosaiced images.

• Matching mosaiced images with non-mosaiced images
gives higher accuracy compared to matching a non-
mosaiced image with other non-mosaiced profiles.

• The proposed face mosaicing algorithm (image-level fu-
sion) gives better performance compared to the sum rule
and min/max rules (score fusion algorithms).

• SWIR face recognition (using non-mosaiced as well as
mosaiced images) results in better matching performance
compared to visible-light face recognition. This may be
attributed to the illumination-invariant characteristic of
SWIR images. Fig. 13 illustrates the match scores gen-
erated using visible-light and SWIR images. The match
scores are obtained using the modified C2-feature-based
recognition algorithm. It is evident from this example
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TABLE IV
IDENTIFICATION ACCURACY ON THE CMU PIE DATABASE BEFORE AND AFTER FUSION [14]

TABLE V
IDENTIFICATION ACCURACY ON THE WVU VISIBLE-LIGHT FACE DATABASE BEFORE AND AFTER FUSION

TABLE VI
IDENTIFICATION ACCURACY ON THE WVU SWIR FACE DATABASE BEFORE AND AFTER FUSION

that the match scores obtained using SWIR images are
more discriminating compared to that of visible-light face
images.

• The performance of the proposed face mosaicing and
recognition algorithm lies between 96.85% and 100% for
all three databases.

Fig. 14 shows the ROC curve as a result of comparing
mosaiced face images with other mosaiced and non-mosaiced
images. The verification time using a mosaiced image is ∼6 s,

while that using the score-fusion-based approach is between
8–12 s (in a Matlab environment). For the score fusion scheme,
the matcher has to be invoked multiple times corresponding
to each subject. Furthermore, if M is the memory required
to store one face image (in bytes), the memory requirement
without mosaicing is between 5M and 7M , whereas it is
approximately 1.1M for the mosaiced image. These results
show that image mosaicing enhances the performance of face
recognition algorithms while reducing the memory requirement
and the matching time.
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Fig. 13. Match scores obtained using the modified C2-feature-based algo-
rithm. A value of “1” indicates a perfect match, while a “−1” represents a
perfect reject. (a) WVU visible-light database. (b) WVU SWIR database.

VI. CONCLUSION

The primary goal of this paper is to demonstrate the role
of face mosaicing in enhancing the matching performance of
a face recognition system. Given multiple images of a face
during enrollment, the mosaicing algorithm blends them into
a single entity by employing a multiresolution splining scheme.
Experiments reported on three different databases suggest that
fusing information at the image level is better than fusing infor-
mation at the match-score level in the context of this work. A
modified version of the C2 algorithm, originally developed by
Serre et al., was used to extract features from the mosaiced and
non-mosaiced face images. The modified algorithm is observed
to perform very well both in the verification and identification
modes of operation.

Fig. 14. Performance of the recognition algorithm with mosaiced face image
as the gallery image (a) CMU PIE database [14]. (b) WVU visible-light
database. (c) WVU SWIR database.
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As part of our future work, we plan to evaluate the perfor-
mance of 2-D face mosaicing against that of 3-D face models
with respect to matching accuracy. Furthermore, we will inves-
tigate the role of mosaicing in perturbing the biometric content
of the human face. Finally, we will examine the use of facial
symmetry to create face mosaics when the frontal image is not
available and only the left and right profiles are available.
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