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Abstract

For a robust face biometric system, a reliable anti-

spoofing approach must be deployed to circumvent the print

and replay attacks. Several techniques have been proposed

to counter face spoofing, however a robust solution that

is computationally efficient is still unavailable. This pa-

per presents a new approach for spoofing detection in face

videos using motion magnification. Eulerian motion magni-

fication approach is used to enhance the facial expressions

commonly exhibited by subjects in a captured video. Next,

two types of feature extraction algorithms are proposed:

(i) a configuration of LBP that provides improved perfor-

mance compared to other computationally expensive tex-

ture based approaches and (ii) motion estimation approach

using HOOF descriptor. On the Print Attack and Replay

Attack spoofing datasets, the proposed framework improves

the state-of-art performance; especially HOOF descriptor

yielding a near perfect half total error rate of 0% and 1.25%

respectively.

1. Introduction

Face recognition systems are vulnerable to spoofing at-

tacks with printed photos or replayed videos. Robust perfor-

mance of existing face detection techniques has contributed

to the ease of spoofing attacks on face biometric systems.

Further, the wide availability of portable display units with

high resolution has brought video replay attacks into the

purview as well. The problem of spoofing is particularly

compounded in mobile devices enabled with face recogni-

tion. For instance, mobile phone feature, Face Unlock, that

uses face recognition to unlock a phone, has received criti-

cism for being vulnerable to spoofing attacks [6], despite a

blinking based liveness detection feature.

The literature on spoofing detection discuss two types of

spoofing attacks, namely print and replay. Print attack uses

printed photographs of a subject to spoof 2D face recogni-

tion systems, while replay attack presents a video of a live

person to evade liveness detection. Further, a replay attack

video could be of a digital photograph or a digital video re-
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Figure 1. Few video frames from the Replay Attack database [4]

illustrating photo (print) and video (replay) attacks.

played on a screen that is either fixed or hand-held. Few

frames of real and spoofed videos are illustrated in Figure

1. Several techniques in literature on spoofing detection are

based on the observation that face frames of a real person

exhibit some unique texture properties in the image when

compared to spoofed images.

On the NUAA dataset [16] of 15 subjects, Määttä et al.

[10] found that for spoofing detection, Local Binary Pat-

terns (LBP) were more efficient than local phase quantiza-

tion as well as Gabor wavelet based descriptor. Further, they

reported that concatenation of three LBP descriptors of dif-

ferent configuration was more efficient than using LBP with

single configuration. Chakka et al. [2] evaluated the per-

formance of six spoofing detection algorithms on the Print

Attack database [1] in the IJCB 2011 counter measure to

2D facial spoofing competition. These algorithms primarily

utilized texture and motion based approaches. Facial mo-

tions such as eye blinks and motion of head with respect

to the background were also used to determine liveness. It

was observed that texture based approaches resulted in 0%

Half Total Error Rate (HTER). Määttä et al. [11] also pro-

posed a score level fusion approach using LBP, histogram

of oriented gradients, and Gabor wavelets computed from

the local blocks of a face image. For each descriptor, the

histogram computed from all the blocks were concatenated,

thus resulting in three feature vectors. Kernel approxima-
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tion of each of the three feature vectors were computed, and

a linear Support Vector Machine (SVM) was used for clas-

sification. Further, the match scores of all three SVMs were

fused to provide the final result. The authors reported 0%

HTER on the Print Attack dataset. In other research [7],

power spectrum and LBP features were used in a fusion ap-

proach on a print attack database collected using a camera

of an automated teller machine.

A more challenging Replay Attack database involving

spoofing attack by playing video or by displaying digital

photo of the subject on an electronic device kept in front

of the camera, was introduced in [4]. Baseline experi-

ments were performed using different variants of LBP and

three different classifiers. It was observed that SVM out-

performed both Linear Discriminant Analysis (LDA) and

χ2 distance based classification. A recent research [13]

used LBP from Three Orthogonal Planes (LBP-TOP) for

spoofing detection in the Replay Attack database. LBP-

TOP explicitly utilized the temporal information by com-

puting LBP histograms in XT and YT planes along with

spatial information in XY plane. In their experiments,

multi-resolution LBP-TOP8,8,8,1,1,[1−2] with SVM as the

classifier achieved best HTER of 7.6% on the Replay Attack

dataset. However, LBP-TOP is computationally expensive

and may not scale to realtime applications. In a recent re-

search, a geometric approach to replay attacks was proposed

by [5] using two video databases.

Existing approaches to spoof detection widely use tex-

ture analysis with complex configurations to achieve bet-

ter performance. However, a spoofing detection technique

must not only be robust but also computationally efficient.

In this regard, motion analysis based approach to spoofing

detection are relatively less explored. In this research, we

present a computationally efficient framework that utilizes

motion magnification and texture/motion features for spoof

detection. The key contributions of this paper can be sum-

marized as:

• We propose a pre-processing approach to spoofing de-

tection using motion magnification that substantially

enhances the micro- and macro- facial motion usu-

ally exhibited by a subject. Our experiments indicate

that appropriately magnified motion improves the per-

formance of spoofing detection techniques, especially

texture based approaches.

• We present a computationally efficient multiscale con-

figuration of LBP that provides, along with motion

magnification, improved performance as compared to

existing LBP based approaches.

• A novel spoofing detection technique based on motion

estimation using optical flow that is encoded with a

sparsely pooled Histogram of Oriented Optical Flow

(HOOF) [3] is also proposed. Evaluation on two

spoofing databases show state-of-the-art performance

of the proposed approach along with lower computa-

tion time.
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Figure 2. Motion magnification of input video may accentuate fa-

cial expressions thereby aiding spoofing detection techniques.

2. Proposed Framework

It is our assertion that the performance of spoofing detec-

tion techniques can be improved with motion magnification

as it might enhance the liveness nature of the face video.

As shown in Figure 2, the proposed framework to spoofing

detection first performs motion magnification. To automati-

cally classify these enhanced videos for spoofing detection,

we explore (1) texture features using LBP and (2) motion

features using HOOF [3].

2.1. Motion Magnification

Motion magnification techniques in videos based on ex-

plicitly tracking a pixel’s trajectory over time (Lagrangian

approach) are computationally expensive and difficult to

compute around occlusion boundaries thus resulting in arti-

facts. On the other hand, Eulerian approach to motion mag-

nification directly amplifies temporal intensity changes at a

given position without the need for explicit estimation [17].

Using appropriate temporal and spatial filtering, the desired

motion is localized and then magnified under Taylor expan-

sion assumption.

At first, each frame is decomposed into spatial Laplacian

bands. Next, an ideal temporal bandpass filter is applied

to each Laplacian band to isolate the desired temporal mo-

tion in each band. For instance, when a frequency band

of 0.2-0.5 Hz which represents eye-lid movements [12] is

applied, blinking motion of the subject is isolated. The iso-

lated bandpassed signal is then multiplied by an amplifica-

tion factor α and added to the original signal, as shown in

Eq. 1.

Î(x, y, t) = I(x, y, t) + αB(x, y, t) (1)

where B(x, y, t) is the output of a bandpassed filter for

video I(x, y, t), at positions x, y, t. Finally, the decom-

posed Laplacian bands are reconstructed to form the output

video.

The magnification factor α is suitably attenuated with re-

spect to a spatial cut-off frequency (λc), so as to reduce α

for bands of higher frequencies. This minimizes the arti-

facts in the resultant video. It must be noted that the effect
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Figure 3. Illustrating the proposed texture based spoofing detection approach with motion magnification.

of magnification is dependent on the filter and the magnifi-

cation factor α used. An optimal value of α is chosen by

visual inspection of processed videos from the training set.

The approach enhances facial movements including subtle

motion such as blinking, saccadic and conjugate eye mo-

tion that may otherwise only be visible on close inspection

of the video. It is our assertion that the enhanced motion

may provide improved evidence of liveness of face video.

2.2. Feature Extraction

Motion magnified video of a subject can be classified for

spoofing detection using either texture or motion based fea-

tures. As mentioned, texture features are widely explored in

spoofing detection literature as compared to motion based

features. In this research, we propose the following texture

and motion based features for spoofing detection.

2.2.1 Multiscale LBP

Inspired from various texture based spoofing detection ap-

proaches [1, 2, 4, 8, 10, 11, 13], we explore the utility of

LBP based features along with motion magnification. In lit-

erature it has been known that feature level concatenation

of global LBP features are efficient for spoofing detection.

It is our assertion that after motion magnification, compar-

atively coarser texture features should suffice for spoofing

detection. To encode texture information at multiple scales,

we propose to use feature concatenation of the three LBP

configurations (LBPu2
8,1, LBPu2

8,2, and LBPu2
16,2), as shown

in Figure 3. For classification, as used in existing litera-

ture, SVM with Radial Basis Function (RBF) kernel is used.

As opposed to [10], that computes overlapping local his-

tograms of LBPu2
8,1, resulting in the overall feature of size

833; we only compute global histograms at all three scales,

resulting in a descriptor of size 361 (i.e. 59+59+243).

2.2.2 Histogram of Oriented Optical Flows

Since subtle facial motion is partially involuntary, it is our

assertion that motion estimation using optical flow may aid

as an anti-spoofing feature. Optical flow has previously

been used in several applications including identification

of facial micro-expressions in videos [15]. Optical flow

is a dense motion estimation technique that computes the

motion of each pixel by solving the optimization problem

shown in Eq. 2.

∂I

∂x
Vx +

∂I

∂y
Vy +

∂I

∂t
= 0 (2)

The flow in horizontal (Vx) and vertical directions (Vy)

are used to compute the orientation based flow vector. In

this research, conjugate gradient approach [9] is used to

solve the optimization problem due to its low computational

complexity. However, raw optical flow per pixel may be

too spatially constrained, and may encode redundant back-

ground or unwanted motion. As illustrated in Figure 4, the

flow vectors are computed and pooled over local block re-

gions. Specifically, optical flow from the face region is com-

puted between frames at a fixed interval (k). A histogram

of the optical flow orientation angle, weighted by the mag-

nitude is computed over local blocks and concatenated to

form a single vector. The vector thus obtained is termed as

the Histogram of Oriented Optical Flows (HOOF) [3]. Fur-

ther, a final high dimensional feature vector is obtained by

concatenating all the sampled frames as shown in Eq. 3.

HI = [HOOF (It, It+k) HOOF (It+k+1, It+2k)...] (3)

The length of vector HI is a function of the sampling

interval k. The vectors of equal length are computed by ap-

propriately truncating the input video. Finally, dimensional-

ity reduction using PCA, at 95% Eigen energy, is applied to

reduce the dimensionality of HI . For classification, a two-

class LDA is used to obtain a uni-dimensional projection of

the reduced feature vector.

3. Experimental Evaluation

A spoofing detection technique must be robust across

different types of attacks. Therefore, the experiments are

performed on two publicly availably databases, namely (1)

Print Attack database [1] and (2) Replay Attack database

[4]. Both the databases are associated with a fixed experi-

mental protocol. The details are described as follows.
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Figure 4. An illustration of the proposed approach with motion magnification and HOOF descriptor. HOOF descriptors obtained between

pairs of frames at a fixed interval are concatenated to create a single feature vector.

3.1. Databases

The Print Attack database [1] consists of 200 real access

and 200 printed-photo attack attempt videos of 50 subjects.

Further, the dataset consists of training (120 videos), devel-

opment (120 videos), and testing (160 videos) subgroups.

The training and the development subgroups contain 60 real

access videos and 60 print attack videos each, whereas the

testing subgroup contains 80 real access and 80 print attack

videos. The videos are captured under both controlled and

adverse lighting conditions.

The Replay Attack database [4] consists of 1200 videos

that include 200 real access videos, 200 print attack videos,

400 phone attack videos, and 400 tablet attack videos. The

dataset consists of training (360 videos), development (360

videos), and testing (480 videos) subgroups. The train-

ing and the development subgroups contain 60 real access

videos and 300 attack videos each, whereas the testing sub-

group contains 80 real access and 400 attack videos.

In the experiments on both Print Attack [1] and Replay

Attack [4] databases, the standard predefined experimen-

tal protocols are followed, i.e., classifier model is learned

on the training set, and the development set is used for pa-

rameter tuning. As shown in Figure 5, both the datasets

are first pre-processed by cropping the face region based on

eye coordinates obtained from a commercial face recogni-

tion system. In order to correct for small inconsistencies in

eye detection, global image registration [14] is applied with

the first frame as reference. This process effectively mini-

mizes the motion in videos that are not facial motion. The

normalization process is used in conjunction with existing

literature and may also help reduce the effect of hand mo-

tion in spoof attacks. Not all videos contain the same num-

ber of frames, therefore only the first 230 frames from the

videos are used. To ensure fair comparison across different

spoofing detection algorithms, the same pre-processed im-

ages (eye-detection and frame registration) are used in all

experiments.

3.2. Results and Analysis

To demonstrate the effectiveness of the proposed frame-

work, the results of both texture and motion based feature

extraction approaches are computed with and without mo-

tion magnified videos. The experimental results in Table 1

present the performance of spoofing detection in terms of

HTER (%). For motion magnification, optimal parameters

are selected as α = 50, λc = 10, and an ideal bandpass fil-

ter with band 100 − 120 Hz is used. Note that for comput-

ing texture based features, all the frames are first converted

to gray scale. The parameter estimation for SVM is per-

formed using grid search where the objective of grid search

is defined in terms of optimizing the equal error rate on the

development set.

For the proposed motion estimation approach, HOOF

feature vectors of the test set (after dimensionality reduc-

tion) are projected using LDA to a single dimension and the

classification is performed using (1) thresholding and (2)

nearest neighbor. In the experiment HOOF + LDA (thresh-

olding), a threshold is computed from the development set

(a) (b) 

Figure 5. The input video is normalized by first cropping and reg-

istering each frame, with the first frame as reference.



Table 1. Performance of various approaches in terms of HTER in percentage. ∗Result as reported in citation (under the same experimental

protocol).

Approach

Print Attack Replay Attack

Normal Magnified Normal Magnified

Dev Test Dev Test Dev Test Dev Test

LBPu2
8,1+SVM [4]∗ - - - - 14.84 15.16 - -

LBPu2
8,1+SVM (RBF) 5.00 3.12 1.66 0.63 10.00 14.87 6.60 10.20

LBPu2
8,2+SVM (RBF) 5.00 2.50 1.66 1.88 11.66 14.37 6.66 6.62

LBPu2
16,2+SVM (RBF) 5.00 3.12 1.66 1.87 8.50 12.87 6.50 8.75

LBPu2
8,1+LBPu2

8,2+LBPu2
16,2 + SVM (RBF) 3.33 5.60 1.66 1.25 8.55 11.75 5.16 6.62

LBP-TOP8,8,8,1,1,[1−2]+SVM [13]∗ - - - - 7.88 7.60 - -

HOOF+LDA (thresholding) 0.00 3.13 0.00 3.13 0.00 3.75 0.00 4.38

HOOF+LDA (NN) 0.00 0.62 0.00 0.00 0.00 1.25 0.00 1.25

for classification. On the other hand, for HOOF + LDA

(NN), a nearest-neighbor is computed from the training set.

Table 1 shows the results of texture and motion based ap-

proaches on both the datasets. The inferences drawn from

the experimental results are as follows:

• The results show that only using the texture based

multiscale LBP with SVM classification yields 5.6%

HTER on the Print Attack database and 11.75% on

the Replay Attack database. However, the HTER im-

proves to 1.25% and 6.62% when the videos are pre-

processed using the proposed motion magnification

technique. These results are better than the state-of-

the-art of 7.6% on the Replay Attack database pro-

vided by LBP-TOP [13]. The results of individual

components of multiscale LBP also show that motion

magnification improves the performance of individual

components significantly. The improvement may be

attributed to the exaggeration of liveness features of the

face, such as blinking, twitching, and saccadic move-

ment of eyes. Since motion magnification approach

enhances the changes in intensity values in video, it

may also enrich the texture of the magnified video.

• The results of HOOF feature extraction which is

based on the motion estimation approach show that

HOOF+LDA (NN) provides near-perfect classifica-

tion performance on both the datasets (0% and

1.25% HTER on Print Attack and Replay Attack re-

spectively), thereby enhancing the state-of-the-art by

6.35% on the Replay Attack. The distributions of

uni-dimensional LDA projections of HOOF descrip-

tors shown in Figure 6 indicate an improved separa-

tion between real and attack classes when using motion

magnification. This illustrates that HOOF descriptor is

able to correctly encode real facial movements.

• In the proposed HOOF+LDA (NN), only two samples

from the test set of Replay Attack database are wrongly

Table 2. Time taken in execution of various stages for one video

(375 frames).

Stage Time

(seconds)

Registration 293.8

Motion magnification 28.4

HOOF feature extraction 15.2

LBPu2
8,1+LBPu2

8,2+LBPu2
16,2 feature extraction 14.3

LBPTOP8,8,8,1,1,[1−2] feature extraction 734.0

classified (real as attack). Further analysis of the two

misclassifications revealed that both samples are in-

correctly registered which may have contributed to the

misclassification.

• As shown in Table 2, the MATLAB implementations

of the proposed techniques are computationally effi-

cient. The execution time for complete pipeline (pre-

processing, motion magnification and HOOF feature

extraction) takes less time than LBP-TOP features ex-

traction alone. It shows that the proposed approach

outperforms existing approaches in terms of accuracy

as well as computational time.

• The performance of our implementation of

LBPu2
8,1+SVM (RBF) outperforms the reported

results in [4]. This may be attributed to the pre-

processing stage (better eye-detection and frame

registration).

4. Conclusion and Future Directions

Anti-spoofing in face recognition systems must quickly

mature to provide a robust and computationally efficient so-

lution to improve the practicality of face biometrics. This

research presents a novel framework for spoofing detection
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Figure 6. Histogram of the probe projections of HOOF descriptor

using LDA.

in face recognition systems. Using motion magnification,

an input video of a subject is enhanced to exaggerate subtle

macro- and micro- facial expressions usually presented by

a real person. Our experiments indicate that motion mag-

nification improves the performance of LBP texture fea-

tures, including that of the proposed computationally effi-

cient configuration of LBP features. Further, we present

a motion estimation based technique using optical flow de-

scriptor (HOOF). The HOOF descriptors obtained from mo-

tion magnified videos provide state-of-the-art performance

on the Print Attack and Replay Attack datasets in terms of

accuracy and computational efficiency. We are currently

improving the approach in more challenging and adversarial

conditions using a combination of motion and texture based

techniques.
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